Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Mol Cancer ; 23(1): 137, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970074

ABSTRACT

BACKGROUND: The outcome of hepatocellular carcinoma (HCC) is limited by its complex molecular characteristics and changeable tumor microenvironment (TME). Here we focused on elucidating the functional consequences of Maternal embryonic leucine zipper kinase (MELK) in the tumorigenesis, progression and metastasis of HCC, and exploring the effect of MELK on immune cell regulation in the TME, meanwhile clarifying the corresponding signaling networks. METHODS: Bioinformatic analysis was used to validate the prognostic value of MELK for HCC. Murine xenograft assays and HCC lung metastasis mouse model confirmed the role of MELK in tumorigenesis and metastasis in HCC. Luciferase assays, RNA sequencing, immunopurification-mass spectrometry (IP-MS) and coimmunoprecipitation (CoIP) were applied to explore the upstream regulators, downstream essential molecules and corresponding mechanisms of MELK in HCC. RESULTS: We confirmed MELK to be a reliable prognostic factor of HCC and identified MELK as an effective candidate in facilitating the tumorigenesis, progression, and metastasis of HCC; the effects of MELK depended on the targeted regulation of the upstream factor miR-505-3p and interaction with STAT3, which induced STAT3 phosphorylation and increased the expression of its target gene CCL2 in HCC. In addition, we confirmed that tumor cell-intrinsic MELK inhibition is beneficial in stimulating M1 macrophage polarization, hindering M2 macrophage polarization and inducing CD8 + T-cell recruitment, which are dependent on the alteration of CCL2 expression. Importantly, MELK inhibition amplified RT-related immune effects, thereby synergizing with RT to exert substantial antitumor effects. OTS167, an inhibitor of MELK, was also proven to effectively impair the growth and progression of HCC and exert a superior antitumor effect in combination with radiotherapy (RT). CONCLUSIONS: Altogether, our findings highlight the functional role of MELK as a promising target in molecular therapy and in the combination of RT therapy to improve antitumor effect for HCC.


Subject(s)
Carcinoma, Hepatocellular , Chemokine CCL2 , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Protein Serine-Threonine Kinases , Tumor Microenvironment , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/radiotherapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/radiotherapy , Humans , Animals , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Chemokine CCL2/metabolism , Cell Line, Tumor , Radiation Tolerance , Prognosis , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays , MicroRNAs/genetics
2.
Cell Commun Signal ; 22(1): 259, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715050

ABSTRACT

Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein homeostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is reportedly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Nevertheless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been comprehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and suppress tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer immunotherapeutics and several urgent problems that warrant further investigation.


Subject(s)
Deubiquitinating Enzymes , Tumor Microenvironment , Humans , Deubiquitinating Enzymes/metabolism , Immune Evasion , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/enzymology , Neoplasms/metabolism , Tumor Escape , Tumor Microenvironment/immunology , Ubiquitination
3.
J Exp Clin Cancer Res ; 43(1): 105, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576043

ABSTRACT

BACKGROUND: Lactate has emerged as a critical regulator within the tumor microenvironment, including glioma. However, the precise mechanisms underlying how lactate influences the communication between tumor cells and tumor-associated macrophages (TAMs), the most abundant immune cells in glioma, remain poorly understood. This study aims to elucidate the impact of tumor-derived lactate on TAMs and investigate the regulatory pathways governing TAM-mediated tumor-promotion in glioma. METHODS: Bioinformatic analysis was conducted using datasets from TCGA and CGGA. Single-cell RNA-seq datasets were analyzed by using UCSC Cell Browser and Single Cell Portal. Cell proliferation and mobility were evaluated through CCK8, colony formation, wound healing, and transwell assays. Western blot and immunofluorescence staining were applied to assess protein expression and cell distribution. RT-PCR and ELISA were employed to identify the potential secretory factors. Mechanistic pathways were explored by western blotting, ELISA, shRNA knockdown, and specific inhibitors and activators. The effects of pathway blockades were further assessed using subcutaneous and intracranial xenograft tumor models in vivo. RESULTS: Elevated expressions of LDHA and MCT1 were observed in glioma and exhibited a positive correlation with M2-type TAM infiltration. Lactate derived from glioma cells induced TAMs towards M2-subtype polarization, subsequently promoting glioma cells proliferation, migration, invasion, and mesenchymal transition. GPR65, highly expressed on TAMs, sensed lactate-stimulation in the TME, fueling glioma cells malignant progression through the secretion of HMGB1. GPR65 on TAMs triggered HMGB1 release in response to lactate stimulation via the cAMP/PKA/CREB signaling pathway. Disrupting this feedback loop by GPR65-knockdown or HMGB1 inhibition mitigated glioma progression in vivo. CONCLUSION: These findings unveil the intricate interplay between TAMs and tumor cells mediated by lactate and HMGB1, driving tumor progression in glioma. GPR65, selectively highly expressed on TAMs in glioma, sensed lactate stimulation and fostered HMGB1 secretion via the cAMP/PKA/CREB signaling pathway. Blocking this feedback loop presents a promising therapeutic strategy for GBM.


Subject(s)
Brain Neoplasms , Glioma , HMGB1 Protein , Humans , Lactic Acid/metabolism , HMGB1 Protein/metabolism , Cell Line, Tumor , Macrophages/metabolism , Glioma/pathology , Brain Neoplasms/pathology , Tumor Microenvironment
4.
ACS Nano ; 18(9): 6863-6886, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38386537

ABSTRACT

Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1ß, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Animals , Mice , Tumor Microenvironment , Biomimetics , Neoplasms/therapy , Immunity
5.
Trends Cancer ; 10(3): 175-176, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355357

ABSTRACT

In a recent study, Kerzel et al. report a novel therapeutic strategy to engineer tumor-associated macrophages (TAMs) in vivo by inducing the expression of IFNα in these cells. This approach enables improved antigen presentation and T cell activation, leading to controlled tumor growth in multiple murine models of liver metastasis.


Subject(s)
Liver Neoplasms , Macrophages , Humans , Animals , Mice , Macrophages/metabolism , Liver Neoplasms/pathology , Immunotherapy
6.
J Exp Clin Cancer Res ; 42(1): 277, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872588

ABSTRACT

BACKGROUND: Tumor cell-induced platelet aggregation (TCIPA) is not only a recognized mechanism for paraneoplastic thrombocytosis but also a potential breakthrough alternative for a low response to immune checkpoint inhibitors (ICIs) in hematogenous metastasis of malignant melanoma (MM). However, there is no TCIPA-specific model for further investigation of the relationship among TCIPA, the tumor immune microenvironment (TIME), and metastasis. METHODS: We developed a TCIPA metastatic melanoma model with advanced hematogenous metastasis and enhanced TCIPA characteristics. We also investigated the pathway for TCIPA in the TIME. RESULTS: We found that TCIPA triggers the recruitment of tumor-associated macrophages (TAMs) to lung metastases by secreting B16 cell-educated platelet-derived chemokines such as CCL2, SDF-1, and IL-1ß. Larger quantities of TAMs in the TCIPA model were polarized to the M2 type by B16 cell reprocessing, and their surface programmed cell death 1 ligand 1 (PD-L1) expression was upregulated, ultimately assisting B16 cells in escaping host immunity and accelerating MM hematogenous metastasis. CONCLUSIONS: TCIPA accelerates MM lung metastasis via tumor-educated platelets (TEPs), triggering TAM recruitment, promoting TAM polarization (M2), and remodeling the suppressive TIME in lung metastases.


Subject(s)
Lung Neoplasms , Melanoma , Humans , Platelet Aggregation/physiology , Macrophages , Tumor Microenvironment , Melanoma, Cutaneous Malignant
7.
J Transl Med ; 21(1): 686, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784157

ABSTRACT

Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Immunotherapy , Cell Transformation, Neoplastic , Neoplastic Stem Cells/pathology , Tumor Microenvironment
8.
Cancer Lett ; 578: 216457, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37865162

ABSTRACT

Tumor-associated macrophages (TAMs), as a major and essential component of tumor microenvironment (TME), play a critical role in orchestrating pancreatic cancer (PaC) tumorigenesis from initiation to angiogenesis, growth, and systemic dissemination, as well as immunosuppression and resistance to chemotherapy and immunotherapy; however, the critical intrinsic factors responsible for TAMs reprograming and function remain to be identified. By performing single-cell RNA sequencing, transforming growth factor-beta-induced protein (TGFBI) was identified as TAM-producing factor in murine PaC tumors. TAMs express TGFBI in human PaC and TGFBI expression is positively related with human PaC growth. By inducing TGFBI loss-of-function in macrophage (MΦs) in vitro with siRNA and in vivo with Cre-Lox strategy in our developed TGFBI-floxed mice, we demonstrated disruption of TGFBI not only inhibited MΦ polarization to M2 phenotype and MΦ-mediated stimulation on PaC growth, but also significantly improved anti-tumor immunity, sensitizing PaC to chemotherapy in association with regulation of fibronectin 1, Cxcl10, and Ccl5. Our studies suggest that targeting TGFBI in MΦ can develop an effective therapeutic intervention for highly lethal PaC.


Subject(s)
Pancreatic Neoplasms , Transforming Growth Factor beta , Animals , Humans , Mice , Drug Resistance, Neoplasm , Macrophages/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
9.
Front Oncol ; 13: 1281693, 2023.
Article in English | MEDLINE | ID: mdl-37829344

ABSTRACT

[This corrects the article DOI: 10.3389/fonc.2023.1169537.].

10.
Quant Imaging Med Surg ; 13(9): 5958-5973, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37711787

ABSTRACT

Background: Glioblastoma (Gb) is the most common primary malignant tumor of brain with poor prognosis. Immune cells are the main factors affecting the prognosis of Gb, tumor-associated macrophages (TAMs) are the predominant infiltrating immune cell population in the immune microenvironment of Gb. Analyzing the relationship between magnetic resonance imaging (MRI) features and TAMs of Gb, and using imaging features to characterize the infiltration level of TAMs in tumor tissue may provide indicators for clinical decision-making and prognosis evaluation of Gb. Methods: Data from 140 in patients with isocitrate dehydrogenase (IDH) wild-type Gb diagnosed via histopathology and molecular diagnosis in the Second Hospital of Lanzhou University from January 2018 to April 2022 were collected in this retrospective, cross-sectional study. MRI images were reviewed for lesion location, cyst, necrosis, hemorrhage, contrast-enhanced T1-weighted MRI signal intensity, average apparent diffusion coefficient (ADCmean), and minimum apparent diffusion coefficient (ADCmin). Immunohistochemical staining with anti-CD163 and anti-CD68 antibodies was employed for macrophage detection. The positive cell percentage was estimated in 9 microscopic fields at 400× magnification per whole-slide image with ImageJ software (National Institutes of Health). Additionally, the relationship between MRI features, molecular, states and the positive CD68 and CD163 expression was analyzed. Results: Our study discovered that the mean or median values of CD68+ and CD163+ TAMs were 7.39% and 14.98%, respectively. There was an obvious correlation between CD163+ TAMs and CD68+ TAMs (r=0.497; P=0.000). CD68+ and CD163+ macrophage infiltration correlated with age at diagnosis in patients with Gb (CD68+: r=0.230, P=0.006; CD163+: r=0.172, P=0.042). The levels of Gb TAM infiltration in different tumor locations varied, with the temporal lobe having the highest CD163+ macrophage and CD68+ macrophage infiltration (18.58% and 9.46%, respectively). CD163+ macrophage infiltration was positively correlated with ADCmean (r=0.208; P=0.014). The infiltration of CD68+ macrophages differed significantly between groups with varying degrees of tumor enhancement (H =4.228; P=0.017). There was a significant difference in CD68+ TAMs and CD163+ TAMs between the wild-type and mutant-type telomerase reverse transcriptase (TERT) types (P=0.004 and P=0.031, respectively). Conclusions: Age, location of the tumor, degree of tumor enhancement, ADC value, and TERT mutation status were associated with macrophage infiltration. These findings may serve as an effective tool for characterizing the tumor microenvironment in patients with Gb.

11.
Heliyon ; 9(7): e17582, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449180

ABSTRACT

Tumor-associated macrophage (TAM) affects the intrinsic properties of tumor cells and the tumor microenvironment (TME), which can stimulate tumor cell proliferation, migration, and genetic instability, and macrophage diversity includes the diversity of tumors with different functional characteristics. Macrophages are now a central drug target in various diseases, especially in the TME, which, as "tumor promoters" and "immunosuppressors", have different responsibilities during tumor development and accompany by significant dynamic alterations in various subpopulations. Remodelling immunosuppression of TME and promotion of pre-existing antitumor immune responses is critical by altering TAM polarization, which is relevant to the efficacy of immunotherapy, and uncovering the exact mechanism of action of TAMs and identifying their specific targets is vital to optimizing current immunotherapies. Hence, this review aims to reveal the triadic interactions of macrophages with programmed death and oncotherapy, and to integrate certain relationships in cancer treatment.

12.
Front Oncol ; 13: 1169537, 2023.
Article in English | MEDLINE | ID: mdl-37404757

ABSTRACT

Introduction: Systemic inflammatory markers have been validated as prognostic factors for patients with biliary tract cancer (BTC). The aim of this study was to evaluate specific immunologic prognostic markers and immune responses by analyzing preoperative plasma samples from a large prospectively collected biobank. Methods: Expression of 92 proteins representing adaptive and innate immune responses was investigated in plasma from 102 patients undergoing resection for BTC 2009-2017 (perihilar cholangiocarcinoma n=46, intrahepatic cholangiocarcinoma n=27, gallbladder cancer n=29), by means of a high-throughput multiplexed immunoassay. Association with overall survival was analyzed by Cox regression, with internal validation and calibration. Tumor tissue bulk and single-cell gene expression of identified markers and receptors/ligands was analyzed in external cohorts. Results: Three preoperative plasma markers were independently associated with survival: TRAIL, TIE2 and CSF1, with hazard ratios (95% confidence intervals) 0.30 (0.16-0.56), 2.78 (1.20-6.48) and 4.02 (1.40-11.59) respectively. The discrimination of a preoperative prognostic model with the three plasma markers was assessed with concordance-index 0.70, while the concordance-index of a postoperative model with histopathological staging was 0.66. Accounting for subgroup differences, prognostic factors were assessed for each type of BTC. TRAIL and CSF1 were prognostic factors in intrahepatic cholangiocarcinoma. In independent cohorts, TRAIL-receptor expression was higher in tumor tissue and seen in malignant cells, with TRAIL and CSF1 expressed by intra- and peritumoral immune cells. Intratumoral TRAIL-activity was decreased compared to peritumoral immune cells, while CSF1-activity was increased. The highest CSF1 activity was seen in intratumoral macrophages, while the highest TRAIL-activity was seen in peritumoral T-cells. Discussion: In conclusion, three preoperative immunological plasma markers were prognostic for survival after surgery for BTC, providing good discrimination, even compared to postoperative pathology. TRAIL and CSF1, prognostic factors in intrahepatic cholangiocarcinoma, showed marked differences in expression and activity between intra- and peritumoral immune cells.

13.
Cancer Sci ; 114(8): 3270-3286, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37248653

ABSTRACT

Homeobox A7 (HOXA7) plays essential roles in multiple malignancies and was reported to be overexpressed in esophageal squamous cell carcinoma (ESCC). However, its functions in the ESCC tumor microenvironment remain to be explored. In this study, we showed that HOXA7 was overexpressed in ESCC among HOXA family members and correlated with tumor-associated macrophage (TAM) infiltration both in The Cancer Genome Atlas database and ESCC clinical samples. Moreover, transactivation of C-C motif chemokine ligand 2 (CCL2) by HOXA7 was identified (real-time quantitative PCR [RT-qPCR], western blot analysis, ELISA, and ChIP-qPCR), which was detected to drive chemotaxis and M2 polarization of macrophages both in vitro (Transwell assay) and in vivo (xenograft tumors models). In addition, CCL2 triggers macrophage expression of epidermal growth factor (EGF) (RT-qPCR and ELISA), which promotes tumor proliferation and metastasis by activating its receptor EGFR. In addition, EGF-induced ESCC cell proliferation and migration can be abrogated by HOXA7 knockdown (CCK-8 proliferation assay, EdU fluorescence, and Transwell assay). These results indicate a novel mechanistic role of HOXA7 in the cross-talk between ESCC and TAMs, which could be an underlying therapeutic target for ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Epidermal Growth Factor/metabolism , Tumor-Associated Macrophages/metabolism , Genes, Homeobox , Ligands , Transcription Factors/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment
14.
Thorac Cancer ; 14(20): 1911-1920, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37208929

ABSTRACT

BACKGROUND: Macrophages infiltrating the tumor microenvironment are defined as tumor-associated macrophages (TAMs). TAMs can be polarized into different phenotypes, that is, proinflammatory M1 macrophages or anti-inflammatory M2 macrophages. Particularly, M2 macrophages promote angiogenesis, wound healing, and tumor growth. This study aimed to evaluate whether M2 TAMs can serve as a useful marker to predict prognosis and benefit from adjuvant chemotherapy in patients with surgically resected lung squamous cell carcinomas (SCCs). METHODS: We examined 104 patients with SCC. Tissue microarrays were constructed, and the density of TAMs was analyzed by immunohistochemistry for expression of CD68 and CD163. The relationship between CD68 and CD163 expression and the CD163/CD68 expression rate and clinicopathological characteristics including patient outcomes were investigated. In addition, propensity score matching (PSM) analysis was conducted to test the hypothesis that these cells significantly influenced chemotherapy responses. RESULTS: Univariate analysis revealed that pathological stage, CD163 expression, and the CD163/CD68 expression ratio were significant prognostic factors. Multivariate analysis showed that these factors were all independent prognostic factors. Thirty-four pairs were determined by using PSM analysis. Patients with a low CD163/CD68 expression ratio benefited more from adjuvant chemotherapy than those with a high ratio. CONCLUSION: We suggest that M2 TAMs may be a useful marker to predict prognosis and differential benefit from adjuvant chemotherapy in patients with surgically resected lung SCCs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Prognosis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology , Chemotherapy, Adjuvant , Lung Neoplasms/drug therapy , Lung Neoplasms/surgery , Lung Neoplasms/metabolism , Lung/pathology , Tumor Microenvironment
15.
Cancer Lett ; 563: 216184, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37088328

ABSTRACT

Despite of the high lethality of gallbladder cancer (GBC), little is known regarding molecular regulation of the tumor immunosuppressive microenvironment. Here, we determined tumor expression levels of YKL-40 and the molecular mechanisms by which YKL-40 regulates escape of anti-tumor immune surveillance. We found that elevated expression levels of YKL-40 in plasma and tissue were correlated with tumor size, stage IV and lymph node metastasis. Single cell transcriptome analysis revealed that YKL-40 was predominantly derived from M2-like subtype of infiltrating macrophages. Blockade of M2-like macrophage differentiation of THP-1 cells with YKL-40 shRNA resulted in reprogramming to M1-like macrophages and restricting tumor development. YKL-40 induced tumor cell expression and secretion of growth differentiation factor 15 (GDF15), thus coordinating to promote PD-L1 expression mediated by PI3K, AKT and/or Erk activation. Interestingly, extracellular GDF15 inhibited intracellular expression of GDF15 that suppressed PD-L1 expression. Thus, YKL-40 disrupted the balance of pro- and anti-PD-L1 regulation to enhance expression of PD-L1 and inhibition of T cell cytotoxicity, leading to tumor immune evasion. The data suggest that YKL-40 and GDF15 could serve as diagnostic biomarkers and immunotherapeutic targets for GBC.


Subject(s)
Gallbladder Neoplasms , Humans , B7-H1 Antigen , Cell Line, Tumor , Chitinase-3-Like Protein 1/metabolism , Gallbladder Neoplasms/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Macrophages/metabolism , Tumor Escape , Tumor Microenvironment
16.
Front Immunol ; 14: 1000497, 2023.
Article in English | MEDLINE | ID: mdl-36960065

ABSTRACT

Introduction: Tumor resistance to chemotherapy and metastatic relapse account for more than 90% of cancer specific mortality. Tumor-associated macrophages (TAMs) can process chemotherapeutic agents and impair their action. Little is known about the direct effects of chemotherapy on TAMs. Methods: The effect of chemotherapeutic platinum agent cisplatin was assessed in the model system of human ex vivo TAMs. Whole-transcriptome sequencing for paired TAMs stimulated and not stimulated by cisplatin was analysed by NGS. Endocytic uptake of EGF was quantified by flow cytometry. Confocal microscopy was used to visualize stabilin-1-mediated internalization and endocytic trafficking of EGF in CHO cells expressing ectopically recombinant stabilin-1 and in stabilin-1+ TAMs. In cohort of patients with breast cancer, the effect of platinum therapy on the transcriptome of TAMs was validated, and differential expression of regulators of endocytosis was identified. Results: Here we show that chemotherapeutic agent cisplatin can initiate detrimental transcriptional and functional programs in TAMs, without significant impairment of their viability. We focused on the clearance function of TAMs that controls composition of tumor microenvironment. For the first time we demonstrated that TAMs' scavenger receptor stabilin-1 is responsible for the clearance of epidermal growth factor (EGF), a potent stimulator of tumor growth. Cisplatin suppressed both overall and EGF-specific endocytosis in TAMs by bidirectional mode: suppression of positive regulators and stimulation of negative regulators of endocytosis, with strongest effect on synaptotagmin-11 (SYT11), confirmed in patients with breast cancer. Conclusion: Our data demonstrate that synergistic action of cytostatic agents and innovative immunomodulators is required to overcome cancer therapy resistance.


Subject(s)
Breast Neoplasms , Epidermal Growth Factor , Cricetinae , Animals , Humans , Female , Epidermal Growth Factor/metabolism , Tumor-Associated Macrophages/metabolism , Cricetulus , Cisplatin/pharmacology , Cisplatin/therapeutic use , Platinum , Macrophages/metabolism , Carrier Proteins/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Tumor Microenvironment , Synaptotagmins/metabolism
17.
Front Immunol ; 13: 1050067, 2022.
Article in English | MEDLINE | ID: mdl-36439180

ABSTRACT

In this article, we review the role of mathematical modelling to elucidate the impact of tumor-associated macrophages (TAMs) in tumor progression and therapy design. We first outline the biology of TAMs, and its current application in tumor therapies, and their experimental methods that provide insights into tumor cell-macrophage interactions. We then focus on the mechanistic mathematical models describing the role of macrophages as drug carriers, the impact of macrophage polarized activation on tumor growth, and the role of tumor microenvironment (TME) parameters on the tumor-macrophage interactions. This review aims to identify the synergies between biological and mathematical approaches that allow us to translate knowledge on fundamental TAMs biology in addressing current clinical challenges.


Subject(s)
Macrophages , Tumor-Associated Macrophages , Tumor Microenvironment , Models, Theoretical , Biology
18.
Int J Biol Sci ; 18(16): 5994-6007, 2022.
Article in English | MEDLINE | ID: mdl-36439868

ABSTRACT

Background: M2 macrophages are well accepted to promote cancer progression in the prostate cancer (PCa). Paracrine is the principally studied mode of communication between M2 macrophages and tumor cells. In addition to this, we present here a novel model to demonstrate these cellular communications. Methods: PCa cells were co-cultured with THP-1/ human peripheral blood mononuclear cells derived M2 macrophages in direct contact manner. Cancer cell proliferation and invasion were examined to explain how direct contact communicates. Cell-based findings were validated in two xenograft models and patients samples. Results: M2 macrophage direct contact induced a higher proliferation and invasion in PCa cells when compared with noncontact coculture manner. In direct contact manner, NOTCH1 pathway was greatly activated in PCa cells, induced by elevated γ-secretase activity and higher coactivator MAML2 expression. Additionally, blocking γ-secretase activity and depletion of MAML2 completely abolished M2 macrophage direct contact-mediated PCa cell proliferation and invasion. In vivo, inhibiting NOTCH1 signalling impaired M2 macrophage-mediated PCa tumor growth and lung metastasis. Notably, M2 macrophage infiltration as well as high NOTCH1 signaling in cancer cells indicated more aggressive features and worse survival in PCa patients. Conclusion: Our results demonstrated the cell-cell direct contact pattern is an important way in PCa microenvironment cell communication. In this manner, elevated γ-secretase activity and MAML2 expression induced higher NOTCH1 signalling in PCa cells, which increased tumor cells proliferation and invasion. This potentially provided a therapeutic target for PCa.


Subject(s)
Prostatic Neoplasms , Tumor-Associated Macrophages , Male , Humans , Amyloid Precursor Protein Secretases , Leukocytes, Mononuclear/metabolism , Cell Line, Tumor , Prostatic Neoplasms/metabolism , Cell Proliferation , Tumor Microenvironment , Receptor, Notch1/genetics
19.
Front Immunol ; 13: 999549, 2022.
Article in English | MEDLINE | ID: mdl-36275727

ABSTRACT

The immunosuppressive tumor microenvironment (TME) remains one of the most prevailing barriers obstructing the implementation of effective immunotherapy against solid-state cancers. Eminently composed of immunosuppressive tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) among others, the TME attenuates the effects of immune checkpoint blockade and adoptive cell therapies, mandating a novel therapy capable of TME remediation. In this review we explore the potential of three innate-like T cell subsets, invariant natural killer T (iNKT), mucosal-associated invariant T (MAIT) cells, and gamma delta T (γδT) cells, that display an intrinsic anti-TAM/MDSC capacity. Exhibiting both innate and adaptive properties, innate-like T cell types express a subset-specific TCR with distinct recombination, morphology, and target cell recognition, further supplemented by a variety of NK activating receptors. Both NK activating receptor and TCR activation result in effector cell cytotoxicity against targeted immunosuppressive cells for TME remediation. In addition, innate-like T cells showcase moderate levels of tumor cell killing, providing dual antitumor and anti-TAM/MDSC function. This latent antitumor capacity can be further bolstered by chimeric antigen receptor (CAR) engineering for recognition of tumor specific antigens to enhance antitumor targeting. In contrast with established CAR-T cell therapies, adoption of these innate-like cell types provides an enhanced safety profile without the risk of graft versus host disease (GvHD), due to their non-recognition of mismatched major histocompatibility complex (MHC) molecules, for use as widely accessible, allogeneic "off-the-shelf" cancer immunotherapy.


Subject(s)
Receptors, Chimeric Antigen , Tumor Microenvironment , Receptors, Chimeric Antigen/metabolism , Immune Checkpoint Inhibitors , Immunotherapy , Immunotherapy, Adoptive
20.
Front Oncol ; 12: 984193, 2022.
Article in English | MEDLINE | ID: mdl-36119485

ABSTRACT

Cancer continues to be a substantial health concern and a leading cause of death in the United States and around the world. Therefore, it is important to continue to explore the potential of novel therapeutic targets and combinatorial therapies. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily that associates with DNAX activation protein (DAP) 12 and DAP10 to propagate signals within the cell. TREM2 has primarily been recognized for its expression on cells in the monocyte-macrophage lineage, with the majority of work focusing on microglial function in Alzheimer's Disease. However, expansion of TREM2 research into the field of cancer has revealed that epithelial tumor cells as well as intratumoral macrophages and myeloid regulatory cells also express TREM2. In this review, we discuss evidence that TREM2 contributes to tumor suppressing or oncogenic activity when expressed by epithelial tumor cells. In addition, we discuss the immunosuppressive role of TREM2-expressing intratumoral macrophages, and the therapeutic potential of targeting TREM2 in combination with immune checkpoint therapy. Overall, the literature reveals TREM2 could be considered a novel therapeutic target for certain types of cancer.

SELECTION OF CITATIONS
SEARCH DETAIL