Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
1.
Brain Stimul ; 17(5): 1101-1118, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39277130

ABSTRACT

Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.

2.
Brain Res ; 1845: 149168, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153591

ABSTRACT

Elucidate the pathogenesis mechanism of post-stroke cognitive impairment (PSCI) can help to develop precision interventions. In this study, we established a mouse model of PSCI using the photochemical method, and behavioral tests including Y-maze and Novel object recognition task for accessing cognitive impairment were observed at week 2 post-stroke. Besides, synaptic plasticity, theta nerve oscillatory and the activity of glutamatergic neurons related to the ventral hippocampal-medial prefrontal glutamatergic neural pathway in the non-affected hemisphere (contralateral hemisphere to the lesion site) were observed. The result indicated the cognitive function declined at week 2 post-stroke. Synaptic plasticity, theta nerve oscillatory synchronization and the activity of glutamatergic neurons of the ventral hippocampal-medial prefrontal glutamatergic neural pathway in the non-affected hemisphere was down-regulated in the PSCI group compared to those of the SHAM group. Therefore, we concluded that the declined function of the ventral hippocampal-medial prefrontal glutamatergic pathway in the non-affected hemisphere is a biomarker in the occurrence of cognitive dysfunction after stroke.

3.
Cell Rep ; 43(8): 114590, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39163200

ABSTRACT

The hippocampus and medial entorhinal cortex (MEC) form a cognitive map that facilitates spatial navigation. As part of this map, MEC grid cells fire in a repeating hexagonal pattern across an environment. This grid pattern relies on inputs from the medial septum (MS). The MS, and specifically GABAergic neurons, are essential for theta rhythm oscillations in the entorhinal-hippocampal network; however, the role of this population in grid cell function is unclear. To investigate this, we use optogenetics to inhibit MS-GABAergic neurons and observe that MS-GABAergic inhibition disrupts grid cell spatial periodicity. Grid cell spatial periodicity is disrupted during both optogenetic inhibition periods and short inter-stimulus intervals. In contrast, longer inter-stimulus intervals allow for the recovery of grid cell spatial firing. In addition, grid cell phase precession is also disrupted. These findings highlight the critical role of MS-GABAergic neurons in maintaining grid cell spatial and temporal coding in the MEC.


Subject(s)
Entorhinal Cortex , GABAergic Neurons , Grid Cells , Optogenetics , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Animals , Entorhinal Cortex/physiology , Entorhinal Cortex/metabolism , Entorhinal Cortex/cytology , Grid Cells/physiology , Mice , Male , Theta Rhythm/physiology , Septal Nuclei/physiology , Septal Nuclei/metabolism
4.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39110414

ABSTRACT

Adaptive behavior is fundamental to cognitive control and executive functioning. This study investigates how cognitive control mechanisms and episodic feature retrieval interact to influence adaptiveness, focusing particularly on theta (4 to 8 Hz) oscillatory dynamics. We conducted two variations of the Simon task, incorporating response-incompatible, response-compatible, and neutral trials. Experiment 1 demonstrated that cognitive adjustments-specifically, cognitive shielding following incompatible trials and cognitive relaxation following compatible ones-are reflected in midfrontal theta power modulations associated with the Simon effect. Experiment 2 showed that reducing feature overlap between trials leads to less pronounced sequential modulations in behavior and midfrontal theta activity, supporting the hypothesis that cognitive control and feature integration share a common neural mechanism. These findings highlight the interaction of cognitive control processes and episodic feature integration in modulating behavior. The results advocate for hybrid models that combine top-down and bottom-up processes as a comprehensive framework to understand cognitive control dynamics and adaptive behavior.


Subject(s)
Cognition , Conflict, Psychological , Executive Function , Theta Rhythm , Humans , Theta Rhythm/physiology , Male , Female , Young Adult , Cognition/physiology , Adult , Executive Function/physiology , Reaction Time/physiology , Electroencephalography , Psychomotor Performance/physiology , Adaptation, Psychological/physiology , Brain/physiology
5.
Heliyon ; 10(14): e34581, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39148968

ABSTRACT

Emotional reactions to salient stimuli are well documented in psychophysiological research. However, some individual variables that can influence how people process emotions (i.e., empathy traits) have received little consideration. The present study investigated the relationship between emotions and empathy. Forty participants completed the Interpersonal Reactivity Index, a questionnaire that measure general and specific empathy dimensions. Then, emotional (erotic and mutilation) and non-emotional pictures were presented, during electroencephalographic recording. Valence and arousal were evaluated for each stimulus. Behavioral results revealed a positive correlation between the arousal induced by mutilation pictures and personal distress (i.e., feeling discomfort in emergency situations). At the electrophysiological level, theta activity elicited by positive and negative emotion processing in the superior frontal gyrus was associated with personal distress. Moreover, erotic-related theta in the middle frontal gyrus was associated with subjective judgement of erotic stimulus valence. Overall, theta activity modulated the interplay between emotions and empathy.

6.
Brain Res Bull ; 215: 111027, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971477

ABSTRACT

BACKGROUND: The limited understanding of the physiology and psychology of polar expedition explorers has prompted concern over the potential cognitive impairments caused by exposure to extreme environmental conditions. Prior research has demonstrated that such stressors can negatively impact cognitive function, sleep quality, and behavioral outcomes. Nevertheless, the impact of the polar environment on neuronal activity remains largely unknown. METHODS: In this study, we aimed to investigate spatiotemporal alterations in brain oscillations of 13 individuals (age range: 22-48 years) who participated in an Arctic expedition. We utilized electroencephalography (EEG) to record cortical activity before and during the Arctic journey, and employed standardized low resolution brain electromagnetic tomography to localize changes in alpha, beta, theta, and gamma activity. RESULTS: Our results reveal a significant increase in the power of theta oscillations in specific regions of the Arctic, which differed significantly from pre-expedition measurements. Furthermore, microstate analysis demonstrated a significant reduction in the duration of microstates (MS) D and alterations in the local synchrony of the frontoparietal network. CONCLUSION: Overall, these findings provide novel insights into the neural mechanisms underlying adaptation to extreme environments. These findings have implications for understanding the cognitive consequences of polar exploration and may inform strategies to mitigate potential neurological risks associated with such endeavors. Further research is warranted to elucidate the long-term effects of Arctic exposure on brain function.


Subject(s)
Brain Waves , Brain , Electroencephalography , Humans , Adult , Arctic Regions , Male , Female , Middle Aged , Electroencephalography/methods , Young Adult , Brain/physiology , Brain Waves/physiology
7.
Cell Rep ; 43(8): 114539, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39052483

ABSTRACT

The mammillary bodies (MBOs), a group of hypothalamic nuclei, play a pivotal role in memory formation and spatial navigation. They receive extensive inputs from the hippocampus through the fornix, but the physiological significance of these connections remains poorly understood. Damage to the MBOs is associated with various forms of anterograde amnesia. However, information about the physiological characteristics of the MBO is limited, primarily due to the limited number of studies that have directly monitored MBO activity along with population patterns of its upstream partners. Employing large-scale silicon probe recording in mice, we characterize MBO activity and its interaction with the subiculum across various brain states. We find that MBO cells are highly diverse in their relationship to theta, ripple, and slow oscillations. Several of the physiological features are inherited by the topographically organized inputs to MBO cells. Our study provides insights into the functional organization of the MBOs.


Subject(s)
Hippocampus , Mammillary Bodies , Neurons , Animals , Mammillary Bodies/physiology , Neurons/physiology , Mice , Hippocampus/physiology , Hippocampus/cytology , Male , Mice, Inbred C57BL
8.
Cortex ; 177: 84-99, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848652

ABSTRACT

The visual system operates rhythmically, through timely coordinated perceptual and attentional processes, involving coexisting patterns in the alpha range (7-13 Hz) at ∼10 Hz, and theta (3-6 Hz) range, respectively. Here we aimed to disambiguate whether variations in task requirements, in terms of attentional demand and side of target presentation, might influence the occurrence of either perceptual or attentional components in behavioral visual performance, also uncovering possible differences in the sampling mechanisms of the two cerebral hemispheres. To this aim, visuospatial performance was densely sampled in two versions of a visual detection task where the side of target presentation was fixed (Task 1), with participants monitoring one single hemifield, or randomly varying across trials, with participants monitoring both hemifields simultaneously (Task 2). Performance was analyzed through spectral decomposition, to reveal behavioral oscillatory patterns. For Task 1, when attentional resources where focused on one hemifield only, the results revealed an oscillatory pattern fluctuating at ∼10 Hz and ∼6-9 Hz, for stimuli presented to the left and the right hemifield, respectively, possibly representing a perceptual sampling mechanism with different efficiency within the left and the right hemispheres. For Task 2, when attentional resources were simultaneously deployed to the two hemifields, a ∼5 Hz rhythm emerged both for stimuli presented to the left and the right, reflecting an attentional sampling process, equally supported by the two hemispheres. Overall, the results suggest that distinct perceptual and attentional sampling mechanisms operate at different oscillatory frequencies and their prevalence and hemispheric lateralization depends on task requirements.


Subject(s)
Alpha Rhythm , Attention , Theta Rhythm , Visual Perception , Humans , Attention/physiology , Theta Rhythm/physiology , Visual Perception/physiology , Male , Female , Adult , Alpha Rhythm/physiology , Young Adult , Photic Stimulation/methods , Electroencephalography/methods , Vision, Ocular/physiology
9.
bioRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38854074

ABSTRACT

The information transfer necessary for successful memory retrieval is believed to be mediated by theta and gamma oscillations. These oscillations have been linked to memory processes in electrophysiological studies, which were correlational in nature. In the current study, we used transcranial alternating current stimulation (tACS) to externally modulate brain oscillations to examine its direct effects on memory performance. Participants received sham, theta (4 Hz), and gamma (50 Hz) tACS over frontoparietal regions while retrieving information in a source memory paradigm. Linear regression models were used to investigate the direct effects of oscillatory non-invasive brain stimulation (NIBS) on memory accuracy and confidence. Our results indicate that both theta and gamma tACS altered memory confidence. Specifically, theta tACS seemed to lower the threshold for confidence in retrieved information, while gamma tACS appeared to alter the memory confidence bias. Furthermore, the individual differences in tACS effects could be predicted from electroencephalogram (EEG) measures recorded prior to stimulation, suggesting that EEG could be a useful tool for predicting individual variability in the efficacy of NIBS.

10.
J Exp Biol ; 227(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38887077

ABSTRACT

Cuttlefish skin is a powerful rendering device, capable of producing extraordinary changes in visual appearance over a broad range of temporal scales. This unique ability is typically associated with camouflage; however, cuttlefish often produce skin patterns that do not appear connected with the surrounding environment, such as fast large-scale fluctuations with wave-like characteristics. Little is known about the functional significance of these dynamic patterns. In this study, we developed novel tools for analyzing pattern dynamics, and demonstrate their utility for detecting changes in feeding state that occur without concomitant changes in sensory stimulation. Under these conditions, we found that the dynamic properties of specific pattern components differ for different feeding states, despite no measurable change in the overall expression of those components. Therefore, these dynamic changes are not detectable by conventional analyses focusing on pattern expression, requiring analytical tools specifically targeted to pattern dynamics.


Subject(s)
Decapodiformes , Animals , Decapodiformes/physiology , Feeding Behavior/physiology , Skin/metabolism
11.
Cortex ; 175: 28-40, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691923

ABSTRACT

The angular gyrus (AG) and posterior cingulate cortex (PCC) demonstrate extensive structural and functional connectivity with the hippocampus and other core recollection network regions. Consequently, recent studies have explored neuromodulation targeting these and other regions as a potential strategy for restoring function in memory disorders such as Alzheimer's Disease. However, determining the optimal approach for neuromodulatory devices requires understanding how parameters like selected stimulation site, cognitive state during modulation, and stimulation duration influence the effects of deep brain stimulation (DBS) on electrophysiological features relevant to episodic memory. We report experimental data examining the effects of high-frequency stimulation delivered to the AG or PCC on hippocampal theta oscillations during the memory encoding (study) or retrieval (test) phases of an episodic memory task. Results showed selective enhancement of anterior hippocampal slow theta oscillations with stimulation of the AG preferentially during memory retrieval. Conversely, stimulation of the PCC attenuated slow theta oscillations. We did not observe significant behavioral effects in this (open-loop) stimulation experiment, suggesting that neuromodulation strategies targeting episodic memory performance may require more temporally precise stimulation approaches.


Subject(s)
Cognition , Deep Brain Stimulation , Hippocampus , Parietal Lobe , Theta Rhythm , Deep Brain Stimulation/methods , Theta Rhythm/physiology , Hippocampus/physiology , Male , Humans , Parietal Lobe/physiology , Cognition/physiology , Memory, Episodic , Female , Gyrus Cinguli/physiology , Adult
12.
Cogn Neurodyn ; 18(2): 447-459, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699606

ABSTRACT

Based on previous concepts that a distributed theta network with a central "hub" in the medial frontal cortex is critically involved in movement regulation, monitoring, and control, the present study explored the involvement of this network in error processing with advancing age in humans. For that aim, the oscillatory neurodynamics of motor theta oscillations was analyzed at multiple cortical regions during correct and error responses in a sample of older adults. Response-related potentials (RRPs) of correct and incorrect reactions were recorded in a four-choice reaction task. RRPs were decomposed in the time-frequency domain to extract oscillatory theta activity. Motor theta oscillations at extended motor regions were analyzed with respect to power, temporal synchronization, and functional connectivity. Major results demonstrated that errors had pronounced effects on motor theta oscillations at cortical regions beyond the medial frontal cortex by being associated with (1) theta power increase in the hemisphere contra-lateral to the movement, (2) suppressed spatial and temporal synchronization at pre-motor areas contra-lateral to the responding hand, (2) inhibited connections between the medial frontal cortex and sensorimotor areas, and (3) suppressed connectivity and temporal phase-synchronization of motor theta networks in the posterior left hemisphere, irrespective of the hand, left, or right, with which the error was made. The distributed effects of errors on motor theta oscillations demonstrate that theta networks support performance monitoring. The reorganization of these networks with aging implies that in older individuals, performance monitoring is associated with a disengagement of the medial frontal region and difficulties in controlling the focus of motor attention and response selection. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10018-4.

13.
J Physiol ; 602(10): 2315-2341, 2024 May.
Article in English | MEDLINE | ID: mdl-38654581

ABSTRACT

Brain rhythms have been postulated to play central roles in animal cognition. A prominently reported dichotomy of hippocampal rhythms links theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) exclusively to preparatory and consummatory behaviours, respectively. However, because of the differential power expression of these two signals across hippocampal strata, such exclusivity requires validation through analyses of simultaneous multi-strata recordings. We assessed co-occurrence of theta-frequency oscillations with ripples in multi-channel recordings of extracellular potentials across hippocampal strata from foraging rats. We detected all ripple events from an identified stratum pyramidale (SP) channel. We then defined theta epochs based on theta oscillations detected from the stratum lacunosum-moleculare (SLM) or the stratum radiatum (SR). We found ∼20% of ripple events (in SP) to co-occur with theta epochs identified from SR/SLM channels, defined here as theta ripples. Strikingly, when theta epochs were instead identified from the SP channel, such co-occurrences were significantly reduced because of a progressive reduction in theta power along the SLM-SR-SP axis. Behaviourally, we found most theta ripples to occur during immobile periods, with comparable theta power during exploratory and immobile theta epochs. Furthermore, the progressive reduction in theta power along the SLM-SR-SP axis was common to exploratory and immobile periods. Finally, we found a strong theta-phase preference of theta ripples within the fourth quadrant [3π/2 - 2π] of the associated theta oscillation. The prevalence of theta ripples expands the potential roles of ripple-frequency oscillations to span the continuum of encoding, retrieval and consolidation, achieved through interactions with theta oscillations. KEY POINTS: The brain manifests oscillations in recorded electrical potentials, with different frequencies of oscillation associated with distinct behavioural states. A prominently reported dichotomy assigns theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) recorded in the hippocampus to be exclusively associated with preparatory and consummatory behaviours, respectively. Our multi-strata recordings from the rodent hippocampus coupled with cross-strata analyses provide direct quantitative evidence for the occurrence of ripple events nested within theta oscillations. These results highlight the need for an analysis pipeline that explicitly accounts for the specific strata where individual oscillatory power is high, in analysing simultaneously recorded data from multiple strata. Our observations open avenues for investigations involving cross-strata interactions between theta oscillations and ripples across different behavioural states.


Subject(s)
Hippocampus , Theta Rhythm , Animals , Male , Hippocampus/physiology , Rats , Rats, Long-Evans , Feeding Behavior/physiology
14.
Curr Biol ; 34(8): 1731-1738.e3, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38593800

ABSTRACT

In face-to-face interactions with infants, human adults exhibit a species-specific communicative signal. Adults present a distinctive "social ensemble": they use infant-directed speech (parentese), respond contingently to infants' actions and vocalizations, and react positively through mutual eye-gaze and smiling. Studies suggest that this social ensemble is essential for initial language learning. Our hypothesis is that the social ensemble attracts attentional systems to speech and that sensorimotor systems prepare infants to respond vocally, both of which advance language learning. Using infant magnetoencephalography (MEG), we measure 5-month-old infants' neural responses during live verbal face-to-face (F2F) interaction with an adult (social condition) and during a control (nonsocial condition) in which the adult turns away from the infant to speak to another person. Using a longitudinal design, we tested whether infants' brain responses to these conditions at 5 months of age predicted their language growth at five future time points. Brain areas involved in attention (right hemisphere inferior frontal, right hemisphere superior temporal, and right hemisphere inferior parietal) show significantly higher theta activity in the social versus nonsocial condition. Critical to theory, we found that infants' neural activity in response to F2F interaction in attentional and sensorimotor regions significantly predicted future language development into the third year of life, more than 2 years after the initial measurements. We develop a view of early language acquisition that underscores the centrality of the social ensemble, and we offer new insight into the neurobiological components that link infants' language learning to their early brain functioning during social interaction.


Subject(s)
Brain , Language Development , Magnetoencephalography , Social Interaction , Humans , Infant , Male , Female , Brain/physiology , Attention/physiology , Speech/physiology
15.
Front Neurosci ; 18: 1355565, 2024.
Article in English | MEDLINE | ID: mdl-38638697

ABSTRACT

Introduction: Rhythmic transcranial magnetic stimulation (rhTMS) has been shown to enhance auditory working memory manipulation, specifically by boosting theta oscillatory power in the dorsal auditory pathway during task performance. It remains unclear whether these enhancements (i) persist beyond the period of stimulation, (ii) if they can accelerate learning and (iii) if they would accumulate over several days of stimulation. In the present study, we investigated the lasting behavioral and electrophysiological effects of applying rhTMS over the left intraparietal sulcus (IPS) throughout the course of seven sessions of cognitive training on an auditory working memory task. Methods: A limited sample of 14 neurologically healthy participants took part in the training protocol with an auditory working memory task while being stimulated with either theta (5 Hz) rhTMS or sham TMS. Electroencephalography (EEG) was recorded before, throughout five training sessions and after the end of training to assess to effects of rhTMS on behavioral performance and on oscillatory entrainment of the dorsal auditory network. Results: We show that this combined approach enhances theta oscillatory activity within the fronto-parietal network and causes improvements in auditoryworking memory performance. We show that compared to individuals who received sham stimulation, cognitive training can be accelerated when combined with optimized rhTMS, and that task performance benefits can outlast the training period by ∼ 3 days. Furthermore, we show that there is increased theta oscillatory power within the recruited dorsal auditory network during training, and that sustained EEG changes can be observed ∼ 3 days following stimulation. Discussion: The present study, while underpowered for definitive statistical analyses, serves to improve our understanding of the causal dynamic interactions supporting auditory working memory. Our results constitute an important proof of concept for the potential translational impact of non-invasive brain stimulation protocols and provide preliminary data for developing optimized rhTMS and training protocols that could be implemented in clinical populations.

16.
Front Psychol ; 15: 1371035, 2024.
Article in English | MEDLINE | ID: mdl-38666231

ABSTRACT

Introduction: Cognitive ability is one of the most important enablers for successful aging. At the same time, cognitive decline is a well-documented phenomenon accompanying the aging process. Nevertheless, it is acknowledged that aging can also be related to positive processes that allow one to compensate for the decline. These processes include the compensatory brain activity of older adults primarily investigated using fMRI and PET. To strengthen the cognitive interpretation of compensatory brain activity in older adults, we searched for its indicators in brain activity measured by EEG. Methods: The study sample comprised 110 volunteers, including 50 older adults (60-75 years old) and 60 young adults (20-35 years old) who performed 1-back, 2-back, and 3-back tasks while recording the EEG signal. The study analyzed (1) the level of cognitive performance, including sensitivity index, the percentage of correct answers to the target, and the percentage of false alarm errors; (2) theta and alpha power for electrodes located in the frontal-midline (Fz, AF3, AF4, F3, F4, FC1, and FC2) and the centro-parietal (CP1, CP2, P3, P4, and Pz) areas. Results: Cognitive performance was worse in older adults than in young adults, which manifested in a significantly lower sensitivity index and a significantly higher false alarm error rate at all levels of the n-back task difficulty. Simultaneously, performance worsened with increasing task difficulty regardless of age. Significantly lower theta power in the older participants was observed at all difficulty levels, even at the lowest one, where compensatory activity was expected. At the same time, at this difficulty level, cognitive performance was worse in older adults than in young adults, which could reduce the chances of observing compensatory brain activity. The significant decrease in theta power observed in both age groups with rising task difficulty can reflect a declining capacity for efficient cognitive functioning under increasing demands rather than adapting to this increase. Moreover, in young adults, alpha power decreased to some extent with increasing cognitive demand, reflecting adaptation to them, while in older adults, no analogous pattern was observed. Discussion: In conclusion, based on the results of the current study, the presence of compensatory activity in older adults cannot be inferred.

17.
Sci Rep ; 14(1): 7895, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570599

ABSTRACT

A central aspect of episodic memory is the formation of associations between stimuli from different modalities. Current theoretical approaches assume a functional role of ongoing oscillatory power and phase in the theta band (3-7 Hz) for the encoding of crossmodal associations. Furthermore, ongoing activity in the theta range as well as alpha (8-12 Hz) and low beta activity (13-20 Hz) before the presentation of a stimulus is thought to modulate subsequent cognitive processing, including processes that are related to memory. In this study, we tested the hypothesis that pre-stimulus characteristics of low frequency activity are relevant for the successful formation of crossmodal memory. The experimental design that was used specifically allowed for the investigation of associative memory independent from individual item memory. Participants (n = 51) were required to memorize associations between audiovisual stimulus pairs and distinguish them from newly arranged ones consisting of the same single stimuli in the subsequent recognition task. Our results show significant differences in the state of pre-stimulus theta and alpha power between remembered and not remembered crossmodal associations, clearly relating increased power to successful recognition. These differences were positively correlated with memory performance, suggesting functional relevance for behavioral measures of associative memory. Further analysis revealed similar effects in the low beta frequency ranges, indicating the involvement of different pre-stimulus-related cognitive processes. Phase-based connectivity measures in the theta band did not differ between remembered and not remembered stimulus pairs. The findings support the assumed functional relevance of theta band oscillations for the formation of associative memory and demonstrate that an increase of theta as well as alpha band oscillations in the pre-stimulus period is beneficial for the establishment of crossmodal memory.


Subject(s)
Memory, Episodic , Humans , Mental Recall , Recognition, Psychology , Cognition , Theta Rhythm , Electroencephalography
18.
Epilepsy Res ; 200: 107286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38217951

ABSTRACT

Angelman syndrome (AS) is a rare neurodevelopmental disorder that is typically caused by deletion or a loss-of-function mutation of the maternal copy of the ubiquitin ligase E3A (UBE3A) gene. The disorder is characterized by severe intellectual disability, deficits in speech, motor abnormalities, altered electroencephalography (EEG) activity, spontaneous epileptic seizures, sleep disturbances, and a happy demeanor with frequent laughter. Regarding electrophysiologic abnormalities in particular, enhanced delta oscillatory power and an elevated excitatory/inhibitory (E/I) ratio have been documented in AS, with E/I ratio especially studied in rodent models. These electrophysiologic characteristics appear to relate with the greatly elevated rates of epilepsy in individuals with AS, and associated hypersynchronous neural activity. Here we briefly review findings on EEG, E/I ratio, and epileptic seizures in AS, including data from rodent models of the disorder. We summarize pharmacologic approaches that have been used to treat behavioral aspects of AS, including neuropsychiatric phenomena and sleep disturbances, as well as seizures in the context of the disorder. Antidepressants such as SSRIs and atypical antipsychotics are among the medications that have been used behaviorally, whereas anticonvulsant drugs such as valproic acid and lamotrigine have frequently been used to control seizures in AS. We end by suggesting novel uses for some existing pharmacologic agents in AS, including noradrenergic transmission reducing drugs (alpha2 agonists, beta blockers, alpha1 antagonists) and cholinesterase inhibitors, where these various classes of drugs may have the ability to ameliorate both behavioral disturbances and seizures.


Subject(s)
Angelman Syndrome , Epilepsy , Humans , Angelman Syndrome/complications , Angelman Syndrome/drug therapy , Angelman Syndrome/genetics , Seizures , Electroencephalography , Valproic Acid , Anticonvulsants/therapeutic use
19.
Clin Neurophysiol ; 158: 137-148, 2024 02.
Article in English | MEDLINE | ID: mdl-38219403

ABSTRACT

OBJECTIVE: Both cognitive and primary motor networks alter with advancing age in humans. The networks activated in response to external environmental stimuli supported by theta oscillations remain less well explored. The present study aimed to characterize the effects of aging on the functional connectivity of response-related theta networks during sensorimotor tasks. METHODS: Electroencephalographic signals were recorded in young and middle-to-older age adults during three tasks performed in two modalities, auditory and visual: a simple reaction task, a Go-NoGo task, and a choice-reaction task. Response-related theta oscillations were computed. The phase-locking value (PLV) was used to analyze the spatial synchronization of primary motor and motor control theta networks. RESULTS: Performance was overall preserved in older adults. Independently of the task, aging was associated with reorganized connectivity of the contra-lateral primary motor cortex. In younger adults, it was synchronized with motor control regions (intra-hemispheric premotor/frontal and medial frontal). In older adults, it was only synchronized with intra-hemispheric sensorimotor regions. CONCLUSIONS: Motor theta networks of older adults manifest a functional decoupling between the response-generating motor cortex and motor control regions, which was not modulated by task variables. The overall preserved performance in older adults suggests that the increased connectivity within the sensorimotor network is associated with an excessive reliance on sensorimotor feedback during movement execution compensating for a deficient cognitive regulation of motor regions during sensorimotor reactions. SIGNIFICANCE: New evidence is provided for the reorganization of motor networks during sensorimotor reactions already at the transition from middle to old age.


Subject(s)
Aging , Motor Cortex , Humans , Aged , Aging/physiology , Electroencephalography , Motor Cortex/physiology , Movement/physiology , Magnetic Resonance Imaging
20.
Neurosci Bull ; 40(2): 147-156, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37847448

ABSTRACT

The prefrontal cortex and hippocampus may support sequential working memory beyond episodic memory and spatial navigation. This stereoelectroencephalography (SEEG) study investigated how the dorsolateral prefrontal cortex (DLPFC) interacts with the hippocampus in the online processing of sequential information. Twenty patients with epilepsy (eight women, age 27.6 ± 8.2 years) completed a line ordering task with SEEG recordings over the DLPFC and the hippocampus. Participants showed longer thinking times and more recall errors when asked to arrange random lines clockwise (random trials) than to maintain ordered lines (ordered trials) before recalling the orientation of a particular line. First, the ordering-related increase in thinking time and recall error was associated with a transient theta power increase in the hippocampus and a sustained theta power increase in the DLPFC (3-10 Hz). In particular, the hippocampal theta power increase correlated with the memory precision of line orientation. Second, theta phase coherences between the DLPFC and hippocampus were enhanced for ordering, especially for more precisely memorized lines. Third, the theta band DLPFC → hippocampus influence was selectively enhanced for ordering, especially for more precisely memorized lines. This study suggests that theta oscillations may support DLPFC-hippocampal interactions in the online processing of sequential information.


Subject(s)
Epilepsy , Memory, Short-Term , Adult , Female , Humans , Young Adult , Hippocampus , Mental Recall , Prefrontal Cortex , Theta Rhythm , Male
SELECTION OF CITATIONS
SEARCH DETAIL