Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Neurocrit Care ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107659

ABSTRACT

BACKGROUND: The objective of this study was to define clinically meaningful phenotypes of intracerebral hemorrhage (ICH) using machine learning. METHODS: We used patient data from two US medical centers and the Antihypertensive Treatment of Acute Cerebral Hemorrhage-II clinical trial. We used k-prototypes to partition patient admission data. We then used silhouette method calculations and elbow method heuristics to optimize the clusters. Associations between phenotypes, complications (e.g., seizures), and functional outcomes were assessed using the Kruskal-Wallis H-test or χ2 test. RESULTS: There were 916 patients; the mean age was 63.8 ± 14.1 years, and 426 patients were female (46.5%). Three distinct clinical phenotypes emerged: patients with small hematomas, elevated blood pressure, and Glasgow Coma Scale scores > 12 (n = 141, 26.6%); patients with hematoma expansion and elevated international normalized ratio (n = 204, 38.4%); and patients with median hematoma volumes of 24 (interquartile range 8.2-59.5) mL, who were more frequently Black or African American, and who were likely to have intraventricular hemorrhage (n = 186, 35.0%). There were associations between clinical phenotype and seizure (P = 0.024), length of stay (P = 0.001), discharge disposition (P < 0.001), and death or disability (modified Rankin Scale scores 4-6) at 3-months' follow-up (P < 0.001). We reproduced these three clinical phenotypes of ICH in an independent cohort (n = 385) for external validation. CONCLUSIONS: Machine learning identified three phenotypes of ICH that are clinically significant, associated with patient complications, and associated with functional outcomes. Cerebellar hematomas are an additional phenotype underrepresented in our data sources.

2.
Heliyon ; 10(15): e34602, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39157321

ABSTRACT

Background: Peripheral artery disease (PAD) represents the frequently seen circulatory condition related to a risk of critical limb ischemia and amputation. Critical lower extremity ischemia may require amputation, and the outcomes vary. In this study, we developed an artificial intelligence (AI)-driven predictive model for PAD subtypes to assess risk among patients more precisely and accurately to predict disease progression. Methods: The present retrospective study examined clinical data in PAD patents undergoing lower extremity amputation. The data were analyzed using an unsupervised machine learning algorithm (UMLA) for subgroup identification and risk stratification. The clustering result accuracy was validated by analyzing the follow-up data of clusters. Finally, we built the prediction model with binary logistic regression. Results: In total, we enrolled 507 cases into this work. Two distinct subgroups, consisting of Clusters 1 and 2, were identified by UMLA; those from Cluster 1 showed markedly poorer conditions and prognostic outcomes compared with those from Cluster 2. With regard to the new PAD subtype, we established a nomogram with eight predictive factors, including gender, age, smoking history, diabetes and coronary heart disease history, albumin levels, endovascular intervention, and amputation level. The nomogram could accurately categorize patients into two identified clusters, and the area under receiver operating characteristic curve was 0.861 (95 % confidence interval: 0.830-0.893). Conclusion: In this study, UMLA was used to identify new phenotypic subgroups among PAD cases who showed different risks of amputation. Our constructed AI-driven predictive model for PAD subtypes showed that it can be used for risk stratification and clinical management with high accuracy and reliability.

3.
Neurogastroenterol Motil ; : e14898, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119757

ABSTRACT

BACKGROUND: Unsupervised machine learning describes a collection of powerful techniques that seek to identify hidden patterns in unlabeled data. These techniques can be broadly categorized into dimension reduction, which transforms and combines the original set of measurements to simplify data, and cluster analysis, which seeks to group subjects based on some measure of similarity. Unsupervised machine learning can be used to explore alternative subtyping of disorders of gut-brain interaction (DGBI) compared to the existing gastrointestinal symptom-based definitions of Rome IV. PURPOSE: This present review aims to familiarize the reader with fundamental concepts of unsupervised machine learning using accessible definitions and provide a critical summary of their application to the evaluation of DGBI subtyping. By considering the overlap between Rome IV clinical definitions and identified clusters, along with clinical and physiological insights, this paper speculates on the possible implications for DGBI. Also considered are algorithmic developments in the unsupervised machine learning community that may help leverage increasingly available omics data to explore biologically informed definitions. Unsupervised machine learning challenges the modern subtyping of DGBI and, with the necessary clinical validation, has the potential to enhance future iterations of the Rome criteria to identify more homogeneous, diagnosable, and treatable patient populations.

4.
Proc Biol Sci ; 291(2028): 20240790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39140324

ABSTRACT

The detection of evolutionary transitions in influenza A (H3N2) viruses' antigenicity is a major obstacle to effective vaccine design and development. In this study, we describe Novel Influenza Virus A Detector (NIAViD), an unsupervised machine learning tool, adept at identifying these transitions, using the HA1 sequence and associated physico-chemical properties. NIAViD performed with 88.9% (95% CI, 56.5-98.0%) and 72.7% (95% CI, 43.4-90.3%) sensitivity in training and validation, respectively, outperforming the uncalibrated null model-33.3% (95% CI, 12.1-64.6%) and does not require potentially biased, time-consuming and costly laboratory assays. The pivotal role of the Boman's index, indicative of the virus's cell surface binding potential, is underscored, enhancing the precision of detecting antigenic transitions. NIAViD's efficacy is not only in identifying influenza isolates that belong to novel antigenic clusters, but also in pinpointing potential sites driving significant antigenic changes, without the reliance on explicit modelling of haemagglutinin inhibition titres. We believe this approach holds promise to augment existing surveillance networks, offering timely insights for the development of updated, effective influenza vaccines. Consequently, NIAViD, in conjunction with other resources, could be used to support surveillance efforts and inform the development of updated influenza vaccines.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/virology , Humans , Antigens, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology
5.
R Soc Open Sci ; 11(7): 240477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39076369

ABSTRACT

Acoustic signals are vital in animal communication, and quantifying them is fundamental for understanding animal behaviour and ecology. Vocalizations can be classified into acoustically and functionally or contextually distinct categories, but establishing these categories can be challenging. Newly developed methods, such as machine learning, can provide solutions for classification tasks. The plains zebra is known for its loud and specific vocalizations, yet limited knowledge exists on the structure and information content of its vocalzations. In this study, we employed both feature-based and spectrogram-based algorithms, incorporating supervised and unsupervised machine learning methods to enhance robustness in categorizing zebra vocalization types. Additionally, we implemented a permuted discriminant function analysis to examine the individual identity information contained in the identified vocalization types. The findings revealed at least four distinct vocalization types-the 'snort', the 'soft snort', the 'squeal' and the 'quagga quagga'-with individual differences observed mostly in snorts, and to a lesser extent in squeals. Analyses based on acoustic features outperformed those based on spectrograms, but each excelled in characterizing different vocalization types. We thus recommend the combined use of these two approaches. This study offers valuable insights into plains zebra vocalization, with implications for future comprehensive explorations in animal communication.

6.
J Cardiovasc Dev Dis ; 11(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39057627

ABSTRACT

Stroke constitutes a significant public health concern due to its impact on mortality and morbidity. This study investigates the utility of machine learning algorithms in predicting stroke and identifying key risk factors using data from the Suita study, comprising 7389 participants and 53 variables. Initially, unsupervised k-prototype clustering categorized participants into risk clusters, while five supervised models including Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosted Machine (LightGBM) were employed to predict stroke outcomes. Stroke incidence disparities among identified risk clusters using the unsupervised k-prototype clustering method are substantial, according to the findings. Supervised learning, particularly RF, was a preferable option because of the higher levels of performance metrics. The Shapley Additive Explanations (SHAP) method identified age, systolic blood pressure, hypertension, estimated glomerular filtration rate, metabolic syndrome, and blood glucose level as key predictors of stroke, aligning with findings from the unsupervised clustering approach in high-risk groups. Additionally, previously unidentified risk factors such as elbow joint thickness, fructosamine, hemoglobin, and calcium level demonstrate potential for stroke prediction. In conclusion, machine learning facilitated accurate stroke risk predictions and highlighted potential biomarkers, offering a data-driven framework for risk assessment and biomarker discovery.

7.
J Cardiovasc Magn Reson ; 26(2): 101060, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004418

ABSTRACT

BACKGROUND: Individuals with a Fontan circulation encompass a heterogeneous group with adverse outcomes linked to ventricular dilation, dysfunction, and dyssynchrony. The purpose of this study was to assess if unsupervised machine learning cluster analysis of cardiovascular magnetic resonance (CMR)-derived dyssynchrony metrics can separate ventricles in the Fontan circulation from normal control left ventricles and identify prognostically distinct subgroups within the Fontan cohort. METHODS: This single-center, retrospective study used 503 CMR studies from Fontan patients (median age 15 y) and 42 from age-matched controls from January 2005 to May 2011. Feature tracking on short-axis cine stacks assessed radial and circumferential strain, strain rate, and displacement. Unsupervised K-means clustering was applied to 24 mechanical dyssynchrony metrics derived from these deformation measurements. Clusters were compared for demographic, anatomical, and composite outcomes of death, or heart transplantation. RESULTS: Four distinct phenotypic clusters were identified. Over a median follow-up of 4.2 y (interquartile ranges 1.7-8.8 y), 58 (11.5%) patients met the composite outcome. The highest-risk cluster (largely comprised of right or mixed ventricular morphology and dilated, dyssynchronous ventricles) exhibited a higher hazard for the composite outcome compared to the lowest-risk cluster while controlling for ventricular morphology (hazard ratio [HR] 6.4; 95% confidence interval [CI] 2.1-19.3; P value 0.001) and higher indexed end-diastolic volume (HR 3.2; 95% CI 1.04-10.0; P value 0.043) per 10 mL/m2. CONCLUSION: Unsupervised machine learning using CMR-derived dyssynchrony metrics identified four distinct clusters of patients with Fontan circulation and healthy controls with varying clinical characteristics and risk profiles. This technique can be used to guide future studies and identify more homogeneous subsets of patients from an overall heterogeneous population.

8.
Sci Rep ; 14(1): 15204, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956217

ABSTRACT

The study aimed to understand stroke-related Twitter conversations in India, focusing on topics, message sources, reach, and influential users to provide insights to stakeholders regarding community needs for knowledge, support, and interventions. Geo-tagged Twitter posts focusing on stroke originating from India and, spanning from November 7, 2022, to February 28, 2023, were systematically obtained via the Twitter application programming interface, using keywords and hashtags sourced through Symplur Signals. Preprocessing involved the removal of hashtags, stop words, and URLs. The Latent Dirichlet Allocation (LDA) topic model was used to identify recurring stroke-related topics, while influential users were identified through social network analysis. About half of the tweets about stroke in India were about seeking support and post-stroke bereavement sharing and had the highest reachability. Four out of 10 tweets were from the individual twitter users. Tweets on the topic risk factors, awareness and prevention (14.6%) constituted the least proportion, whereas the topic management, research, and promotion had the least retweet ratio. Twitter demonstrates significant potential as a platform for both disseminating and acquiring stroke-related information within the Indian context. The identified topics and understanding of the content of discussion offer valuable resources to public health professionals and organizations to develop targeted educational and engagement strategies for the relevant audience.


Subject(s)
Social Media , Stroke , Humans , India/epidemiology , Social Network Analysis , Information Dissemination/methods
9.
BioData Min ; 17(1): 22, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997749

ABSTRACT

BACKGROUND: The use of machine learning in medical diagnosis and treatment has grown significantly in recent years with the development of computer-aided diagnosis systems, often based on annotated medical radiology images. However, the lack of large annotated image datasets remains a major obstacle, as the annotation process is time-consuming and costly. This study aims to overcome this challenge by proposing an automated method for annotating a large database of medical radiology images based on their semantic similarity. RESULTS: An automated, unsupervised approach is used to create a large annotated dataset of medical radiology images originating from the Clinical Hospital Centre Rijeka, Croatia. The pipeline is built by data-mining three different types of medical data: images, DICOM metadata and narrative diagnoses. The optimal feature extractors are then integrated into a multimodal representation, which is then clustered to create an automated pipeline for labelling a precursor dataset of 1,337,926 medical images into 50 clusters of visually similar images. The quality of the clusters is assessed by examining their homogeneity and mutual information, taking into account the anatomical region and modality representation. CONCLUSIONS: The results indicate that fusing the embeddings of all three data sources together provides the best results for the task of unsupervised clustering of large-scale medical data and leads to the most concise clusters. Hence, this work marks the initial step towards building a much larger and more fine-grained annotated dataset of medical radiology images.

10.
Sensors (Basel) ; 24(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39000846

ABSTRACT

Global Positioning Systems (GPSs) can collect tracking data to remotely monitor livestock well-being and pasture use. Supervised machine learning requires behavioral observations of monitored animals to identify changes in behavior, which is labor-intensive. Our goal was to identify animal behaviors automatically without using human observations. We designed a novel framework using unsupervised learning techniques. The framework contains two steps. The first step segments cattle tracking data using state-of-the-art time series segmentation algorithms, and the second step groups segments into clusters and then labels the clusters. To evaluate the applicability of our proposed framework, we utilized GPS tracking data collected from five cows in a 1096 ha rangeland pasture. Cow movement pathways were grouped into six behavior clusters based on velocity (m/min) and distance from water. Again, using velocity, these six clusters were classified into walking, grazing, and resting behaviors. The mean velocity for predicted walking and grazing and resting behavior was 44, 13 and 2 min/min, respectively, which is similar to other research. Predicted diurnal behavior patterns showed two primary grazing bouts during early morning and evening, like in other studies. Our study demonstrates that the proposed two-step framework can use unlabeled GPS tracking data to predict cattle behavior without human observations.


Subject(s)
Algorithms , Behavior, Animal , Geographic Information Systems , Unsupervised Machine Learning , Cattle , Animals , Behavior, Animal/physiology , Female
11.
Int Immunopharmacol ; 138: 112608, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38981221

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) poses a significant health risk and is influenced by various compositional features. This study aimed to develop an artificial intelligence-driven multiomics predictive model for AAA subtypes to identify heterogeneous immune cell infiltration and predict disease progression. Additionally, we investigated neutrophil heterogeneity in patients with different AAA subtypes to elucidate the relationship between the immune microenvironment and AAA pathogenesis. METHODS: This study enrolled 517 patients with AAA, who were clustered using k-means algorithm to identify AAA subtypes and stratify the risk. We utilized residual convolutional neural network 200 to annotate and extract contrast-enhanced computed tomography angiography images of AAA. A precise predictive model for AAA subtypes was established using clinical, imaging, and immunological data. We performed a comparative analysis of neutrophil levels in the different subgroups and immune cell infiltration analysis to explore the associations between neutrophil levels and AAA. Quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay were performed to elucidate the interplay between CXCL1, neutrophil activation, and the nuclear factor (NF)-κB pathway in AAA pathogenesis. Furthermore, the effect of CXCL1 silencing with small interfering RNA was investigated. RESULTS: Two distinct AAA subtypes were identified, one clinically more severe and more likely to require surgical intervention. The CNN effectively detected AAA-associated lesion regions on computed tomography angiography, and the predictive model demonstrated excellent ability to discriminate between patients with the two identified AAA subtypes (area under the curve, 0.927). Neutrophil activation, AAA pathology, CXCL1 expression, and the NF-κB pathway were significantly correlated. CXCL1, NF-κB, IL-1ß, and IL-8 were upregulated in AAA. CXCL1 silencing downregulated NF-κB, interleukin-1ß, and interleukin-8. CONCLUSION: The predictive model for AAA subtypes demonstrated accurate and reliable risk stratification and clinical management. CXCL1 overexpression activated neutrophils through the NF-κB pathway, contributing to AAA development. This pathway may, therefore, be a therapeutic target in AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Artificial Intelligence , Chemokine CXCL1 , Disease Progression , Neutrophils , Humans , Aortic Aneurysm, Abdominal/immunology , Male , Female , Aged , Neutrophils/immunology , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , NF-kappa B/metabolism , Middle Aged , Computed Tomography Angiography , Multiomics
12.
Pneumonia (Nathan) ; 16(1): 12, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38915125

ABSTRACT

BACKGROUND: There exists consistent empirical evidence in the literature pointing out ample heterogeneity in terms of the clinical evolution of patients with COVID-19. The identification of specific phenotypes underlying in the population might contribute towards a better understanding and characterization of the different courses of the disease. The aim of this study was to identify distinct clinical phenotypes among hospitalized patients with SARS-CoV-2 pneumonia using machine learning clustering, and to study their association with subsequent clinical outcomes as severity and mortality. METHODS: Multicentric observational, prospective, longitudinal, cohort study conducted in four hospitals in Spain. We included adult patients admitted for in-hospital stay due to SARS-CoV-2 pneumonia. We collected a broad spectrum of variables to describe exhaustively each case: patient demographics, comorbidities, symptoms, physiological status, baseline examinations (blood analytics, arterial gas test), etc. For the development and internal validation of the clustering/phenotype models, the dataset was split into training and test sets (50% each). We proposed a sequence of machine learning stages: feature scaling, missing data imputation, reduction of data dimensionality via Kernel Principal Component Analysis (KPCA), and clustering with the k-means algorithm. The optimal cluster model parameters -including k, the number of phenotypes- were chosen automatically, by maximizing the average Silhouette score across the training set. RESULTS: We enrolled 1548 patients, each of them characterized by 92 clinical attributes (d=109 features after variable encoding). Our clustering algorithm identified k=3 distinct phenotypes and 18 strongly informative variables: Phenotype A (788 cases [50.9% prevalence] - age ∼ 57, Charlson comorbidity ∼ 1, pneumonia CURB-65 score ∼ 0 to 1, respiratory rate at admission ∼ 18 min-1, FiO2 ∼ 21%, C-reactive protein CRP ∼ 49.5 mg/dL [median within cluster]); phenotype B (620 cases [40.0%] - age ∼ 75, Charlson ∼ 5, CURB-65 ∼ 1 to 2, respiration ∼ 20 min-1, FiO2 ∼ 21%, CRP ∼ 101.5 mg/dL); and phenotype C (140 cases [9.0%] - age ∼ 71, Charlson ∼ 4, CURB-65 ∼ 0 to 2, respiration ∼ 30 min-1, FiO2 ∼ 38%, CRP ∼ 152.3 mg/dL). Hypothesis testing provided solid statistical evidence supporting an interaction between phenotype and each clinical outcome: severity and mortality. By computing their corresponding odds ratios, a clear trend was found for higher frequencies of unfavourable evolution in phenotype C with respect to B, as well as more unfavourable in phenotype B than in A. CONCLUSION: A compound unsupervised clustering technique (including a fully-automated optimization of its internal parameters) revealed the existence of three distinct groups of patients - phenotypes. In turn, these showed strong associations with the clinical severity in the progression of pneumonia, and with mortality.

13.
Article in English | MEDLINE | ID: mdl-38916192

ABSTRACT

OBJECTIVE: Adverse childhood experiences (ACEs) are associated with a range of negative health outcomes, including attention-deficit/hyperactivity disorder (ADHD) and neurocognitive deficits. This study identified symptom profiles in adult patients undergoing neuropsychological evaluations for ADHD and examined the association between these profiles and ACEs. METHODS: Utilizing unsupervised machine learning models, the study analyzed data from 208 adult patients. RESULTS: The Gaussian Mixture Model revealed two distinct symptom profiles: "Severely Impaired" and "Moderately Impaired". The "Severely Impaired" profile, 23.6% of the sample, was characterized by more severe ADHD symptomatology in childhood and worse neurocognitive performance. The "Moderately Impaired" profile, 76.4% of the sample, had scores in the average range for self-reported internalizing and externalizing psychopathology and better neurocognitive performance. There was a greater number of ACEs reported by patients in the Severely Impaired profile than the Moderately Impaired profile (p = .022). Specifically, using an ACEs cutoff of ≥4, 53.1% of patients in the Severely Impaired profile reported four or more ACEs, compared with 34.6% in the Moderately Impaired profile (p = .020). Profiles were not related to clinician-ascribed diagnosis. CONCLUSIONS: Findings underscore the association between ACEs and worse symptom profiles marked by impaired neurocognitive function, increased internalizing and externalizing psychopathology, and heightened perceived stress in adults with ADHD. Future research may explore the effect of ACEs on symptom profiles in diverse populations and potential moderators or mediators of these associations. Findings offers valuable insights for clinicians in their assessment and treatment planning.

14.
J Bone Miner Res ; 39(7): 956-966, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38832703

ABSTRACT

Low bone mineral density and impaired bone quality have been shown to be important prognostic factors for curve progression in adolescent idiopathic scoliosis (AIS). There is no evidence-based integrative interpretation method to analyze high-resolution peripheral quantitative computed tomography (HR-pQCT) data in AIS. This study aimed to (1) utilize unsupervised machine learning to cluster bone microarchitecture phenotypes on HR-pQCT parameters in girls with AIS, (2) assess the phenotypes' risk of curve progression and progression to surgical threshold at skeletal maturity (primary cohort), and (3) investigate risk of curve progression in a separate cohort of girls with mild AIS whose curve severity did not reach bracing threshold at recruitment (secondary cohort). Patients were followed up prospectively for 6.22 ± 0.33 years in the primary cohort (n = 101). Three bone microarchitecture phenotypes were clustered by fuzzy C-means at time of peripubertal peak height velocity (PHV). Phenotype 1 had normal bone characteristics. Phenotype 2 was characterized by low bone volume and high cortical bone density, and phenotype 3 had low cortical and trabecular bone density and impaired trabecular microarchitecture. The difference in bone quality among the phenotypes was significant at peripubertal PHV and continued to skeletal maturity. Phenotype 3 had significantly increased risk of curve progression to surgical threshold at skeletal maturity (odd ratio [OR] = 4.88; 95% CI, 1.03-28.63). In the secondary cohort (n = 106), both phenotype 2 (adjusted OR = 5.39; 95% CI, 1.47-22.76) and phenotype 3 (adjusted OR = 3.67; 95% CI, 1.05-14.29) had increased risk of curve progression ≥6° with mean follow-up of 3.03 ± 0.16 years. In conclusion, 3 distinct bone microarchitecture phenotypes could be clustered by unsupervised machine learning on HR-pQCT-generated bone parameters at peripubertal PHV in AIS. The bone quality reflected by these phenotypes was found to have significant differentiating risk of curve progression and progression to surgical threshold at skeletal maturity in AIS.


Adolescent idiopathic scoliosis (AIS) is an abnormal spinal curvature that commonly presents during puberty growth. Evidence has shown that low bone mineral density and impaired bone quality are important risk factors for curve progression in AIS. High-resolution peripheral quantitative computed tomography (HR-pQCT) has improved our understanding of bone quality in AIS. It generates a large amount of quantitative and qualitative bone parameters from a single measurement, but the data are not easy for clinicians to interpret and analyze. This study enrolled girls with AIS and used an unsupervised machine-learning model to analyze their HR-pQCT data at the first clinic visit. The model clustered the patients into 3 bone microarchitecture phenotypes (ie, phenotype 1: normal; phenotype 2: low bone volume and high cortical bone density; and phenotype 3: low cortical and trabecular bone density and impaired trabecular microarchitecture). They were longitudinally followed up for 6 years until skeletal maturity. We observed the 3 phenotypes were persistent and phenotype 3 had a significantly increased risk of curve progression to severity that requires invasive spinal surgery (odds ratio = 4.88, p = .029). The difference in bone quality reflected by these 3 distinct phenotypes could aid clinicians to differentiate risk of curve progression and surgery at early stages of AIS.


Subject(s)
Disease Progression , Phenotype , Scoliosis , Humans , Scoliosis/diagnostic imaging , Scoliosis/pathology , Adolescent , Female , Longitudinal Studies , Bone Density , Child , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Tomography, X-Ray Computed , Risk Factors
15.
Arch Microbiol ; 206(7): 318, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904719

ABSTRACT

In this study, we propose an Ethanol Pretreatment Gram staining method that significantly enhances the color contrast of the stain, thereby improving the accuracy of judgement, and demonstrated the effectiveness of the modification by eliminating unaided-eye observational errors with unsupervised machine learning image analysis. By comparing the traditional Gram staining method with the improved method on various bacterial samples, results showed that the improved method offers distinct color contrast. Using multimodal assessment strategies, including unaided-eye observation, manual image segmentation, and advanced unsupervised machine learning automatic image segmentation, the practicality of ethanol pretreatment on Gram staining was comprehensively validated. In our quantitative analysis, the application of the CIEDE2000, and CMC color difference standards confirmed the significant effect of the method in enhancing the discrimination of Gram staining.This study not only improved the efficacy of Gram staining, but also provided a more accurate and standardized strategy for analyzing Gram staining results, which might provide an useful analytical tool in microbiological diagnostics.


Subject(s)
Ethanol , Image Processing, Computer-Assisted , Staining and Labeling , Unsupervised Machine Learning , Ethanol/pharmacology , Staining and Labeling/methods , Image Processing, Computer-Assisted/methods , Gentian Violet , Phenazines/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification
16.
Comput Biol Med ; 178: 108739, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875910

ABSTRACT

BACKGROUND: Human Assumed Central Sensitization (HACS) is involved in the development and maintenance of chronic low back pain (CLBP). The Central Sensitization Inventory (CSI) was developed to evaluate the presence of HACS, with a cut-off value of 40/100. However, various factors including pain conditions (e.g., CLBP), contexts, and gender may influence this cut-off value. Unsupervised clustering approaches can address these complexities by considering diverse factors and exploring possible HACS-related subgroups. Therefore, this study aimed to determine the cut-off values for a Dutch-speaking population with CLBP based on unsupervised machine learning. METHODS: Questionnaire data covering pain, physical, and psychological aspects were collected from patients with CLBP and aged-matched healthy controls (HC). Four clustering approaches were applied to identify HACS-related subgroups based on the questionnaire data and gender. The clustering performance was assessed using internal and external indicators. Subsequently, receiver operating characteristic (ROC) analysis was conducted on the best clustering results to determine the optimal cut-off values. RESULTS: The study included 63 HCs and 88 patients with CLBP. Hierarchical clustering yielded the best results, identifying three clusters: healthy group, CLBP with low HACS level, and CLBP with high HACS level groups. The cut-off value for the overall groups were 35 (sensitivity 0.76, specificity 0.76). CONCLUSION: This study found distinct patient subgroups. An overall CSI cut-off value of 35 was suggested. This study may provide new insights into identifying HACS-related patterns and contributes to establishing accurate cut-off values.


Subject(s)
Central Nervous System Sensitization , Chronic Pain , Low Back Pain , Unsupervised Machine Learning , Humans , Low Back Pain/physiopathology , Male , Female , Central Nervous System Sensitization/physiology , Middle Aged , Adult , Chronic Pain/physiopathology , Surveys and Questionnaires , Netherlands , Aged , Cluster Analysis
17.
Vascular ; : 17085381241262575, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885967

ABSTRACT

OBJECTIVE: This study used unsupervised machine learning (UML) cluster analysis to explore clinical phenotypes of endovascular aortic repair (EVAR) for abdominal aortic aneurysm (AAA) patients based on radiomics. METHOD: We retrospectively reviewed 1785 patients with infra-renal AAA who underwent elective EVAR procedures between January 2010 and December 2020. Pyradiomics was used to extract the radiomics features. Statistical analysis was applied to determine the radiomics features that related to severe adverse events (SAEs) after EVAR. The selected features were used for UML cluster analysis in training set and validation in test set. Comparison of basic characteristics and radiomics features of different clusters. The Kaplan-Meier analysis was conducted to generate the cumulative incidence of freedom from SAEs rate. RESULT: A total of 1180 patients were enrolled. During the follow-up, 353 patients experienced EVAR-related SAEs. In total, 1223 radiomics features were extracted from each patient, of which 23 radiomics features were finally preserved to identify different clinical phenotypes. 944 patients were allocated to the training set. Three clusters were identified in training set, in which patients had identical clinical characteristics and morphological features, while varied considerably of selected radiomics features. This encouraging performance was further approved in the test set. In addition, each cluster was well differentiated from other clusters and Kaplan-Meier analysis showed significant differences of freedom from SAEs rate between different clusters both in the training (p = .0216) and test sets (p = .0253). CONCLUSION: Based on radiomics, UML cluster analysis can identify clinical phenotypes in EVAR patients with distinct long-term outcomes.

18.
Radiol Cardiothorac Imaging ; 6(3): e230247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900026

ABSTRACT

Purpose To use unsupervised machine learning to identify phenotypic clusters with increased risk of arrhythmic mitral valve prolapse (MVP). Materials and Methods This retrospective study included patients with MVP without hemodynamically significant mitral regurgitation or left ventricular (LV) dysfunction undergoing late gadolinium enhancement (LGE) cardiac MRI between October 2007 and June 2020 in 15 European tertiary centers. The study end point was a composite of sustained ventricular tachycardia, (aborted) sudden cardiac death, or unexplained syncope. Unsupervised data-driven hierarchical k-mean algorithm was utilized to identify phenotypic clusters. The association between clusters and the study end point was assessed by Cox proportional hazards model. Results A total of 474 patients (mean age, 47 years ± 16 [SD]; 244 female, 230 male) with two phenotypic clusters were identified. Patients in cluster 2 (199 of 474, 42%) had more severe mitral valve degeneration (ie, bileaflet MVP and leaflet displacement), left and right heart chamber remodeling, and myocardial fibrosis as assessed with LGE cardiac MRI than those in cluster 1. Demographic and clinical features (ie, symptoms, arrhythmias at Holter monitoring) had negligible contribution in differentiating the two clusters. Compared with cluster 1, the risk of developing the study end point over a median follow-up of 39 months was significantly higher in cluster 2 patients (hazard ratio: 3.79 [95% CI: 1.19, 12.12], P = .02) after adjustment for LGE extent. Conclusion Among patients with MVP without significant mitral regurgitation or LV dysfunction, unsupervised machine learning enabled the identification of two phenotypic clusters with distinct arrhythmic outcomes based primarily on cardiac MRI features. These results encourage the use of in-depth imaging-based phenotyping for implementing arrhythmic risk prediction in MVP. Keywords: MR Imaging, Cardiac, Cardiac MRI, Mitral Valve Prolapse, Cluster Analysis, Ventricular Arrhythmia, Sudden Cardiac Death, Unsupervised Machine Learning Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Mitral Valve Prolapse , Phenotype , Unsupervised Machine Learning , Humans , Mitral Valve Prolapse/diagnostic imaging , Female , Male , Middle Aged , Retrospective Studies , Registries , Magnetic Resonance Imaging, Cine/methods , Arrhythmias, Cardiac/diagnostic imaging , Arrhythmias, Cardiac/physiopathology , Adult , Magnetic Resonance Imaging
19.
Arch Cardiovasc Dis ; 117(6-7): 392-401, 2024.
Article in English | MEDLINE | ID: mdl-38834393

ABSTRACT

BACKGROUND: Intensive cardiac care units (ICCUs) were created to manage ventricular arrhythmias after acute coronary syndromes, but have diversified to include a more heterogeneous population, the characteristics of which are not well depicted by conventional methods. AIMS: To identify ICCU patient subgroups by phenotypic unsupervised clustering integrating clinical, biological, and echocardiographic data to reveal pathophysiological differences. METHODS: During 7-22 April 2021, we recruited all consecutive patients admitted to ICCUs in 39 centers. The primary outcome was in-hospital major adverse events (MAEs; death, resuscitated cardiac arrest or cardiogenic shock). A cluster analysis was performed using a Kamila algorithm. RESULTS: Of 1499 patients admitted to the ICCU (69.6% male, mean age 63.3±14.9 years), 67 (4.5%) experienced MAEs. Four phenogroups were identified: PG1 (n=535), typically patients with non-ST-segment elevation myocardial infarction; PG2 (n=444), younger smokers with ST-segment elevation myocardial infarction; PG3 (n=273), elderly patients with heart failure with preserved ejection fraction and conduction disturbances; PG4 (n=247), patients with acute heart failure with reduced ejection fraction. Compared to PG1, multivariable analysis revealed a higher risk of MAEs in PG2 (odds ratio [OR] 3.13, 95% confidence interval [CI] 1.16-10.0) and PG3 (OR 3.16, 95% CI 1.02-10.8), with the highest risk in PG4 (OR 20.5, 95% CI 8.7-60.8) (all P<0.05). CONCLUSIONS: Cluster analysis of clinical, biological, and echocardiographic variables identified four phenogroups of patients admitted to the ICCU that were associated with distinct prognostic profiles. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT05063097.


Subject(s)
Coronary Care Units , Phenotype , Humans , Male , Female , Middle Aged , Aged , Risk Factors , Cluster Analysis , Risk Assessment , Hospital Mortality , Non-ST Elevated Myocardial Infarction/therapy , Non-ST Elevated Myocardial Infarction/physiopathology , Non-ST Elevated Myocardial Infarction/mortality , Non-ST Elevated Myocardial Infarction/diagnostic imaging , Non-ST Elevated Myocardial Infarction/diagnosis , Prognosis , Time Factors , Shock, Cardiogenic/physiopathology , Shock, Cardiogenic/therapy , Shock, Cardiogenic/mortality , Shock, Cardiogenic/diagnosis , Prospective Studies , Heart Arrest/therapy , Heart Arrest/physiopathology , Heart Arrest/diagnosis , Heart Arrest/mortality , ST Elevation Myocardial Infarction/therapy , ST Elevation Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/mortality , Aged, 80 and over , Heart Failure/physiopathology , Heart Failure/therapy , Heart Failure/diagnosis , Heart Failure/mortality
20.
J Cell Sci ; 137(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38738282

ABSTRACT

Advances in imaging, segmentation and tracking have led to the routine generation of large and complex microscopy datasets. New tools are required to process this 'phenomics' type data. Here, we present 'Cell PLasticity Analysis Tool' (cellPLATO), a Python-based analysis software designed for measurement and classification of cell behaviours based on clustering features of cell morphology and motility. Used after segmentation and tracking, the tool extracts features from each cell per timepoint, using them to segregate cells into dimensionally reduced behavioural subtypes. Resultant cell tracks describe a 'behavioural ID' at each timepoint, and similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Here, we use cellPLATO to investigate the role of IL-15 in modulating human natural killer (NK) cell migration on ICAM-1 or VCAM-1. We find eight behavioural subsets of NK cells based on their shape and migration dynamics between single timepoints, and four trajectories based on sequences of these behaviours over time. Therefore, by using cellPLATO, we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.


Subject(s)
Cell Movement , Interleukin-15 , Killer Cells, Natural , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Interleukin-15/metabolism , Software , Intercellular Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL