Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Expert Opin Ther Targets ; 28(3): 193-220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618889

ABSTRACT

INTRODUCTION: Microtubules play a vital role in cancer therapeutics. They are implicated in tumorigenesis, thus inhibiting tubulin polymerization in cancer cells, and have now become a significant target for anticancer drug development. A plethora of drug molecules has been crafted to influence microtubule dynamics and presently, numerous tubulin inhibitors are being investigated. This review discusses the recently developed inhibitors including natural products, and also examines the preclinical and clinical data of some potential molecules. AREA COVERED: The current review article summarizes the development of tubulin inhibitors while detailing their specific binding sites. It also discusses the newly designed inhibitors that may be useful in the treatment of solid tumors. EXPERT OPINION: Microtubules play a crucial role in cellular processes, especially in cancer therapy where inhibiting tubulin polymerization holds promise. Ongoing trials signify a commitment to revolutionizing cancer treatment and exploring targeted therapies. Challenges in microtubule modulation, like resistance and off-target effects, demand focused efforts, emphasizing combination therapies and personalized treatments. Beyond microtubules, promising avenues in cancer research include immunotherapy, genomic medicine, CRISPR gene editing, liquid biopsies, AI diagnostics, and stem cell therapy, showcasing a holistic approach for future advancements.


Subject(s)
Antineoplastic Agents , Drug Development , Microtubules , Molecular Targeted Therapy , Neoplasms , Tubulin Modulators , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Tubulin Modulators/pharmacology , Antineoplastic Agents/pharmacology , Animals , Microtubules/drug effects , Microtubules/metabolism , Drug Design , Biological Products/pharmacology , Tubulin/metabolism
2.
Chemistry ; 30(5): e202303027, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37755456

ABSTRACT

Design strategies that can access natural-product-like chemical space in an efficient manner may facilitate the discovery of biologically relevant compounds. We have employed a divergent intermediate strategy to construct an indole alkaloid-inspired compound collection derived from two different molecular design principles, i.e. biology-oriented synthesis and pseudo-natural products. The divergent intermediate was subjected to acid-catalyzed or newly discovered Sn-mediated conditions to selectively promote intramolecular C- or N-acylation, respectively. After further derivatization, a collection totalling 84 compounds representing four classes was obtained. Morphological profiling via the cell painting assay coupled with a subprofile analysis showed that compounds derived from different design principles have different bioactivity profiles. The subprofile analysis suggested that a pseudo-natural product class is enriched in modulators of tubulin, and subsequent assays led to the identification of compounds that suppress in vitro tubulin polymerization and mitotic progression.


Subject(s)
Alkaloids , Antineoplastic Agents , Biological Products , Oxindoles , Tubulin , Indole Alkaloids/chemistry , Biological Products/chemistry
3.
ChemMedChem ; 19(1): e202300562, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37975190

ABSTRACT

An approach of natural product-inspired strategy and incorporation of an NP-privileged motif has been investigated for the discovery of new tubulin polymerization inhibitors. Two series, N-Arylsulfonyl-3-arylamino-5-amino-1,2,4-triazole derivatives, and their isomers were considered. The compounds were synthesized by construction of the N-aryl-1,2,4-triazole-3,5-diamine motif and sulfonylation. Although the chemo- and regioselectivity in sulfonylation were challenging due to multiple ring-tautomerizable-NH and exocyclic NH2 functionalities present in the molecular motifs, the developed synthetic method enabled the preparation of designed molecular skeletons with biologically important motifs. The approach also led to explore interesting molecular regio- and stereochemical aspects valuable for activity. The X-ray crystallography study indicated that the hydrogen bonding between the arylamine-NH and the arylsulfonyl-"O" unit and appropriate molecular-functionality topology allowed the cis-locking of two aryls, which is important for tubulin-binding and antiproliferative properties. All synthesized compounds majorly showed characteristic antiproliferative effects in breast cancer cells (MCF-7), and four compounds exhibited potent antiproliferative activity. One compound potently bound to tubulin at the colchicine site and inhibited tubulin polymerization in vitro. The compound significantly depolymerized microtubules in MCF-7 cells, arrested the cells at the G2/M phase, and induced cell death. This study represents the importance of the design strategy in medicinal chemistry and the molecular structural features relevant to anticancer anti-tubulin properties. The explored molecules have the potential for further development.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Humans , Tubulin Modulators/chemistry , Structure-Activity Relationship , Tubulin/metabolism , Cell Proliferation , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polymerization , Drug Screening Assays, Antitumor , Molecular Structure
4.
Expert Opin Ther Pat ; 33(11): 797-820, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38054831

ABSTRACT

INTRODUCTION: Microtubules are intracellular, filamentous, polymeric structures that extend throughout the cytoplasm, composed of α-tubulin and ß-tubulin subunits. They regulate many cellular functions including cell polarity, cell shape, mitosis, intracellular transport, cell signaling, gene expression, cell integrity, and are associated with tumorigenesis. Inhibition of tubulin polymerization within tumor cells represents a crucial focus in the pursuit of developing anticancer treatments. AREAS COVERED: This review focuses on the natural product and their synthetic congeners as tubulin inhibitors along with their site of interaction on tubulin. This review also covers the developed novel tubulin inhibitors and important patents focusing on the development of tubulin inhibition for cancer treatment reported from 2018 to 2023. The scientific and patent literature has been searched on PubMed, Espacenet, ScienceDirect, and Patent Guru from 2018-2023. EXPERT OPINION: Tubulin is one of the promising targets explored extensively for drug discovery. Compounds binding in the colchicine site could be given importance because they can elude resistance mediated by the P-glycoprotein efflux pump and no colchicine site binding inhibitor is approved by FDA so far. The research on the development of antibody drug conjugates (ADCs) for tubluin polymerization inhibition could be significant strategy for cancer treatment.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Humans , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin/metabolism , Patents as Topic , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Microtubules/metabolism , Cell Proliferation , Cell Line, Tumor , Structure-Activity Relationship
5.
Future Med Chem ; 15(21): 1967-1986, 2023 11.
Article in English | MEDLINE | ID: mdl-37937524

ABSTRACT

Aim: A series of novel trifluoromethylquinoline derivatives were designed, synthesized and evaluated for antitumor activities. Methodology: All compounds were evaluated for antiproliferative activity against four human cancer cell lines. Results: Among them, 5a, 5m, 5o and 6b exhibited remarkable antiproliferative activities against all the tested cell lines at nanomolar concentrations. Mechanism of action studies demonstrated that 6b targeted the colchicine binding site, potentially inhibiting tubulin polymerization, and further studies indicated that 6b could arrest LNCaP cells in the G2/M phase and induce cell apoptosis. Molecular docking confirmed that 6b could bind to the colchicine binding site. Conclusion: Results suggested that 6b could serve as a promising lead compound for the development of novel tubulin polymerization inhibitors and cancer therapy.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Humans , Tubulin Modulators/chemistry , Molecular Docking Simulation , Cell Proliferation , Drug Screening Assays, Antitumor , Colchicine/metabolism , Tubulin/metabolism , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Polymerization
6.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37761977

ABSTRACT

Among the various substances that interfere with the microtubule formation process, isothiocyanates (ITCs) are the group of compounds for which the binding mode and mechanism of action have not yet been explained. To better understand the structure-activity relationship of tubulin-isothiocyanate interactions, we designed and synthesized a series of sixteen known and novel, structurally diverse ITCs, including amino acid ester-derived isothiocyanates, bis-isothiocyanates, analogs of benzyl isothiocyanate, and phosphorus analogs of sulforaphane. All synthesized compounds and selected natural isothiocyanates (BITC, PEITC, AITC, and SFN) were tested in vitro to evaluate their antiproliferative activity, tubulin polymerization inhibition potential, and influence on cell cycle progression. The antiproliferative activity of most of the newly tested compounds exceeded the action of natural isothiocyanates, with four structures being more potent as tubulin polymerization inhibitors than BITC. As a confirmation of anti-tubulin activity, the correlation between polymerization inhibition and cell cycle arrest in the G2/M phase was observed for the most active compounds. In light of the biological results indicating significant differences in the impact of structurally diverse isothiocyanate on tubulin polymerization, in silico analysis was conducted to analyze the possible mode of isothiocyanate-tubulin binding and to show how it can influence the polymerization reaction.

7.
Molecules ; 28(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36771147

ABSTRACT

Millepachine, a bioactive natural product isolated from the seeds of Millettia pachycarpa, is reported to display potential antitumor activity. In this study, novel indole-containing hybrids derived from millepachine were designed, synthesized and evaluated for their antitumor activities. Among all the compounds, compound 14b exhibited the most potent cytotoxic activity against five kinds of human cancer cell lines, with IC50 values ranging from 0.022 to 0.074 µM, making it almost 100 times more active than millepachine. Valuable structure-activity relationships (SARs) were obtained. Furthermore, the mechanism studies showed that compound 14b induced cell-cycle arrest at the G2/M phase by inhibiting tubulin polymerization and further induced cell apoptosis through reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) collapse. In addition, the low cytotoxicity toward normal human cells and equivalent sensitivity towards drug-resistant cells of compound 14b highlighted its potential for the development of antitumor drugs.


Subject(s)
Antineoplastic Agents , Chalcones , Humans , Cell Proliferation , Drug Screening Assays, Antitumor , Chalcones/pharmacology , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Apoptosis , Indoles/pharmacology , Tubulin/metabolism , Tubulin Modulators/pharmacology , Cell Line, Tumor
8.
Future Med Chem ; 15(1): 73-95, 2023 01.
Article in English | MEDLINE | ID: mdl-36756851

ABSTRACT

Microtubules, formed by α- and ß-tubulin heterodimer, are considered as a major target to prevent the proliferation of tumor cells. Microtubule-targeted agents have become increasingly effective anticancer drugs. However, due to the relatively sophisticated chemical structure of taxane and vinblastine, their application has faced numerous obstacles. Conversely, the structure of colchicine binding site inhibitors (CBSIs) is much easier to be modified. Moreover, CBSIs have strong antiproliferative effect on multidrug-resistant tumor cells and have become the mainstream research orientation of microtubule-targeted agents. This review focuses mainly on the recent advances of CBSIs during 2017-2022, attempts to depict their biological activities to analyze the structure-activity relationships and offers new perspectives for designing next generation of novel CBSIs.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Colchicine/metabolism , Tubulin/metabolism , Protein Binding , Binding Sites , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation , Cell Line, Tumor
9.
Mol Divers ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790582

ABSTRACT

New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.

10.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769327

ABSTRACT

In this work, BTEAC (benzyl triethylammonium chloride) was employed as a phase transfer catalyst in an improved synthesis (up to 88% yield) of S-alkylated bromobenzofuran-oxadiazole scaffolds BF1-9. These bromobenzofuran-oxadiazole structural hybrids BF1-9 were evaluated in vitro against anti-hepatocellular cancer (HepG2) cell line as well as for their in silico therapeutic potential against six key cancer targets, such as EGFR, PI3K, mTOR, GSK-3ß, AKT, and Tubulin polymerization enzymes. Bromobenzofuran structural motifs BF-2, BF-5, and BF-6 displayed the best anti-cancer potential and with the least cell viabilities (12.72 ± 2.23%, 10.41 ± 0.66%, and 13.08 ± 1.08%), respectively, against HepG2 liver cancer cell line, and they also showed excellent molecular docking scores against EGFR, PI3K, mTOR, and Tubulin polymerization enzymes, which are major cancer targets. Bromobenzofuran-oxadiazoles BF-2, BF-5, and BF-6 displayed excellent binding affinities with the active sites of EGFR, PI3K, mTOR, and Tubulin polymerization enzymes in the molecular docking studies as well as in MMGBSA and MM-PBSA studies. The stable bindings of these structural hybrids BF-2, BF-5, and BF-6 with the enzyme targets EGFR and PI3K were further confirmed by molecular dynamic simulations. These investigations revealed that 2,5-dimethoxy-based bromobenzofuran-oxadiazole BF-5 (10.41 ± 0.66% cell viability) exhibited excellent cytotoxic therapeutic efficacy. Moreover, computational studies also suggested that the EGFR, PI3K, mTOR, and Tubulin polymerization enzymes were the probable targets of this BF-5 scaffold. In silico approaches, such as molecular docking, molecular dynamics simulations, and DFT studies, displayed excellent association with the experimental biological data of bromobenzofuran-oxadiazoles BF1-9. Thus, in silico and in vitro results anticipate that the synthesized bromobenzofuran-oxadiazole hybrid BF-5 possesses prominent anti-liver cancer inhibitory effects and can be used as lead for further investigation for anti-HepG2 liver cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/chemistry , Catalysis , Cell Proliferation , ErbB Receptors/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Molecular Docking Simulation , Molecular Structure , Oxadiazoles/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism , Tubulin/metabolism , Ultrasonics , Humans , Cell Line, Tumor
11.
Curr Cancer Drug Targets ; 23(4): 278-292, 2023.
Article in English | MEDLINE | ID: mdl-36306454

ABSTRACT

AIMS: Development of anticancer agents targeting tubulin protein. BACKGROUND: Tubulin protein is being explored as an important target for anticancer drug development. Ligands binding to the colchicine binding site of the tubulin protein act as tubulin polymerization inhibitors and arrest the cell cycle in the G2/M phase. OBJECTIVE: Synthesis and screening of benzotriazole-substituted 2-phenyl quinazolines as potential anticancer agents. METHODS: A series of benzotriazole-substituted quinazoline derivatives have been synthesized and evaluated against human MCF-7 (breast), HeLa (cervical) and HT-29 (colon) cancer cell lines using standard MTT assays. RESULTS: ARV-2 with IC50 values of 3.16 µM, 5.31 µM, 10.6 µM against MCF-7, HELA and HT29 cell lines, respectively displayed the most potent antiproliferative activities in the series while all the compounds were found non-toxic against HEK293 (normal cells). In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, ARV-2 and ARV-3 were found to induce mitochondria-mediated apoptosis. CONCLUSION: The benzotriazole-substituted 2-phenyl quinazolines have the potential to be developed as potent anticancer agents.


Subject(s)
Antineoplastic Agents , Tubulin , Humans , Tubulin/metabolism , Structure-Activity Relationship , Polymerization , HEK293 Cells , Cell Proliferation , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Quinazolines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
12.
Front Chem ; 10: 1004835, 2022.
Article in English | MEDLINE | ID: mdl-36186601

ABSTRACT

A series of new 9-aryl-5H-pyrido[4,3-b]indole derivatives as tubulin polymerization inhibitors were designed, synthesized, and evaluated for antitumor activity. All newly prepared compounds were tested for their anti-proliferative activity in vitro against three different cancer cells (SGC-7901, HeLa, and MCF-7). Among the designed compounds, compound 7k displayed the strongest anti-proliferative activity against HeLa cells with IC50 values of 8.7 ± 1.3 µM. In addition, 7k could inhibit the polymerization of tubulin and disrupt the microtubule network of cells. Further mechanism studies revealed that 7k arrested cell cycle at the G2/M phase and induced apoptosis in a dose-dependent manner. Molecular docking analysis confirmed that 7k may bind to colchicine binding sites on microtubules. Our study aims to provide a new strategy for the development of antitumor drugs targeting tubulin.

13.
Bioorg Med Chem ; 72: 116976, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36067627

ABSTRACT

Colchicine binding site represent a crucial target for the anticancer drug development especially in view of emerging drug resistance from the currently available chemotherapeutics. A total of 16 novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines were synthesized and screened for antiproliferative and tubulin polymerization inhibition potential. The synthesized compounds were evaluated against MCF-7, HeLa and HT-29 cancer cell lines and normal cell line HEK-293 T. In the series, 2­aryl group with 4­bromophenyl substitution displayed IC50 values of 6.37 µM, 17.43 µM, 6.76 µM and 4­chlorophenyl substitution displayed IC50 values of 2.16 µM, 8.53 µM, 10.42 µM against MCF-7, HELA and HT29 cancer cell lines, respectively. In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, both the lead compounds were found to induce mitochondria mediated apoptosis and lead molecule with 4­chlorophenyl substitution displayed significant tubulin polymerization inhibition activity. In the computation studies, lead molecule displayed significant binding affinites in the colchicine domain and showed good thermodynamic stability during 100 ns MD simulation studies. 4-N-Heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines showed appreciable drug like characteristics and can be developed as potent anticancer agents.


Subject(s)
Antineoplastic Agents , Quinazolines , Tubulin Modulators , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Colchicine/pharmacology , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Molecular Docking Simulation , Polymerization , Quinazolines/chemistry , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemistry
14.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35890135

ABSTRACT

The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.

15.
Eur J Med Chem ; 238: 114450, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35576703

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a lethal disease with a terrible prognosis, accounting for more than 900,000 new cases and 500,000 deaths each year, nevertheless, its pharmacotherapy is rather limited. Parbendazole was previously identified as a potential HNSCC therapy candidate in our research. Herein, we report the discovery of two series of parbendazole derivatives as tubulin inhibitors. Structure-activity relationship (SAR) analyses led to the discovery of compound 9q with the best pharmacological activities and pharmacokinetic properties. This compound exhibited reasonable inhibition activity on cell proliferation (HN6, CAL-27, Fadu) and tubulin polymerization, induced cell apoptosis, blocked cell cycle and suppressed cell migration and invasion. Compound 9q also displayed low toxicity and a favorable therapeutic effect on a xenograft tumor, indicating that it is a promising starting point for further research.


Subject(s)
Head and Neck Neoplasms , Apoptosis , Benzimidazoles/pharmacology , Cell Line, Tumor , Cell Proliferation , Head and Neck Neoplasms/drug therapy , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy
16.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35337078

ABSTRACT

Some (E)-3-(3-(4-(benzyloxy)phenyl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one conjugates 5a-r were designed; synthesized; characterized by 1H, 13C NMR, and ESI-MS; and evaluated for tubulin polymerization inhibitory activity and in vitro cytotoxicity against breast (MCF-7), cervical (SiHa), and prostate (PC-3) cancer cell lines, as well as a normal cell line (HEK-293T). The compounds were also tested to determine their binding modes at the colchicine-binding site of tubulin protein (PDB ID-3E22), for in silico ADME prediction, for bioactivity study, and for PASS prediction studies. Among all the synthesized conjugates, compound 5o exhibited excellent cytotoxicity with an IC50 value of 2.13 ± 0.80 µM (MCF-7), 4.34 ± 0.98 µM (SiHa), and 4.46 ± 0.53 µM (PC-3) against cancer cell lines. The compound did not exhibit significant toxicity to the HEK cells. Results of the in silico prediction revealed that the majority of the conjugates possessed drug-like properties.

17.
Curr Med Chem ; 29(20): 3557-3585, 2022.
Article in English | MEDLINE | ID: mdl-34986762

ABSTRACT

Cancer is one of the leading causes of fatality and mortality worldwide. Investigations on developing therapeutic strategies for cancer are supported throughout the world. The massive achievements in molecular sciences involving biochemistry, molecular chemistry, medicine, and pharmacy, and high throughput techniques such as genomics and proteomics have helped create new potential drug targets for cancer treatment. Microtubules are very attractive targets for cancer therapy because of the crucial roles they play in cell division. In recent years, lots of efforts have been put into the identification of new microtubule-targeting agents (MTAs) in anticancer therapy. Combretastatin A-4 (CA-4) is a natural compound that binds to microtubules' colchicine binding site and inhibits microtubule polymerization. Due to CA-4's structural simplicity, many analogs have been synthesized. This article summarises the new molecule development efforts to reach CA-4 analogues by pharmacophore group modifications, which have been reported since 2015.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Dose-Response Relationship, Drug , Humans , Microtubules/metabolism , Molecular Structure , Neoplasms/drug therapy , Polymerization , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use
18.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34832895

ABSTRACT

A series of 3-benzylideneindolin-2-one compounds was designed and synthesized based on combretastatin A-4 and compound IC261, a dual casein kinase (CK1)/tubulin polymerization inhibitor, taking into consideration the pharmacophore required for EGFR-tyrosine kinase inhibition. The new molecular entities provoked significant growth inhibition against PC-3, MCF-7 and COLO-205 at a 10 µM dose. Compounds 6-chloro-3-(2,4,6-trimethoxybenzylidene) indolin-2-one, 4b, and 5-methoxy-3-(2,4,6-trimethoxybenzylidene)indolin-2-one, 4e, showed potent activity against the colon cancer COLO-205 cell line with an IC50 value of 0.2 and 0.3 µM. A mechanistic study demonstrated 4b's efficacy in inhibiting microtubule assembly (IC50 = 1.66 ± 0.08 µM) with potential binding to the colchicine binding site (docking study). With an IC50 of 1.92 ± 0.09 µg/mL, 4b inhibited CK1 almost as well as IC261. Additionally, 4b and 4e were effective inhibitors of EGFR-TK with IC50s of 0.19 µg/mL and 0.40 µg/mL compared to Gifitinib (IC50 = 0.05 µg/mL). Apoptosis was induced in COLO-205 cells treated with 4b, with apoptotic markers dysregulated. Caspase 3 levels were elevated to more than three-fold, while Cytochrome C levels were doubled. The cell cycle was arrested in the pre-G1 phase with extensive cellular accumulation in the pre-G1 phase, confirming apoptosis induction. Levels of cell cycle regulating proteins BAX and Bcl-2 were also defective. The binding interaction patterns of these compounds at the colchicine binding site of tubulin and the Gifitinib binding site of EGFR were verified by molecular docking, which adequately matched the reported experimental result. Hence, 4b and 4e are considered promising potent multitarget agents against colon cancer that require optimization.

19.
Eur J Med Chem ; 212: 113122, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33401199

ABSTRACT

A series of [1,3]thiazolo[4,5-e]isoindoles has been synthesized through a versatile and high yielding multistep sequence. Evaluation of the antiproliferative activity of the new compounds on the full NCI human tumor cell line panel highlighted several compounds that are able to inhibit tumor cell proliferation at micromolar-submicromolar concentrations. The most active derivative 11g was found to cause cell cycle arrest at the G2/M phase and induce apoptosis in HeLa cells, following the mitochondrial pathway, making it a lead compound for the discovery of new antimitotic drugs.


Subject(s)
Isoindoles/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Apoptosis/drug effects , Dose-Response Relationship, Drug , HeLa Cells , Humans , Isoindoles/chemical synthesis , Isoindoles/chemistry , Models, Molecular , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
20.
Bioorg Med Chem ; 55: 116597, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34995858

ABSTRACT

The α- and ß-tubulins are the major polypeptide components of microtubules (MTs), which are attractive targets for anticancer drug development. Indole derivatives display a variety of biological activities including antitumor activity. In recent years, a great number of indole derivatives as tubulin polymerization inhibitors have sprung up, which encourages medicinal chemists to pursue promising inhibitors with improved antitumor activities, excellent physicochemical, pharmacokinetic and pharmacodynamic properties. In this review, the recent progress from 2010 to present in the development of indole derivatives as tubulin polymerization inhibitors was summarized and reviewed, which would provide useful clues and inspirations for further design of outstanding tubulin polymerization inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL