Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.663
Filter
1.
Small ; : e2404442, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39224046

ABSTRACT

Li2SrSiO4:Eu2+ is a promising substitute for traditional Y3Al5O12:Ce3+ (YAG:Ce3+) owing to its strong orange-yellow emission of 4f-5d transition originating from Eu2+ dopant, covering the more red-light region. However, its inevitable luminescence thermal quenching at high temperatures and the self-oxidation of Eu2+ strongly impede their applications. Their remediation remains highly challenging. Herein, an anti-self-oxidation(ASO) concept of Eu2+ in Li2SrSiO4 substrate by adding trivalent rare-earth ions (A3+: A = La, Gd, Y, Lu) for highly efficient and stable orange-yellow light emission have been proposed. A significantly increased orange-yellow emission (202% improvement) from Li2Sr0.95A0.05SiO4:Eu2+ with a wide range near-zero thermal quenching is obtained, superior to other Eu2+ activated phosphors. The presence of A3+ ions with various radii modifies the ASO degree of Eu2+ ions, achieving the tunable chemical state, composition, electronic configuration, crystal-field strength, and luminescent characteristics of the developed phosphors. For the proof of the concept, a W-LED device and a PDMS (Polydimethylsiloxane) luminescent film are fabricated, endowing excellent luminescence performance and thermal stability and the huge application prospects of Li2SrSiO4:Eu2+ in lighting and display fields.

2.
Carbohydr Polym ; 344: 122528, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218550

ABSTRACT

In practical scenarios, destabilizing the physical attributes of natural polymers such as gelatin and starch occurs readily when exposed to specific moisture levels and heat. In this context, this work was carried out to assess the impact of PVA addition (up to 13 wt%) on the structure and physical properties of a 6:4 (w/w) gelatin/starch blend. The inclusion of PVA unfolded the molecular chains of gelatin and starch, thereby disrupting gelatin α-helices and impeding biopolymer crystallization. This facilitated hydrogen-bonding interaction between PVA and the two biopolymers, enhancing the stability of the molecular network structure. Rheological results indicate that composites (added with 4 % or 7 % PVA) with good compatibility exhibited excellent mechanical properties and deformation resistance. The addition of PVA elevated the gelling temperature (Tgel) of the composites from 41.31 °C to 80.33 °C; the tensile strength and elongation at break were increased from 2.89 MPa to 3.40 MPa and 341.62 % to 367.56 %, respectively; and the thermal stability was also apparently improved, signifying the effective enhancement of the physical properties of gelatin/starch-based composites and the broadening of their application scope. This work could provide insights into the development of biodegradable natural/synthetic polymer composites with application-beneficial characteristics.

3.
Angew Chem Int Ed Engl ; : e202411121, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218793

ABSTRACT

Traditionally used phenylethylamine iodide (PEAI) and its derivatives, such as ortho-fluorine o-F-PEAI, in interfacial modification, are beneficial for perovskite solar cell (PSC) efficiency but vulnerable to heat stability above 85 °C due to ion migration. To address this issue, we propose a composite interface modification layer incorporating the discotic liquid crystal 2,3,6,7,10,11-hexa(pentoxy)triphenylene (HAT5) into o-F-PEAI. The triphenyl core in HAT5 promotes π-π stacking self-assembly and enhances its interaction with o-F-PEAI, forming an oriented columnar phase that improves hole extraction along the one-dimensional direction. HAT5 repairs structural defects in the interfacial layer and retains the layered structure to inhibit ion migration after annealing. Ultimately, our approach increases the efficiency of solar cells from 23.36% to 25.02%. The thermal stability of the devices retains 80.1% of their initial efficiency after aging at 85 °C for 1008 hours without encapsulation. Moreover, the optimized PSCs maintained their initial efficiency of 82.4% after aging under one sunlight exposure for 1008 hours. This study provides a novel strategy using composite materials for interface modification to enhance the thermal and light stability of semiconductor devices.

4.
Article in English | MEDLINE | ID: mdl-39229750

ABSTRACT

The binuclear paddle-wheel copper(II) complex tetrakis(µ-3,4-diethoxybenzoato-κ2O:O')bis[(ethanol-κO)copper(II)], [Cu2(C11H13O4)4(C2H6O)2], has been synthesized and characterized. In each molecule, two CuII centres are bridged in a syn-syn fashion by four equatorial 3,4-diethoxybenzoate ligands, the two axial positions being occupied by ethanol molecules. The thermal stability has been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. The magnetic behaviour, studied by SQUID magnetometry, shows a CuII-CuII antiferromagnetic exchange interaction with 2J = -288 cm-1, a value that fits with a magnetic structure correlation established for compounds of this kind.

5.
Article in English | MEDLINE | ID: mdl-39226427

ABSTRACT

A new three-dimensional (3D) coordination polymer, namely, poly[diaqua[µ5-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato]barium(II)], [Ba(C14H6N2O8)(H2O)2]n, (I), has been synthesized by the microwave-irradiated reaction of Ba(NO3)2 with N,N'-bis(glycinyl)pyromellitic diimide {BGPD, namely, 2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetatic acid, H2L}. The title compound was structurally characterized by single-crystal X-ray diffraction analysis and powder X-ray diffraction analysis, as well as IR spectroscopy. In the crystal structure of (I), the BaII ion is nine-coordinated by six carboxylate O atoms from five symmetry-related L2- dianions and one imide O atom, as well as two water O atoms. The coordination geometry of the central BaII ion can be described as a spherical capped square antiprism. One carboxylate group of the ligand serves as a µ3-bridge linking the BaII cations into a one-dimensional polynuclear secondary building unit (SBU). Another carboxylate group of the ligand acts as a µ2-bridge connecting the 1D SBUs, thereby forming a two-dimensional (2D) SBU. The resulting 2D SBUs are extended into a 3D framework via the pyromellitic diimide moiety of the ligand as a spacer. The 3D Ba framework can be simplified as a 5-connected hexagonal boron nitride net (bnn) topology. The intermolecular interactions in the 3D framework were further investigated by Hirshfeld surface analysis and the results show that the prominent interactions are H...O (45.1%), Ba...O (11.1%) and C...H (11.1%), as well as H...H (11.1%) contacts. The thermal stability, photoluminescence properties and UV-Vis absorption spectra of (I) were also investigated. The coordination polymer exhibits a fluorescence emission with a quantum yield of 0.071 and high thermal stability.

6.
Article in English | MEDLINE | ID: mdl-39226423

ABSTRACT

Two new two-dimensional (2D) coordination polymers (CPs), namely, poly[diaqua[µ4-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ4O:O':O'':O''']cadmium(II)], [Cd(C14H6N2O8)(H2O)2]n (1), and poly[[tetraaqua[µ4-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ4O:O':O'':O'''][µ2-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ2O:O']dizinc(II)] dihydrate], {[Zn(C14H6N2O8(H2O)2]·H2O}n (2), have been synthesized by the microwave-irradiated reaction of Cd(CH3COO)2·2H2O and Zn(CH3COO)2·2H2O, respectively, with N,N'-bis(glycinyl)pyromellitic diimide {BGPD, namely, 2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetic acid, H2L}. In the crystal structure of 1, the CdII ion is six-coordinated by four carboxylate O atoms from four symmetry-related L2- dianions and two coordinated water molecules, furnishing an octahedral coordination geometry. The bridging L2- dianion links four symmetry-related CdII cations into a 2D layer-like structure with a 3,4-connected bex topology. In the crystal structure of 2, the ZnII ion is five-coordinated by three carboxylate O atoms from three different L2- dianions and two coordination water molecules, furnishing a trigonal bipyramidal coordination geometry. Two crystallographically independent ligands serve as µ4- and µ2-bridges, respectively, to connect the ZnII ions, thereby forming a 2D layer with a 3,3-connected hcb topology. Crystal structure analysis reveals the presence of n→π* interactions between two carbonyl groups of the pyromellitic diimide moieties in 1 and 2. CP 1 exhibits an enhanced fluorescence emission compared with free H2L. The framework of 2 decomposes from 720 K, indicating its high thermal stability. A comparative analysis of a series of structures based on the BGPD ligand indicates that the metal-ion size has a great influence on the connection modes of the metal ions due to different steric effects, which, in turn, affects the structures of the SBUs (secondary building units) and frameworks.

7.
Chem Asian J ; : e202400828, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231000

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are a potential new technology in energy storage due to their high energy density, affordability, and environmental friendliness. Unchecked zinc dendrite formation during cycling still hinders the development of AZIBs, resulting in an unstable interface, a short cycling life, a considerable capacity decline, and security issues. Herein, we demonstrate a novel nanofiber membrane based on a polyethylenimine-polyacrylonitrile (PEI-PAN) polymer produced by electrospinning with entangled nanofibers for AZIBs applications. The as-fabricated PEI/PAN membrane has a porous structure that is homogeneous, tortuous, and linked, with high porosity and superior electrolyte wettability. The PEI/PAN membrane has good thermal stability at 200 °C and high ionic conductivity of up to 5.3 x 10-4 S cm-1. This membrane provides Zn/Zn symmetric cells with an ultralong cycle life of over 250 hours at 3 mA cm-2. Additionally, MnO2/Zn cells outperforms commercial filter paper in terms of cycle stability and rate performance. This work demonstrates a simple technique for fabricating advanced nanofiber membranes for AZIBs to modify Zn2+ deposition behavior and improve Zn dendrite resistance.

8.
Food Chem X ; 23: 101641, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39139489

ABSTRACT

In order to improve the quality of frozen dough, a calcium alginate-coated sodium alginate/trehalose/wheat starch ternary complex was designed in this paper. The ternary complex was added to dough, and the dough quality were measured after 0-30 d of frozen storage. The XRD and FT-IR results showed the ternary complex was mainly starchy crystal. The TGA curves showed the starting (To), peak (Tp) and termination temperature (Tc) were increased. The interaction between sodium alginate and trehalose enhanced the thermal performance of ternary complex. As the ternary complex addition to dough increased, the maximum ice crystal formation zone of the frozen dough passed faster, resulting in more uniform and smaller ice crystals. The dough with 0.8% addition contained more bound water and had better hardness, springiness and cohesiveness. In conclusion, the study provides a novel insight and understanding for the development of ternary complex as food additives in frozen food industry.

9.
Luminescence ; 39(8): e4864, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39143604

ABSTRACT

The GdAl3(BO3)4:xPr3+ (0 ≤ x ≤ 5.0 mol%) phosphors were prepared through solid state reaction route and characterized for various lighting applications. Powder X-ray diffraction investigations revel rhombohedral structure matched to JCPDS card no. 83-1907. The morphological studies confirm the agglomeration of particles with different size and shape. The emission spectra show various emission transitions originating from Pr3+:(3P1,0, 1D2) emission states to their lower lying energy states upon 274 nm NUV excitation with a red shift for x > 0.5 mol%. The colour perception analysis results an intense red luminescence due to efficient energy transfer from Gd3+ to Pr3+ ions. The temperature-dependent luminescence investigations show good thermal stability even beyond 150°C with an activation energy of 0.24 eV. The observed experimental results show the potentiality of GdAl3(BO3)4:0.5 Pr3+ phosphor for red emitting devices and red component in phosphor converted white LEDs.


Subject(s)
Gadolinium , Luminescence , Luminescent Agents , Gadolinium/chemistry , Luminescent Agents/chemistry , Luminescent Measurements , Praseodymium/chemistry , X-Ray Diffraction , Particle Size , Temperature , Color
10.
ACS Nano ; 18(33): 22444-22453, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39110477

ABSTRACT

Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem toward using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Fermi-level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependence on interface chemistry. In particular, we achieved a low contact resistance for ML MoS2 FETs with ultrahigh-vacuum (UHV, 3 × 10-11 mbar) deposited Ni contacts, ∼500 Ω·µm, which is 5 times lower than the contact resistance achieved when deposited under high-vacuum (HV, 3 × 10-6 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS2 under UHV conditions compared to that under HV. We also studied the Bi/MoS2 interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here.

11.
Front Chem ; 12: 1433727, 2024.
Article in English | MEDLINE | ID: mdl-39156219

ABSTRACT

Epoxy resins, known for their excellent properties, are widely used thermosetting resins, but their tendency towards brittle fracture limits their applications. This study addresses this issue by preparing graphene oxide via the Hummer method, modifying it with hyperbranched polyamide ester, and reducing it with hydrazine hydrate to obtain functionalized graphene. This functionalized graphene improves compatibility with epoxy resin. Using a novel two-phase extraction method, different ratios of functionalized graphene/epoxy composites were prepared and tested for mechanical properties and thermal stability. The results showed significant improvements: the tensile strength of composites with 0.1 wt% functionalized graphene increased by 77% over pure epoxy resin, flexural strength by 56%, and glass transition temperature by 50°C. These enhancements, attributed to the improved compatibility between graphene and epoxy resin, demonstrate the potential of functionalized graphene to mitigate the brittleness of epoxy resins, expanding their application potential.

12.
Materials (Basel) ; 17(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124376

ABSTRACT

The soft PBAT foam shows good flexibility, high elasticity, degradable nature, and it can be used as an environmental-friendly candidate for EVA and PU foams. Unfortunately, there are few reports on the application of PBAT as a soft foam. In this study, PBAT foam was fabricated by a pressure quenching method using CO2 as the blowing agent. A significant volume shrinkage of about 81% occurred, where the initial PBAT foam had an extremely high expansion ratio, of about 31 times. A 5-10 wt% PBS with high crystallinity was blended, and N2 with low gas solubility and diffusivity was mixed, with the aim of resisting foam shrinkage and preparing PBAT with a high final expansion ratio of 14.7 times. The possible mechanism behind this phenomenon was established, and the increased matrix modulus and decreased pressure difference within and outside the cell structure were the main reasons for the shrinkage resistance. The properties of PBAT and PBAT/PBS foams with a density of 0.1 g/cm3 were measured, based on the requirements for shoe applications. The 5-10 wt% PBS loading presented advantages in reducing thermal shrinkage at 75 °C/40 min, without compromising the hardness, elasticity, and the compression set, which ensures that PBAT/PBS foams have good prospects for use as soft foams.

13.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39124990

ABSTRACT

Aging of polymers is a natural process that occurs during their usage and storage. Predicting the lifetime of polymers is a crucial aspect that should be considered at the design stage. In this paper, a series of bio-based thermoplastic poly(ether-urethane) elastomers (bio-TPUs) with modified hard segments were synthesized and investigated to understand the structural and property changes triggered by accelerated aging. The bio-TPUs were synthesized at an equimolar ratio of reagents using the prepolymer method with the use of bio-based poly(trimethylene ether) glycol, bio-based 1,3-propanediol, and hexamethylene diisocyanate or hexamethylene diisocyanate/partially bio-based diisocyanate mixtures. The polymerization reaction was catalyzed by dibutyltin dilaurate (DBTDL). The structural and property changes after accelerated aging under thermal and hydrothermal conditions were determined using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA). Among other findings, it was observed that both the reference and aged bio-TPUs decomposed in two main stages and exhibited thermal stability up to approximately 300 °C. Based on the research conducted, it was found that accelerated aging impacts the supramolecular structure of TPUs.

14.
Polymers (Basel) ; 16(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125161

ABSTRACT

Polylactic acid (PLA) composite serve as widely used filaments in fused deposition modeling (FDM) 3D printing. This study investigates the enhancement of PLA composite's comprehensive mechanical properties and thermal stability through the incorporation of carbon fiber (CF). The influence of FDM process parameters on the mechanical properties of PLA composite is also analyzed. Results show that adding 5 wt.% CF significantly enhances the stiffness and comprehensive mechanical properties of PLA composite. The order of printing factors affecting the tensile strength of the PLA composite product is as follows: printing layer thickness, bottom plate temperature, printing speed, and nozzle temperature. Finally, optimal tensile strength is achieved under specific conditions: 0.1 mm layer thickness, 60 °C bottom plate temperature, 40 mm/s printing speed, and 215 °C nozzle temperature.

15.
Biotechnol J ; 19(8): e2400245, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118577

ABSTRACT

Enzymes that degrade ß-glucan play important roles in various industries, including those related to brewing, animal feed, and health care. Csph16A, an endo-ß-1,3(4)-glucanase encoded by a gene from the halotolerant, xerotolerant, and radiotrophic black fungus Cladosporium sphaerospermum, was cloned and expressed in Pichia pastoris. Two isoforms (Csph16A.1 and Csph16A.2) are produced, arising from differential glycosylation. The proteins were predicted to contain a catalytic Lam16A domain, along with a C-terminal domain (CTD) of unknown function which exhibits minimal secondary structure. Employing PCR-mediated gene truncation, the CTD of Csph16A was excised to assess its functional impact on the enzyme and determine potential alterations in biotechnologically relevant characteristics. The truncated mutant, Csph16A-ΔC, exhibited significantly enhanced thermal stability at 50°C, with D-values 14.8 and 23.5 times greater than those of Csph16A.1 and Csph16A.2, respectively. Moreover, Csph16A-ΔC demonstrated a 20%-25% increase in halotolerance at 1.25 and 1.5 M NaCl, respectively, compared to the full-length enzymes. Notably, specific activity against cereal ß-glucan, lichenan, and curdlan was increased by up to 238%. This study represents the first characterization of a glucanase from the stress-tolerant fungus C. sphaerospermum and the first report of a halotolerant and engineered endo-ß-1,3(4)-glucanase. Additionally, it sheds light on a group of endo-ß-1,3(4)-glucanases from Antarctic rock-inhabiting black fungi harboring a Lam16A catalytic domain and a novel CTD of unknown function.


Subject(s)
Enzyme Stability , beta-Glucans , beta-Glucans/metabolism , Cladosporium/enzymology , Cladosporium/genetics , Protein Domains , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Endo-1,3(4)-beta-Glucanase/genetics , Endo-1,3(4)-beta-Glucanase/metabolism , Endo-1,3(4)-beta-Glucanase/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cloning, Molecular , Temperature , Saccharomycetales
16.
Mol Ther Methods Clin Dev ; 32(3): 101293, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39100914

ABSTRACT

Adeno-associated viruses (AAVs) are gaining traction as delivery vehicles for gene therapy although the molecular understanding of AAV-transgene release is still limited. Typically, the process of viral uncoating is investigated (in vitro) through thermal stress, revealing capsid disintegration at elevated temperatures. To assess the (in)stability of different empty and filled AAV preparations, we used the light-scattering-based interferometric microscopy technique of mass photometry that, on a single-particle basis, determines the molecular weight of AAVs. By introducing a heat-stable DNA plasmid as an internal standard, we quantitatively probed the impact of heat on AAVs. Generally, empty AAVs exhibited greater heat resistance than genome-filled particles. Our data also indicate that upon DNA release, the capsids do not transform into empty AAVs, but seem to aggregate or disintegrate. Strikingly, some AAVs exhibited an intermediate state with disrupted capsids but preserved bound genome, a feature that experimentally only emerged following incubation with a nuclease. Our data demonstrate that the thermal uncoating process is highly AAV specific (i.e., can be influenced by serotype, genome, host system). We argue that nuclease treatment in combination with MP can be used as an additional analytical tool for assessing structural integrity of recombinant and/or clinical AAV vectors.

17.
J Food Sci ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088724

ABSTRACT

The poor thermal stability of lactoferrin (LF) hinders its bioavailability and use in commercial food products. To preserve LF from thermal denaturation, complexation with other biopolymers has been studied. Here we present the complex formation conditions, structural stability, and functional protection of LF by α-lactalbumin (α-LA). The formation of the LF-α-LA complexes was dependent on pH, mass ratio, and ionic strength. Changing the formation conditions and cross-linking by transglutaminase impacted the turbidity, particle size, and zeta-potential of the resulting complexes. Electrophoresis, Fourier-transform infrared spectroscopy, and circular dichroism measurements suggest that the secondary structure of LF in the LF-α-LA complex was maintained after complexation and subsequent thermal treatments. At pH 7, the LF-α-LA complex protected LF from thermal aggregation and denaturation, and the LF retained its functional and structural properties, including antibacterial capacity of LF after thermal treatments. The improved thermal stability and functional properties of LF in the LF-α-LA complex are of interest to the food industry.

18.
Front Microbiol ; 15: 1442163, 2024.
Article in English | MEDLINE | ID: mdl-39104583

ABSTRACT

Given the intimate relationship between humans and dogs, the H3N2 canine influenza viruses (CIVs) pose a threat to public health. In our study, we isolated four H3N2 CIVs from 3,758 dog nasal swabs in China between 2018 and 2020, followed by genetic and biological analysis. Phylogenetic analysis revealed 15 genotypes among all available H3N2 CIVs, with genotype 15 prevailing among dogs since around 2017, indicating the establishment of a stable virus lineage in dogs. Molecular characterization identified many mammalian adaptive substitutions, including HA-G146S, HA-N188D, PB2-I292T, PB2-G590S, PB2-S714I, PB1-D154G, and NP-R293K, present across the four isolates. Notably, analysis of HA sequences uncovered a newly emerged adaptive mutation, HA-V223I, which is predominantly found in human and swine H3N2 viruses, suggesting its role in mammalian adaptation. Receptor-binding analysis revealed that the four H3N2 viruses bind both avian and human-type receptors. However, HA-V223I decreases the H3N2 virus's affinity for human-type receptors but enhances its thermal stability. Furthermore, attachment analysis confirmed the H3N2 virus binding to human tracheal tissues, albeit with reduced affinity when the virus carries HA-V223I. Antigenic analysis indicated that the current human H3N2 vaccines do not confer protection against H3N2 CIVs. Collectively, these findings underscore that the potential threat posed by H3N2 CIVs to human health still exists, emphasizing the necessity of close surveillance and monitoring of H3N2 CIVs in dogs.

19.
Appl Microbiol Biotechnol ; 108(1): 445, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167106

ABSTRACT

Chimeric DNA polymerase with notable performance has been generated for wide applications including DNA amplification and molecular diagnostics. This rational design method aims to improve specific enzymatic characteristics or introduce novel functions by fusing amino acid sequences from different proteins with a single DNA polymerase to create a chimeric DNA polymerase. Several strategies prove to be efficient, including swapping homologous domains between polymerases to combine benefits from different species, incorporating additional domains for exonuclease activity or enhanced binding ability to DNA, and integrating functional protein along with specific protein structural pattern to improve thermal stability and tolerance to inhibitors, as many cases in the past decade shown. The conventional protocol to develop a chimeric DNA polymerase with desired traits involves a Design-Build-Test-Learn (DBTL) cycle. This procedure initiates with the selection of a parent polymerase, followed by the identification of relevant domains and devising a strategy for fusion. After recombinant expression and purification of chimeric polymerase, its performance is evaluated. The outcomes of these evaluations are analyzed for further enhancing and optimizing the functionality of the polymerase. This review, centered on microorganisms, briefly outlines typical instances of chimeric DNA polymerases categorized, and presents a general methodology for their creation. KEY POINTS: • Chimeric DNA polymerase is generated by rational design method. • Strategies include domain exchange and addition of proteins, domains, and motifs. • Chimeric DNA polymerase exhibits improved enzymatic properties or novel functions.


Subject(s)
DNA-Directed DNA Polymerase , Protein Engineering , Recombinant Fusion Proteins , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Protein Engineering/methods
20.
Int J Biol Macromol ; 278(Pt 3): 134663, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134202

ABSTRACT

The conventional agar extraction method has drawbacks such as high energy consumption, low yield, poor quality, and possible residual harmful factors, which greatly limit its application in high-end fields such as biomedicine and high-end materials. This work explored a new freezing-thawing-high-temperature coupling technique for agar extraction. It increased the yield and the strength of agar by 10.6 % and 13.7 %, respectively, as compared to direct high-temperature extraction of agar (HA). The greater molecular weight and lower sulfate content of agar obtained from freeze-thaw cycles combined with high temperature extraction (FA) may be attributed to the desulfurization effect caused by freeze-thaw cycles and the preservation of the molecular chain structure. The reduction in sulfate content decreases the steric hindrance resistance of the polysaccharide chains, enhances their interactions, and promotes the regularity and density of the agar structure, while also improving its water retention and thermal stability. In conclusion, this research can offer a theoretical basis and guidance for the eco-friendly extraction of agar with improved agar characteristics and expended its applications.

SELECTION OF CITATIONS
SEARCH DETAIL