Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Photodermatol Photoimmunol Photomed ; 39(2): 147-154, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36461152

ABSTRACT

BACKGROUND/PURPOSE: The pathogenesis of chronic actinic dermatitis (CAD) is more complicated than other photodermatoses. However, the relationship between the clinical severity of CAD and the offending photocontact or contact allergens or both, and the correlations of CAD immunopathogenesis with the immunoregulatory molecules involved in adaptive immunity are yet to be investigated. METHODS: We performed phototesting with broad-spectrum ultraviolet (UV) B, UVA, and visible light to establish the presence of photosensitivity in 121 patients with CAD, together with photopatch and contact patch testing. Nine patients with CAD were selected according to their clinical severity score for CAD (CSS-CAD), and triple direct immunofluorescence analysis was performed with paraffin-embedded skin biopsy samples. RESULTS: As CSS-CAD was closely correlated with the multiplicity of photo(contact) allergens, particularly photoallergens, three or more photoallergens were detected in the severe CAD group (52.5%); less in the moderate group (32.8%); and only one in the mild group (14.8%; P = .025). In the groups showing greater severity of disease, the absolute numbers of IFN-γ+ , IL-17+ , CD4+, CD8+, common-γ chain receptor (common-γCR)+ , and CD69+ tissue-resident memory cells increased on average; there was also an increase in the CD4+/CD8+ cell ratio, with the more severely affected groups. However, the levels of TNF-α+ and FoxP3+ regulatory T (Treg) cells and the mean IL-17/IFN-γ cell ratio decreased in the more severely affected CSS-CAD subgroups. CONCLUSIONS: Based on the clinical analysis and immunopathogenic results, avoidance of excessive sun exposure, and topical and systemic blocking agents for photo(contact) allergens are recommended. Additionally, conventional immunomodulators and emerging agents including JAK-STAT inhibitors may be administered for CAD treatment in the future.


Subject(s)
Photosensitivity Disorders , T-Lymphocytes, Regulatory , Th17 Cells , Humans , Adaptive Immunity , Allergens/therapeutic use , Interleukin-17 , Photosensitivity Disorders/pathology , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Regulatory/pathology , Receptors, Antigen, T-Cell, gamma-delta
2.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-33115867

ABSTRACT

Latent HIV infection is the main barrier to cure, and most HIV-infected cells reside in the gut, where distinct but unknown mechanisms may promote viral latency. Transforming growth factor ß (TGF-ß), which induces the expression of CD103 on tissue-resident memory T cells, has been implicated in HIV latency. Using CD103 as a surrogate marker to identify cells that have undergone TGF-ß signaling, we compared the HIV RNA/DNA contents and cellular transcriptomes of CD103+ and CD103- CD4 T cells from the blood and rectum of HIV-negative (HIV-) and antiretroviral therapy (ART)-suppressed HIV-positive (HIV+) individuals. Like gut CD4+ T cells, circulating CD103+ cells harbored more HIV DNA than did CD103- cells but transcribed less HIV RNA per provirus. Circulating CD103+ cells also shared a gene expression profile that is closer to that of gut CD4 T cells than to that of circulating CD103- cells, with significantly lower expression levels of ribosomal proteins and transcriptional and translational pathways associated with HIV expression but higher expression levels of a subset of genes implicated in suppressing HIV transcription. These findings suggest that blood CD103+ CD4 T cells can serve as a model to study the molecular mechanisms of HIV latency in the gut and reveal new cellular factors that may contribute to HIV latency.IMPORTANCE The ability of HIV to establish a reversibly silent, "latent" infection is widely regarded as the main barrier to curing HIV. Most HIV-infected cells reside in tissues such as the gut, but it is unclear what mechanisms maintain HIV latency in the blood or gut. We found that circulating CD103+ CD4+ T cells are enriched for HIV-infected cells in a latent-like state. Using RNA sequencing (RNA-seq), we found that CD103+ T cells share a cellular transcriptome that more closely resembles that of CD4+ T cells from the gut, suggesting that they are homing to or from the gut. We also identified the cellular genes whose expression distinguishes gut CD4+ or circulating CD103+ T cells from circulating CD103- T cells, including some genes that have been implicated in HIV expression. These genes may contribute to latent HIV infection in the gut and may serve as new targets for therapies aimed at curing HIV.


Subject(s)
Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/virology , Gastrointestinal Tract/virology , HIV Infections/virology , HIV-1/physiology , Integrin alpha Chains/metabolism , Transcription, Genetic/genetics , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , DNA, Viral/metabolism , Gastrointestinal Tract/immunology , Gene Expression Regulation , HIV Infections/drug therapy , Humans , Intraepithelial Lymphocytes/metabolism , Intraepithelial Lymphocytes/virology , Proviruses/physiology , RNA, Viral/metabolism , Ribosomal Proteins/genetics , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , Virus Latency
3.
J Transl Med ; 18(1): 221, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32487187

ABSTRACT

BACKGROUND: During early pregnancy, tolerance of the semi-allogeneic fetus necessitates comprehensive modifications of the maternal immune system. How decidual CD8+T (CD8+dT) cells balance maternal tolerance of the fetus with defense from invading pathogens remains undefined. METHODS: We investigated the distribution patterns of CD8+T cells and their heterogeneity in paired peripheral blood and decidual tissue in the first trimester of pregnancy using flow cytometry and mRNA-Seq. Gene Set Enrichment Analysis was utilized to determine the transcriptional features of CD8+dT cells. Moreover, we examined activation of T cells when they were cocultured with trophoblasts, in addition to the effect of the fetal-maternal environment on peripheral CD8+T (CD8+pT) cells. RESULTS: We found that, compared with CD8+pT cells, CD8+dT cells consisted mainly of effector memory cells (TEM) and terminally differentiated effector memory cells (TEMRA). Both TEM and TEMRA subsets contained increased numbers of CD27+CD28- cells, which have been shown to possess only partial effector functions. In-depth analysis of the gene-expression profiles of CD8+dT cells revealed significant enrichment in T cell exhaustion-related genes and core tissue residency signature genes that have been found recently to be shared by tissue resident memory cells and tumor-infiltrating lymphocytes (TILs). In accordance with gene expression, protein levels of the exhaustion-related molecules PD-1 and CD39 and the tissue resident molecules CD103 and CXCR3 were increased significantly with almost no perforin secretion in CD8+dT cells compared with CD8+pT cells. However, the levels of granzyme B, IFN-γ, and IL-4 in CD8+dT cells were increased significantly compared with those in CD8+pT cells. Both CD8+dT and CD8+pT cells were not activated after being cocultured with autologous trophoblast cells. Moreover, the production of granzyme B in CD103+CD8+dT cells decreased significantly compared with that in their CD103- counterparts. Coculture with decidual stromal cells and trophoblasts upregulated CD103 expression significantly in CD8+pT cells. CONCLUSIONS: Our findings indicate that the selective silencing of effector functions of resident CD8+dT cells may favor maternal-fetal tolerance and that the decidual microenvironment plays an important role in promoting the residency of CD8+T cells and their tolerance-defense balance.


Subject(s)
CD8-Positive T-Lymphocytes , Female , Humans , Pregnancy , Decidua , Immune Tolerance , Stromal Cells
4.
Int J Mol Sci ; 21(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471032

ABSTRACT

Tumor-infiltrating CD8+ T cells (TIL) are of the utmost importance in anti-tumor immunity. CD103 defines tumor-resident memory T cells (TRM cells) associated with improved survival and response to immune checkpoint blockade (ICB) across human tumors. Co-expression of CD39 and CD103 marks tumor-specific TRM with enhanced cytolytic potential, suggesting that CD39+CD103+ TRM could be a suitable biomarker for immunotherapy. However, little is known about the transcriptional activity of TRM cells in situ. We analyzed CD39+CD103+ TRM cells sorted from human high-grade endometrial cancers (n = 3) using mRNA sequencing. Cells remained untreated or were incubated with PMA/ionomycin (activation), actinomycin D (a platinum-like chemotherapeutic that inhibits transcription), or a combination of the two. Resting CD39+CD103+ TRM cells were transcriptionally active and expressed a characteristic TRM signature. Activated CD39+CD103+ TRM cells differentially expressed PLEK, TWNK, and FOS, and cytokine genes IFNG, TNF, IL2, CSF2 (GM-CSF), and IL21. Findings were confirmed using qPCR and cytokine production was validated by flow cytometry of cytotoxic TIL. We studied transcript stability and found that PMA-responsive genes and mitochondrial genes were particularly stable. In conclusion, CD39+CD103+ TRM cells are transcriptionally active TRM cells with a polyfunctional, reactivation-responsive repertoire. Secondly, we hypothesize that differential regulation of transcript stability potentiates rapid responses upon TRM reactivation in tumors.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/drug effects , Cytotoxicity, Immunologic/drug effects , Dactinomycin/pharmacology , Endometrial Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Genotype , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Interleukins/metabolism , Ionomycin/pharmacology , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Grading , RNA Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Transcription, Genetic/drug effects
5.
Trends Parasitol ; 36(2): 147-157, 2020 02.
Article in English | MEDLINE | ID: mdl-31843536

ABSTRACT

Each year over 200 million malaria infections occur, with over 400 000 associated deaths. Vaccines formed with attenuated whole parasites can induce protective memory CD8 T cell responses against liver-stage malaria; however, widespread administration of such vaccines is logistically challenging. Recent scientific findings are delineating how protective memory CD8 T cell populations are primed and maintained and how such cells mediate immunity to liver-stage malaria. Memory CD8 T cell anatomic localization and expression of transcription factors, homing receptors, and signaling molecules appear to play integral roles in protective immunity to liver-stage malaria. Further investigation of how such factors contribute to optimal protective memory CD8 T cell generation and maintenance in humans will inform efforts for improved vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Malaria/immunology , Antigens, Protozoan/immunology , Immunologic Memory/immunology , Liver/parasitology , Malaria/parasitology , Malaria Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL