Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 482
Filter
1.
Front Pharmacol ; 15: 1446725, 2024.
Article in English | MEDLINE | ID: mdl-39239650

ABSTRACT

Background: Arginine deprivation therapy (ADT) hinders glioma cells' access to nutrients by reducing peripheral blood arginine, showing great efficacy in various studies, which suggests it as a potentially promising treatment for glioma. The aim of this systematic review was to explore the mechanism of ADT for gliomas, the therapeutic effect based on existing research, and possible combination therapies. Methods: We performed a systematic literature review of PubMed, ScienceDirect and Web of Science databases according to PRISMA guidelines, searching for articles on the efficacy of ADT in glioma. Results: We identified 17 studies among 786 search results, among which ADT therapy mainly based on Arginine free condition, Arginine Deiminase and Arginase, including three completed clinical trials. ADT therapy has shown promising results in vivo and in vitro, with its safety confirmed in clinical trials. In the early phase of treatment, glioblastoma (GBM) cells develop protective mechanisms of stress and autophagy, which eventually evolve into caspase dependent apoptosis or senescence, respectively. The immunosuppressive microenvironment is also altered by arginine depletion, such as the transformation of microglia into a pro-inflammatory phenotype and the activation of T-cells. Thus, ADT therapy demonstrates glioma-killing effect in the presence of a combination of mechanisms. In combination with various conventional therapies and investigational drugs such as radiotherapy, temozolomide (TMZ), cyclin-dependent kinase inhibitors (CDK) inhibitors and autophagy inducers, ADT therapy has been shown to be more effective. However, the phenomenon of drug resistance due to re-expression of ASS1 rather than stem cell remains to be investigated. Conclusion: Despite the paucity of studies in the literature, the available data demonstrate the therapeutic potential of arginine deprivation therapy for glioma and encourage further research, especially the exploration of its combination therapies and the extrapolation of what we know about the effects and mechanisms of ADT from other tumors to glioma.

2.
Cell Biochem Biophys ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235507

ABSTRACT

Targeting the enzymes of Pentose Phosphate Pathway (PPP) has been emerged as a novel strategy for treatment of cancer. 6-phosphogluconate dehydrogenase (6PGD) is third enzyme of PPP and converts 6-phosphogluconate (6-PG) into ribulose 5-phosphate (R-5-P) and produces NADPH. The overexpression of 6PGD has been reported in many human cancers especially in breast cancer and is emerged as the potential anti-cancer drug target. The current study is focused to screen an already established library of plant extracts against 6PGD, among which Pomegranate peel extract showed significant 6PGD inhibitory activity with IC50 value = 0.090 µg/mL. Pomegranate peel competitively inhibited NADP+ and 6-phosphogluconate to 6PGD enzyme having Ki constant value = 12.72 ± 5.54 ng/mL. Moreover, anti-breast cancer activity against MCF-7 cells determined Pomegranate peel as the potent inhibitor of cancerous cells with IC50 value = 3.138 µg/mL. Toxicity profiling of pomegranate peel extract (2000mg/kg) did not show any adverse effect on mice. Moreover, Ont the base of literature a library of known compounds of pomegranate was prepared and established and screened against 6PGD for the identification of actual responsible phytochemicals of 6PGD activity by using molecular docking. Computational tools were used to evaluate selected potent hits. Out of 26 compounds, three potent phytochemicals (Procyanidin, Delphinidin and Cyanidin) exhibited the best binding affinities with 6PGD. In addition, these phytochemicals displayed the best favorable hydrogen bonding, binding energy, and protein-ligand interactions as compare to 3PG. Molecular dynamics simulation suggested that these hits form a stable binding complex with the active site of 6PGD. These findings suggest that Pomegranate peel and its secondary metabolites as the potent inhibitors of 6PGD and the best drug candidate for treatment of breast cancer.

3.
Exp Hematol Oncol ; 13(1): 80, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107856

ABSTRACT

The tumor microenvironment demonstrates great immunophenotypic heterogeneity, which has been leveraged in traditional immune-hot/cold tumor categorization based on the abundance of intra-tumoral immune cells. By incorporating the spatial immune contexture, the tumor immunophenotype was further elaborated into immune-inflamed, immune-excluded, and immune-desert. However, the mechanisms underlying these different immune phenotypes are yet to be comprehensively elucidated. In this review, we discuss how tumor cells and the tumor microenvironment interact collectively to shape the immune landscape from the perspectives of tumor cells, immune cells, the extracellular matrix, and cancer metabolism, and we summarize potential therapeutic options according to distinct immunophenotypes for personalized precision medicine.

4.
Colloids Surf B Biointerfaces ; 244: 114162, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39178515

ABSTRACT

Cancer poses a significant threat to human health and life. Chemotherapy, immunotherapy and chemodynamic therapy (CDT) are effective treatments for cancer. However, the presence of metabolic reprogramming via glutamine in tumor cells limits their therapeutic effectiveness. Herein, we propose an effective assembly strategy to synthesize a novel metal-polyphenolic based multifunctional nanomedicine (Fe-DBEF) containing Pluronic F127 stable ferric ion crosslinked epigallocatechin gallate (EGCG) nanoparticles loaded with GLS1 inhibitor bis-2-(5-phenylacetamino-1,3,4-thiadiazole-2-yl) ethyl sulfide (BPTES) and chemotherapy drug doxorubicin (DOX). Our study demonstrates that Fe-DBEF nanomedicine exhibits high efficiency anti-proliferation properties in pancreatic cancer through a combination of in vitro cell experiments, human organoid experiments and KPC animal experiments. Notably, Fe-DBEF nanomedicine can reduce the production of glutathione (GSH) in tumor cells, thereby reducing their resistance to ROS therapy. Additionally, excessive ROS production also aggravates DNA damage caused by DOX, synergistically sensitizing chemotherapy and promoting apoptosis for efficient treatment of pancreatic cancer. Overall, our findings suggest that inhibiting glutamine metabolism to increase the sensitivity of chemotherapy/CDT using metal-polyphenolic based multifunctional nanomedicine provides a promising combination of multiple therapeutic means for treating pancreatic cancer.

5.
J Biol Chem ; : 107678, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151727

ABSTRACT

Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global down-regulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53-deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids (PLs). Our results suggest that p53 status and PL homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.

6.
Surg Today ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097843

ABSTRACT

PURPOSE: Treatment outcomes are predicted by analyzing peripheral blood markers such as serum lactate dehydrogenase (LDH). We conducted this study to investigate whether serum LDH levels can predict the prognosis of patients treated with atezolizumab plus bevacizumab (ATZ/BEV) therapy for hepatocellular carcinoma (HCC) and whether LDH levels correlate with metabolic changes. METHODS: We enrolled 66 HCC patients treated with ATZ/BEV. Based on the change in serum LDH levels before and after treatment, the patients were divided into two groups, and the prognosis of each group was examined. Moreover, the association of LDH levels with tumor metabolism was analyzed by fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). RESULTS: There were 32 patients categorized as the LDH-decrease group. Kaplan-Meier survival analysis indicated worse progression-free survival (PFS) in the LDH-increase group than in the LDH-decrease group (p = 0.0029). Multivariate analysis showed that an increase in the LDH level was an independent risk factor for worse PFS (p = 0.0045). The baseline LDH level correlated significantly with a high maximum standardized uptake value of 18F-FDG, according to the PET/CT findings. Transcriptomic analyses of specimens resected after ATZ/BEV therapy showed downregulated mitochondria-related pathways. CONCLUSION: Serum LDH levels are a potential prognostic marker and an indicator of tumor metabolism.

7.
Elife ; 132024 Aug 28.
Article in English | MEDLINE | ID: mdl-39197048

ABSTRACT

Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients' tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients' colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients' tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.


Subject(s)
Colorectal Neoplasms , NADP , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Animals , Mice , NADP/metabolism , Cell Line, Tumor , Optical Imaging/methods , Energy Metabolism
8.
Biomedicines ; 12(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39200280

ABSTRACT

In the tumor microenvironment (TME), ROS production affects survival, progression, and therapy resistance in colorectal cancer (CRC). H2O2-mediated oxidative stress can modulate Wnt/ß-catenin signaling and metabolic reprogramming of the TME. Currently, it is unclear how mild/moderate oxidative stress (eustress) modulates Wnt/ß-catenin/APC and JNK signaling relationships in primary and metastatic CRC cells. In this study, we determined the effects of the H2O2 concentration inducing eustress on isogenic SW480 and SW620 cells, also in combination with JNK inhibition. We assessed cell viability, mitochondrial respiration, glycolysis, and Wnt/ß-catenin/APC/JNK gene and protein expression. Primary CRC cells were more sensitive to H2O2 eustress combined with JNK inhibition, showing a reduction in viability compared to metastatic cells. JNK inhibition under eustress reduced both glycolytic and respiratory capacity in SW620 cells, indicating a greater capacity to adapt to TME. In primary CRC cells, H2O2 alone significantly increased APC, LEF1, LRP6, cMYC and IL8 gene expression, whereas in metastatic CRC cells, this effect occurred after JNK inhibition. In metastatic but not in primary tumor cells, eustress and inhibition of JNK reduced APC, ß-catenin, and pJNK protein. The results showed differential cross-regulation of Wnt/JNK in primary and metastatic tumor cells under environmental eustress conditions. Further studies would be useful to validate these findings and explore their therapeutic potential.

9.
Biomolecules ; 14(8)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39199305

ABSTRACT

Gastrointestinal (GI) cancers impose a substantial global health burden, highlighting the necessity for deeper understanding of their intricate pathogenesis and treatment strategies. This review explores the interplay between intratumoral microbiota, tumor metabolism, and major types of GI cancers (including esophageal, gastric, liver, pancreatic, and colorectal cancers), summarizing recent studies and elucidating their clinical implications and future directions. Recent research revealed altered microbial signatures within GI tumors, impacting tumor progression, immune responses, and treatment outcomes. Dysbiosis-induced alterations in tumor metabolism, including glycolysis, fatty acid metabolism, and amino acid metabolism, play critical roles in cancer progression and therapeutic resistance. The integration of molecular mechanisms and potential biomarkers into this understanding further enhances the prognostic significance of intratumoral microbiota composition and therapeutic opportunities targeting microbiota-mediated tumor metabolism. Despite advancements, challenges remain in understanding the dynamic interactions within the tumor microenvironment (TME). Future research directions, including advanced omics technologies and prospective clinical studies, offer promising avenues for precision oncology and personalized treatment interventions in GI cancer. Overall, integrating microbiota-based approaches and molecular biomarkers into GI cancer management holds promise for improving patient outcomes and survival.


Subject(s)
Biomarkers, Tumor , Gastrointestinal Neoplasms , Tumor Microenvironment , Humans , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/microbiology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Dysbiosis/microbiology , Dysbiosis/metabolism , Microbiota , Gastrointestinal Microbiome , Animals
10.
Front Immunol ; 15: 1438807, 2024.
Article in English | MEDLINE | ID: mdl-39040097

ABSTRACT

The non-natriuretic-dependent glutamate/cystine inverse transporter-system Xc- is composed of two protein subunits, SLC7A11 and SLC3A2, with SLC7A11 serving as the primary functional component responsible for cystine uptake and glutathione biosynthesis. SLC7A11 is implicated in tumor development through its regulation of redox homeostasis, amino acid metabolism, modulation of immune function, and induction of programmed cell death, among other processes relevant to tumorigenesis. In this paper, we summarize the structure and biological functions of SLC7A11, and discuss its potential role in tumor therapy, which provides a new direction for precision and personalized treatment of tumors.


Subject(s)
Amino Acid Transport System y+ , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Animals
11.
Biochem Pharmacol ; 227: 116422, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996932

ABSTRACT

Carnitine palmitoyltransferase 1C (CPT1C) is an enzyme that regulates tumor cell proliferation and metabolism by modulating mitochondrial function and lipid metabolism. Hypoxia, commonly observed in solid tumors, promotes the proliferation and progression of pancreatic cancer by regulating the metabolic reprogramming of tumor cells. So far, the metabolic regulation of hypoxic tumor cells by CPT1C and the upstream mechanisms of CPT1C remain poorly understood. Yin Yang 1 (YY1) is a crucial oncogene for pancreatic tumorigenesis and acts as a transcription factor that is involved in multiple metabolic processes. This study aimed to elucidate the relationship between YY1 and CPT1C under hypoxic conditions and explore their roles in hypoxia-induced proliferation and metabolic alterations of tumor cells. The results showed enhancements in the proliferation and metabolism of PANC-1 cells under hypoxia, as evidenced by increased cell growth, cellular ATP levels, up-regulation of mitochondrial membrane potential, and decreased lipid content. Interestingly, knockdown of YY1 or CPT1C inhibited hypoxia-induced rapid cell proliferation and vigorous cell metabolism. Importantly, for the first time, we reported that YY1 directly activated the transcription of CPT1C and clarified that CPT1C was a novel target gene of YY1. Moreover, the YY1 and CPT1C were found to synergistically regulate the proliferation and metabolism of hypoxic cells through transfection with YY1 siRNA to CRISPR/Cas9-CPT1C knockout PANC-1 cells. Taken together, these results indicated that the YY1-CPT1C axis could be a new target for the intervention of pancreatic cancer proliferation and metabolism.


Subject(s)
Carnitine O-Palmitoyltransferase , Cell Proliferation , Pancreatic Neoplasms , Signal Transduction , YY1 Transcription Factor , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Cell Proliferation/physiology , Cell Line, Tumor , Signal Transduction/physiology , Cell Hypoxia/physiology
12.
Toxicon ; 248: 108047, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067775

ABSTRACT

Cancer metabolism has emerged as a potential target for innovative therapeutic approaches in the treatment of cancer. Cancer metabolism has received much attention, particularly in relation to glucose metabolism. It has been observed that human malignancies have high levels of glucose-6-phosphate dehydrogenase (G6PD) activity which is an important enzyme of glucose metabolism. This overactivity is associated with the cell death and angiogenesis, highlighting its potential as a viable target for cancer treatment. This study was conducted to examine the methanolic extracts from the seeds, bark and leaves of litchi (Litchi chinensis Sonn.) in order to discover effective compounds targeting G6PD and potentially active entities against liver cancer. Plant extract screening for the target protein was carried out through enzymatic activity assay. The recombinant plasmid pET-24a-HmG6PD was expressed in E. coli (BL21-DE3) strain, then purified and assessed using metal affinity chromatography with Ni-NTA columns and SDS-PAGE. The cytotoxicity of plant extracts against liver cancer HepG2 cells was assessed using the MTT assay. All three extracts demonstrated significant inhibitory effects (>80% inhibition) against G6PD. They were then subjected to testing at various concentrations, and their IC50 values were subsequently determined. The extracts of litchi (leaf, IC50: 1.199 µg/mL; bark, IC50: 2.350 µg/mL; seeds, IC50: 1.238 µg/mL) displayed significant inhibition of G6PD activity at lower concentrations. Subsequently, the leaf extract of litchi was further assessed for its impact on HepG2 cell lines in a dose-dependent manner and exhibited strong potential as an inhibitor of cancer cell progression. Moreover, the results of acute toxicity study in mice revealed nontoxic effects of litchi leaf extract on hepatocytes. The results imply that Litchi chinensis leaf extract could be considered as a promising candidate for safer drug development in the treatment of liver cancer.


Subject(s)
Glucosephosphate Dehydrogenase , Litchi , Liver Neoplasms , Plant Extracts , Litchi/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Liver Neoplasms/drug therapy , Hep G2 Cells , Plant Leaves/chemistry , Plant Bark/chemistry , Methanol , Antineoplastic Agents, Phytogenic/pharmacology , Seeds/chemistry
13.
Mol Oncol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38957016

ABSTRACT

MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.

14.
Mitochondrion ; 78: 101919, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876298

ABSTRACT

Cisplatin (CDDP) is a standard non-small cell lung cancer (NSCLC) chemotherapy, but its efficacy is hampered by resistance, partly due to the Warburg effect. This study investigates how thyroid hormones enhance the Warburg effect, increasing sensitivity to cisplatin in lung cancer. Clinical data from advanced NSCLC patients were analyzed based on thyroid hormone levels, categorizing patients into high and low groups. Cellular experiments involved Control, 10uM CDDP, 10uM CDDP + 0.1uM T3, and 10uM CDDP + 0.1uM T4 categories. Parameters were measured in A549 and PC9 lung cancer cells, including proliferation, apoptosis, mitochondrial membrane potential, ROS production, glycolysis enzyme activity, lactic acid level, and ATP content. Gene and protein expressions were assessed using qPCR and Western Blot. Analysis revealed higher FT3 levels correlated with prolonged progression-free survival before chemotherapy (median PFS: high FT3 group = 12.67 months, low FT3 group = 7.03 months, p = 0.01). Cellular experiments demonstrated that thyroid hormones increase lung cancer cell sensitivity to cisplatin, inhibiting proliferation and enhancing efficacy. The mechanism involves thyroid hormones and cisplatin jointly down-regulating MSI1/AKT/GLUT1 expression, reducing lactic acid and glycolysis. This Warburg effect reversal boosts ATP levels, elevates ROS, and decreases MMP, enhancing cisplatin effectiveness in A549 and PC9 cells. In conclusion, elevated free T3 levels in advanced NSCLC patients correlate with prolonged progression-free survival under cisplatin chemotherapy. Cellular experiments reveal that thyroid hormones enhance lung cancer cell sensitivity to cisplatin by reversing the Warburg effect, providing a mechanistic basis for improved therapeutic outcomes.

16.
bioRxiv ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38826317

ABSTRACT

Cancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved high-throughput computational screening to investigate the effects of enzyme perturbations predicted by a computational model of CRC metabolism to understand system-wide effects efficiently. Our results highlighted hexokinase (HK) as one of the crucial targets, which subsequently became our focus for experimental validation using patient-derived tumor organoids (PDTOs). Through metabolic imaging and viability assays, we found that PDTOs cultured in CAF conditioned media exhibited increased sensitivity to HK inhibition. Our approach emphasizes the critical role of integrating computational and experimental techniques in exploring and exploiting CRC-CAF crosstalk.

17.
Aging (Albany NY) ; 16(10): 8998-9022, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38796789

ABSTRACT

The discovery of RNA methylation alterations associated with cancer holds promise for their utilization as potential biomarkers in cancer diagnosis, prognosis, and prediction. RNA methylation has been found to impact the immunological microenvironment of tumors, but the specific role of methylation-related genes (MRGs), particularly in breast cancer (BC), the most common cancer among women globally, within the tumor microenvironment remains unknown. In this study, we obtained data from TCGA and GEO databases to investigate the expression patterns of MRGs in both genomic and transcriptional domains in BC. By analyzing the data, we identified two distinct genetic groupings that were correlated with clinicopathological characteristics, prognosis, degree of TME cell infiltration, and other abnormalities in MRGs among patients. Subsequently, an MRG model was developed to predict overall survival (OS) and its accuracy was evaluated in BC patients. Additionally, a highly precise nomogram was created to enhance the practical usability of the MRG model. In low-risk groups, we observed lower TBM values and higher TIDE scores. We further explored how MRGs influence a patient's prognosis, clinically significant characteristics, response to therapy, and the TME. These risk signatures have the potential to improve treatment strategies for BC patients and could be applied in future clinical settings. Moreover, they may also be utilized to determine prognosis and biological features in these patients.


Subject(s)
Breast Neoplasms , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Humans , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Female , Prognosis , Biomarkers, Tumor/genetics , DNA Methylation , Databases, Genetic , Nomograms
18.
Int J Cancer ; 155(4): 605-617, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38716809

ABSTRACT

Glioblastoma (GBM) is one of the most lethal malignancies in humans. Even after surgical resection and aggressive radio- or chemotherapies, patients with GBM can survive for less than 14 months. Extreme inter-tumor and intra-tumor heterogeneity of GBM poses a challenge for resolving recalcitrant GBM pathophysiology. GBM tumor microenvironment (TME) exhibits diverse heterogeneity in cellular composition and processes contributing to tumor progression and therapeutic resistance. Autophagy is such a cellular process; that demonstrates a cell-specific and TME context-dependent role in GBM progression, leading to either the promotion or suppression of GBM progression. Autophagy can regulate GBM cell function directly via regulation of survival, migration, and invasion, or indirectly by affecting GBM TME composition such as immune cell population, tumor metabolism, and glioma stem cells. This review comprehensively investigates the role of autophagy in GBM pathophysiology.


Subject(s)
Autophagy , Brain Neoplasms , Glioblastoma , Tumor Microenvironment , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Autophagy/physiology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Animals , Disease Progression
19.
J Nucl Med ; 65(7): 1151-1159, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38782455

ABSTRACT

Radiomics features can reveal hidden patterns in a tumor but usually lack an underlying biologic rationale. In this work, we aimed to investigate whether there is a correlation between radiomics features extracted from [18F]FDG PET images and histologic expression patterns of a glycolytic marker, monocarboxylate transporter-4 (MCT4), in pancreatic cancer. Methods: A cohort of pancreatic ductal adenocarcinoma patients (n = 29) for whom both tumor cross sections and [18F]FDG PET/CT scans were available was used to develop an [18F]FDG PET radiomics signature. By using immunohistochemistry for MCT4, we computed density maps of MCT4 expression and extracted pathomics features. Cluster analysis identified 2 subgroups with distinct MCT4 expression patterns. From corresponding [18F]FDG PET scans, radiomics features that associate with the predefined MCT4 subgroups were identified. Results: Complex heat map visualization showed that the MCT4-high/heterogeneous subgroup was correlating with a higher MCT4 expression level and local variation. This pattern linked to a specific [18F]FDG PET signature, characterized by a higher SUVmean and SUVmax and second-order radiomics features, correlating with local variation. This MCT4-based [18F]FDG PET signature of 7 radiomics features demonstrated prognostic value in an independent cohort of pancreatic cancer patients (n = 71) and identified patients with worse survival. Conclusion: Our cross-modal pipeline allows the development of PET scan signatures based on immunohistochemical analysis of markers of a particular biologic feature, here demonstrated on pancreatic cancer using intratumoral MCT4 expression levels to select [18F]FDG PET radiomics features. This study demonstrated the potential of radiomics scores to noninvasively capture intratumoral marker heterogeneity and identify a subset of pancreatic ductal adenocarcinoma patients with a poor prognosis.


Subject(s)
Fluorodeoxyglucose F18 , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Female , Male , Middle Aged , Aged , Monocarboxylic Acid Transporters/metabolism , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Muscle Proteins/metabolism , Radiopharmaceuticals , Positron-Emission Tomography , Radiomics
20.
Heliyon ; 10(9): e29597, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707399

ABSTRACT

A diagnosis based on multiple nuclear medicine imaging (NMI) was more comprehensive in approaching the nature of pathological changes. In this research, a method to realize triple NMIs within one day was developed based on the reasonable arrangements of 68Ga-RGD PET/CT specialized on neovascularization, 99mTc-HL-91 SPECT/CT specialized on hypoxia and 18F-FDG PET/CT specialized on tumor metabolism. Feasibility was verified in evaluating the therapeutic effects of transarterial embolization (TAE) performed on rabbit models with VX2 tumor. Radiation dosimetry was carried out to record the radiation exposure from multiple injections of radiopharmaceuticals. In results, the one-day examination of triple NMIs manifested the diversity of the postoperative histological changes, including the local neovascularization induced by embolization, hypoxic state of embolized tissues, and suppression of tumor metabolism. More importantly, radiation dosage from radiopharmaceuticals was limited below 5.70 ± 0.90 mSv. In conclusion, the strong timeliness and complementarity of one-day examination of triple nuclear medicine imaging made it clinically operative and worthy of popularizing. There was flexibility in combining distinct NMIs according to the clinical demands, so as to provide comprehensive information for diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL