ABSTRACT
Contamination by polycyclic aromatic hydrocarbons (PAHs) is an urgent environmental concern, given its atmospheric dispersion and deposition in water bodies and soils. These compounds and their nitrated and oxygenated derivatives, which can exhibit high toxicities, are prioritized in environmental analysis contexts. Amid the demand for precise analytical techniques, comprehensive two-dimensional chromatography coupled with mass spectrometry (GCxGC/Q-TOFMS) has emerged as a promising tool, especially in the face of challenges like co-elution. This study introduces an innovation in the pre-concentration and detection of PAHs using an extraction fiber based on polydimethylsiloxane (PDMS), offering greater robustness and versatility. The proposed technique, termed in-tube extraction, was developed and optimized to effectively retain PAHs and their derivatives in aqueous media, followed by GCxGC/Q-TOFMS determination. Fiber characterization, using techniques such as TG, DTG, FTIR, and SEM, confirmed the hydrophobic compounds retention properties of the PDMS. The determination method was validated, pointing to a significant advancement in the detection and analysis of PAHs in the environment, and proved effective even for traces of these compounds. The results showed that the detection limits (LOD) and quantification limits (LOQ) ranged from 0.07 ng L-1 to 1.50 ng L-1 and 0.33 ng L-1 to 6.65 ng L-1, respectively; recovery ranged between 72 % and 117 %; and the precision intraday and interday ranged from 1 % to 20 %. The fibers were calibrated in the laboratory, with exposure times for analysis in the equilibrium region ranging from 3 to 10 days. The partition coefficients between PDMS and water were also evaluated, showing logarithm values ranging from 2.78 to 5.98. The fibers were applied to the analysis of real water samples, demonstrating high capacity. Additionally, given the growing demand for sustainable methods, the approach presented here incorporates green chemistry principles, providing an efficient and eco-friendly solution to the current chemical analysis scenario.
ABSTRACT
Resumen Introducción: Varias presiones antrópicas sufren los ecosistemas acuáticos del piedemonte llanero en Colombia. La respuesta a estresores ambientales aún se desconoce en organismos bioindicadores como Leptohyphidae. Objetivo: Determinar la diversidad de ninfas de Leptohyphidae del río Quenane-Quenanito, en dos periodos hidrológicos contrastantes y su relación con algunas variables fisicoquímicas. Métodos: En diciembre (2014) y febrero (2015) se recolectaron organismos con red Surber en seis estaciones a lo largo del río. Se analizó la diversidad alfa y beta y se aplicó análisis de redundancia y modelos lineales generalizados con el fin de establecer la relación entre los taxones y las variables ambientales. Resultados: Se identificaron 369 organismos pertenecientes a cuatro géneros (Amanahyphes, Traverhyphes, Tricorythopsis y Tricorythodes), dos especies y ocho morfoespecies. Se reporta por primera vez para el departamento del Meta Amanahyphes saguassu. Se registró la mayor diversidad de ninfas en la transición a la sequía y la mayor abundancia en sequía. La diversidad beta señaló que la configuración del ensamblaje cambia a nivel espacial y temporal. Conclusiones: Los organismos de Leptohyphidae prefieren hábitats de corrientes, particularmente en el periodo de sequía, donde hallan alimento (hojarasca, detritos) y refugio para establecerse exitosamente; actividades antrópicas como la urbanización afectan notablemente la diversidad. La alta diversidad registrada en este pequeño río de piedemonte llanero refleja la necesidad de incrementar este tipo de trabajos y esfuerzos de recolección de material de estudio en la región.
Abstract Introduction: Various anthropic pressures affect the aquatic ecosystems of the foothills of Colombia. The response to environmental stressors is still unknown in bioindicator organisms such as Leptohyphidae. Objective: To determine the diversity of Leptohyphidae nymphs of the Quenane-Quenanito river, in two contrasting hydrological periods and its relationship with some physicochemical variables. Methods: In December (2014) and February (2015), organisms were collected with a Surber net at six stations along the current. Alpha and beta diversity was analyzed and redundancy analysis and generalized linear model were applied to establish the relationship between taxa and environmental variables. Results: Were identified 369 organisms belonging to four genera (Amanahyphes, Traverhyphes, Tricorythopsis, and Tricorythodes), two species, and eight morphospecies. Amanahyphes saguassu is reported for the first time for the Meta department. High diversity of Leptohyphidae nymphs was recorded in the transition to drought season and greater abundance in drought. Beta diversity indicated that the configuration of the assemblage changes spatially and temporally. Conclusions: Leptohyphidae organisms prefer fast habitats, particularly in the dry period where they find food (leaf litter, detritus) and shelter to establish themselves successfully; anthropic activities such as urbanization notably affect diversity. The high diversity recorded in this small river in the foothills of the plains reflects the need to increase this type of works and collection efforts of study material in the region.
Subject(s)
Animals , Ephemeroptera/classification , Water Quality , Colombia , Insecta/classificationABSTRACT
BACKGROUND: Climate change has far-reaching effects on food security and agriculture, affecting crop yields and food distribution. Agriculture relies heavily on water for irrigation and production, making it vulnerable to water scarcity. Additionally, climate change can affect crop pest insects, leading to increased global crop losses, particularly in cereals, an important component of the human diet. Aphids are major crop pests and have a symbiotic relationship with bacterial endosymbionts that can contribute to their success as pests under a climate change scenario. To test the effect of drought on aphids, we examined varying levels of water deficit and endosymbiont composition on the grain aphid (Sitobion avenae) performance on wheat under controlled laboratory conditions. We measured the intrinsic rate of population increase (rm), the body weight of adult aphids, and the pre-reproductive period for different genotypes of the grain aphid (including Chilean superclones) under different irrigation regimes. We also analyzed the relative abundance of their endosymbionts under the different water treatments. RESULTS: Our findings revealed that water deficit affects each aphid genotype differently, impacting various traits. For instance, the body weight of adult aphids was notably affected by different water treatments, with aphids grown under intermediate water deficit (IW) being significantly bigger. The relative abundance of endosymbionts also varied among genotypes and water treatments-specifically Regiella insecticola had a noticeably higher abundance under IW (P < 0.05). CONCLUSION: This study provides valuable insights into the impact of water deficit on aphid performance and the role of endosymbionts in mitigating the effects of water deficit. © 2024 Society of Chemical Industry.
ABSTRACT
Microbiologically contaminated water is a significant source of infections in humans and animals, with Pseudomonas aeruginosa (PSA) being particularly concerning due to its ability to thrive in water environments and its resistance to many disinfectants. Therefore, this study investigates the adhesion potential of PSA strains on various materials used in mineral water extraction wells, focusing on hydrophobic and hydrophilic properties. Mineral water samples were collected from three wells (P-01, P-07, and P-08) within the Guarani Aquifer System and Fractured Aquifer System (SAF) in Brazil. The physicochemical properties of the water, including concentrations of Sr (strontium), Fe (iron), Si (silicon), SO42- (sulfate ions), Cl- (chloride ions), and ORP (oxidation-reduction potential), were analyzed. Results indicated higher PSA adhesion on hydrophobic materials, particularly high-density polyethylene (HDPE) and geomechanically plasticized polyvinyl chloride (PVC). Multiple correlation analyses revealed positive correlations between PSA adhesion on hydrophilic materials and Sr, Fe, Si, SO42-, and Cl- concentrations. Conversely, ORP negatively correlated with bacterial adhesion on PVC surfaces, suggesting higher ORP values reduced PSA attachment. These findings highlight the importance of water composition and material properties in influencing bacterial adhesion and potential biofilm formation in mineral water extraction systems.
ABSTRACT
The Sontecomapan lagoon (Mexico) is a Ramsar site within the Los Tuxtlas Biosphere Reserve, facing the Gulf of Mexico. Although the site has a protected area status, it is vulnerable to microplastic contamination, whose long-term effects are uncertain. This study gives the first approach to the degree of contamination by microplastics in surface waters, zooplankton, and sediments in the lagoon. The samples in these three environmental compartments were collected in June 2018 and analyzed in the laboratory to extract and quantify the microplastics. The microplastics sampled were classified into fibers, fragments, and foams and identified as polyester, acrylic, and rayon, among others. In the surface waters, the mean concentration of microplastics was 7.5 ± 5.3 items/L, which is higher than the values registered in other protected coastal systems, perhaps because of differences in the methods used. Zooplankton, represented by copepods, luciferids, and chaetognaths, showed concentrations of 0.002 ± 0.005, 0.011 ± 0.011, and 0.019 ± 0.016 items/individual, respectively. These values were low compared to systems with high anthropic influence, and the differences between the three kinds of organisms were attributed to their feeding habits. In the sediments, the mean concentration was 8.5 ± 12.5 items/kg, lower than the values registered in sites of high human impact; the maximum value here found (43 items/kg) was recorded in the internal part of a lagoon arm of almost stagnant water. In general, the degree of contamination by microplastics in the lagoon was low; however, their presence indicates a potential risk to the biota.
Subject(s)
Environmental Monitoring , Geologic Sediments , Microplastics , Water Pollutants, Chemical , Zooplankton , Water Pollutants, Chemical/analysis , Microplastics/analysis , Gulf of Mexico , Animals , Geologic Sediments/chemistry , Seawater/chemistryABSTRACT
Clomazone is known to contaminate aquatic environments and have a negative impact on macrophytes. However, recent reports suggests that Pontederia crassipes Mart. can withstand clomazone exposure while maintaining growth rates. We hypothesized that this maintenance of growth is supported by photosynthetic plasticity of old leaves (developed before herbicide application), while new leaves (developed after application) exhibit phytotoxic symptoms. To investigate, two experiments were conducted with doses ranging from 0.1 mg L-1 to 0.5 mg L-1 plus untreated controls. Various parameters were measured in old and new leaves over 7, 12, and 15 d post-application, including visual symptoms, chlorophyll index, photosynthetic pigments, chlorophyll fluorescence, gas exchange, glycolate oxidase activity, carbohydrate content, leaf epidermis anatomy, and growth parameters. Clomazone exposure induced chlorosis, particularly in new leaves across all doses. These visual symptoms were accompanied by stomatal closure, restricting gas exchange and CO2 fixation, leading to reduced photosynthetic rates and carbohydrate synthesis. However, clomazone did not affect old leaves, which maintained photosynthetic activity, sustaining essential metabolic processes of the plant, including reproductive functions. By ensuring high reproductive rates and metabolic continuity, old leaves supported the species' persistence despite clomazone presence.
ABSTRACT
The authors present data on both inherent and apparent optical properties, CTD profiles for the southwestern area of the Bay of Cartagena (Colombia) along a transect of seven stations. The data were collected during the dry and wet seasons of 2022. Optical properties include the depth of the Secchi disk as well as the absorption coefficients of particulate organic matter (ap) and chromophoric dissolved organic matter (aCDOM), together with analyses of total suspended solids (TSS) and turbidity in terms of nephelometric units (NTU). The dataset encompasses several types of data files on the light field in water, which is suitable for the development of water quality indices, the study of optically complex systems occupied by strategic marine ecosystems, the input of the calibration and validation processes of satellite algorithms as well as coastal zone management and administration.
ABSTRACT
In this work, zinc oxide with different morphologies and textural properties were prepared and sensitized with metalloporphyrins (MPs) aiming to improve its solar energy harvesting capability for H2 production by water splitting under sunlight (a 300 W Xe/Hg lamp). An anionic iron(III)porphyrin and a cationic manganese(III)porphyrin were immobilized on different ZnO solids predominantly by electrostatic interactions. In general, the prepared MP-free ZnO solid yielded modest catalytic results which had apparently no direct correlation with their textural properties or morphology. On the other hand, when these ZnO solids had iron or manganese porphyrin sensitizing them, their catalytic performances changed and a superior yield towards H2 production was observed in comparison to the pure ZnO solids, making evident the synergy achieved between these two components (ZnO and metalloporphyrins) for the prepared solids. It was also observed that the metalloporphyrins and the respective free-base ligand suffered redox reactions when used as homogenous catalyst in this reaction, which could influence their performances as catalysts. The same was not observed in the solids containing immobilized MP, suggesting some protective effect of the ZnO solids on the MP complexes upon immobilization probably due to interaction of the complexes with the ZnO matrix.
ABSTRACT
The widespread and extensive use of pesticides in European crop production to reduce losses from weeds, diseases, and insects may have serious consequences on the ecosystem and human health. This study aimed to identify 20 active substances of high health risk, based on their detection frequency within and across the environmental matrices (soil, crop, water, and sediment) and to identify their associated hazardous effects. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina and included conventional and organic farming systems. In 31% of cases, the detected substances were found at a higher concentration in the soil than in the corresponding crops, 93% of the compounds were fungicides, and the remainder were insecticides. 43% of the substances, 57% of which were insecticides, were detected only in soil. There was a clear relationship between soils and crops in terms of contamination, but not between water and sediment. Portuguese soil (wine grapes) had the highest number of substances (12) with average concentrations (AC) varying between 1 and 162 µg/kg, followed by French (11 substances in wine grapes) (1≤AC≤64 µg/kg) and Spanish soils (9 substances in vegetables) (3≤AC≤59 µg/kg). The crops corresponding to these soils contained a relatively high number of detected substances and several in high average concentrations (AC). The risk quotient was consistently higher for conventional farms than for organic farms. For the soils from conventional farms, 5 active substances (chlorpyrifos, glyphosate, boscalid, difenoconazole, lambda-cyhalothrin, and one metabolite: AMPA) were considered high risk. For water samples, 2 substances (dieldrin and terbuthylazine) found were high risk, and for sediment, there were 3 substances (metalaxyl-M, spiroxamine, and lambda-cyhalothrin). There were 6 substances detected in crops that are suspected to cause human health effects. Uncontaminated soil is a prerequisite for the adoption of sustainable alternatives to pesticides. Efforts are needed to elucidate the unknown effects of mixtures, including biocides and banned compounds in addition to the substances used in agriculture.
ABSTRACT
The effluent generated by textile industries is among the most polluting to the environment. Dyes such as methylene blue (MB) and indigo blue (IB) are used in cotton dyeing. This work proposes to evaluate the potential of in natura (BIN) and nanomodified (BNP) bamboo (Phyllostachys aurea) biomass as biosorbents for the removal of MB and IB dyes in an aqueous medium under high salinity conditions. These materials were characterized by Fourier transform infrared (FTIR) and X-ray (XRD) spectroscopies and scanning electron microscopy (SEM) to investigate their morphology and interaction with the dyes and the nanoparticles. The FTIR spectra revealed the existence of hydroxyl and carbonyl groups, ethers, phenols, and aromatic compounds, indicating the presence of a lignocellulosic structure. XRD and SEM analyses confirmed the effectiveness of the nanocomposite synthesis process. The dyes were quantified by ultraviolet-visible spectroscopy (UV/Vis). The material's pH at the point of zero charge (pHPZC) was 5.52 (BIN) and 4.84 (BNP), and the best IB and MB sorption pH were 3.0 and 9.0 for BNP, respectively, employing 30 min of contact time. The material sorption capacity (Qexp) was assessed using batch procedures, in which 100-1000 mg/L dye concentrations were tested with a 0.5 g/L adsorbent dose. The dye's Qexp for BIN and BNP was 25.41 ± 0.58 and 23.42 ± 0.07 mg/g (MB) and 84.26 ± 1.1 and 130.81 ± 0.20 mg/g (IB), respectively. The kinetic model that best fit BNP experimental data was the pseudo-2nd-order with r2 = 0.99868 (MB) and r2 = 0.99873 (IB), and Freundlich, D-R, and Temkin isotherms best fit the dye sorption data. The bamboo nanomodification facilitates the biosorbent removal from the medium after sorption, enabling large-scale studies and industrial applications-the investigated materials provided promising adsorption features for removing contaminant dyes in saline water.
ABSTRACT
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
ABSTRACT
Water pollution originating from land use and land cover (LULC) can disrupt river ecosystems, posing a threat to public health, safety, and socioeconomic sustainability. Although the interactions between terrestrial and aquatic systems have been investigated for decades, the scale at which land use practices, whether in the entire basin or separately in parts, significantly impact water quality still needs to be determined. In this research, we used multitemporal data (field measurements, Sentinel 2 images, and elevation data) to investigate how the LULC composition in the catchment area (CA) of each water pollution measurement station located in the river course of the Los Perros Basin affects water pollution indicators (WPIs). We examined whether the CAs form a sequential runoff aggregation system for certain pollutants from the highest to the lowest part of the basin. Our research applied statistical (correlation, time series analysis, and canonical correspondence analysis) and geo-visual analyses to identify relationships at the CA level between satellite-based LULC composition and WPI concentrations. We observed that pollutants such as nitrogen, phosphorus, coliforms, and water temperature form a sequential runoff aggregation system from the highest to the lowest part of the basin. We concluded that the observed decrease in natural cover and increase in built-up and agricultural cover in the upper CAs of the study basin between the study period (2016 to 2020) are related to elevated WPI values for suspended solids and coliforms, which exceeded the allowed limits on all CAs and measured dates.
Subject(s)
Environmental Monitoring , Phosphorus , Rivers , Water Pollutants, Chemical , Mexico , Rivers/chemistry , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Agriculture , Nitrogen/analysis , Water Pollution/statistics & numerical dataABSTRACT
Globally, challenges with water and food are two of the most pressing problems people face. Yet hydrologically water-rich environments and rural environments are often overlooked in these discussions due to abundance of natural water resources. Here we test the relationship between water and food insecurity among 270 Tsimane' households in the Bolivian Amazon. Water challenges were evaluated with the Household Water Insecurity Experiences Scale (HWISE), water quality perception, objective water quality analyses, and water access via the JMP drinking water ladder. Food insecurity was measured with the Household Food Insecurity Access Scale (HFIAS), and quantitative measures of food frequency recall were used to further test the water and food insecurity relationship. Using multilevel mixed-effects linear regression, each point increase in HWISE score was associated with 0.47 point (95 % CI: 0.30, 0.62, p < 0.001) higher food insecurity, and households with access to improved water sources had between 1.25 and 1.36 points (95 % CI: -2.61, -0.01, p < 0.05) lower food insecurity compared to households reliant on surface water. These relationships held true independent of quantitative measures of both fish and meat consumption. Using mixed-effects logistic regression analyses, each point increase in HWISE score was associated with 43 % (95 % CI: 1.25-1.66, p < 0.001) increased odds of experiencing severe food insecurity. Households changing what was eaten due to experienced water problems was associated with 2.33 points (95 % CI: 0.41, 4.25, p < 0.05) higher food insecurity. This relationship held true independent of perceived water quality, indicating other structural water problems may be important here in the household water and food insecurity relationship. These results demonstrate that even in water-rich environments, like the Amazon, water and food insecurity are interconnected. Further, despite the challenging conditions, equitable structural interventions, like the development of improved water infrastructure, are critical for the provision of clean drinking water and may simultaneously help alleviate food insecurity.
ABSTRACT
Environmental monitoring of protozoa, with the potential to trigger diseases, is essential for decision-making by managing authorities and for the control of water surveillance. This study aimed to detect and quantify Cryptosporidium oocysts and Giardia cysts in surface water for drinking water supply and treated sewage for reuse in the city of São Paulo. Samples collected bimonthly for one year were concentrated using the USEPA 1623.1 and 1693 methods for surface water and treated effluents, respectively. Immunofluorescence and nucleic acid amplification techniques were used to detect and quantify (oo)cysts. The cloning technique followed by sequencing and phylogenetic analyses were performed to characterize species and genotypes. The immunofluorescence detected Cryptosporidium spp. and Giardia spp. in 69.2% (9/13) and 100% (13/13) of the surface water samples (0.1-41 oocysts/L and 7.2-354 cysts/L, respectively). In the reuse samples, 85.7% (12/14) were positive for both protozoa and the concentrations varied from 0.4 to 100.6 oocysts/L and 1.2 and 93.5 cysts/L. qPCR assays showed that 100% of surface water (0.1-14.6 oocysts/L and 0.3-639.8 cysts/L) and reused samples (0.1-26.6 oocysts/L and 0.3-92.5 cysts/L) were positive for both protozoa. Species C. parvum, C. hominis, and C. muris were identified using the 18S rRNA gene, demonstrating anthroponotic and zoonotic species in the samples. Multilocus SSU rRNAanalyses of the SSU rRNA, tpi, and gdh genes from Giardia intestinalis identified the AII, BII, and BIV assemblages, revealing that contamination in the different matrices comes from human isolates. The study showed the circulation of these protozoa in the São Paulo city area and the impairment of surface water supply in metropolitan regions impacted by the discharge of untreated or inadequately treated sewage regarding the removal of protozoa, emphasizing the need to implement policies for water safety, to prevent the spread of these protozoa in the population.
ABSTRACT
Wastewater surveillance has been extensively applied to provide information about SARS-CoV-2 circulation in the community. However, its applicability is limited in regions lacking adequate sewerage infrastructure, without wastewater treatment plants (WWTP) or with insufficient coverage. During the COVID-19 pandemic, from July 2020 to September 2021, comprehensive epidemiological data encompassing positive, recovered, and deceased cases were collected alongside precipitation records. Additionally, wastewater samples from 13 main sewersheds and river water from two points (up- and downstream the main WWTP), in the city of Salta, were gathered. A total of 452 water samples were analyzed for quantitative detection of SARS-CoV-2 using reverse transcription real-time PCR. Across the 62-week study period, two distinct waves of COVID-19 were identified. The dynamics of deceased cases showed peaks 10 and 28 days after the peaks of positive cases in the first and second waves, respectively. Downstream river water exhibited higher fecal contamination than the upstream samples, evincing the impact of the WWTP discharges. Viral concentration in river waters mirrored those from wastewater, reflecting the progression of cases. Despite the lower reported number of cases during the first wave in comparison to the second (5420 vs. 8516 cases at the respective peaks), higher viral concentrations were detected in water samples (1.97 × 107 vs. 2.36 × 106 gc/L, respectively), suggesting underreporting during the first wave, and highlighting the positive effect of vaccination during the second. To the best of our knowledge, this is the first study that simultaneously and systematically analyzed surface water and wastewater over a prolonged period, the effect of precipitations were considered for the variations in the concentrations, and the findings compared with epidemiological information. Environmental surveillance was demonstrated to be a great tool to obtain valuable information about the circulation patterns of SARS-CoV-2, especially under resource constraints to massively test the population, thus, underreporting cases. Furthermore, the methodology employed herein can be easily expanded to the community-level surveillance of other pathogens excreted in urine and feces, encompassing viruses, bacteria, and protozoa.
ABSTRACT
Plantago lanceolata L. (plantain) increases herbage dry matter (DM) production and quality during warm and dry conditions due to its deep roots and drought tolerance and reduces nitrogen losses in grazing systems compared to traditional pastures. However, plantain density usually declines after the third growing season, mainly due to defoliation management. The effects of defoliation frequency and intensity on water-soluble carbohydrate (WSC) reserves and below-ground plant responses need further research to optimize grazing strategies for improved productivity and sustainability of grazing systems. Our study investigated the effects of defoliation frequencies (15, 25, and 35 cm of extended leaf length, ELL) and intensities (5 and 8 cm of residual heights) on morphological traits and WSC concentrations in plantain biomass under controlled environmental conditions. Defoliation frequency significantly influenced morphological and chemical characteristics and biomass distribution more than residual height. Less frequent defoliations promoted above-ground herbage DM production, reproductive stems, and root biomass. Root architecture showed adaptations in response to defoliation frequency, optimizing resource acquisition efficiency. Frequent defoliation reduced high molecular weight WSC concentrations in leaves, affecting regrowth capacity and DM mass. A defoliation frequency of 25 cm ELL (~15 days) balances herbage production and root development, promoting long-term pasture sustainability.
ABSTRACT
Capsicum annuum L. has worldwide distribution, but drought has limited its production. There is a lack of research to better understand how this species copes with drought stress, whether it is reversible, and the effects of mitigating agents such as salicylic acid (SA). Therefore, this study aimed to understand the mechanisms of action of SA and rehydration on the physiology of pepper plants grown under drought conditions. The factorial scheme adopted was 3 × 4, with three water regimes (irrigation, drought, and rehydration) and four SA concentrations, namely: 0 (control), 0.5, 1, and 1.5 mM. This study evaluated leaf water percentage, water potential of shoots, chlorophylls (a and b), carotenoids, stomatal conductance, chlorophyll a fluorescence, and hydrogen peroxide (H2O2) concentration at different times of day, water conditions (irrigation, drought, and rehydration), and SA applications (without the addition of a regulator (0) and with the addition of SA at concentrations equal to 0.5, 1, and 1.5 mM). In general, exogenous SA application increased stomatal conductance (gs) responses and modified the fluorescence parameters (ΦPSII, qP, ETR, NPQ, D, and E) of sweet pepper plants subjected to drought followed by rehydration. It was found that the use of SA, especially at concentrations of 1 mM in combination with rehydration, modulates gs, which is reflected in a higher electron transport rate. This, along with the production of photosynthetic pigments, suggests that H2O2 did not cause membrane damage, thereby mitigating the water deficit in pepper plants. Plants under drought conditions and rehydration with foliar SA application at concentrations of 1 mM demonstrated protection against damage resulting from water stress. Focusing on sustainable productivity, foliar SA application of 1 mM could be recommended as a technique to overcome the adverse effects of water stress on pepper plants cultivated in arid and semi-arid regions.
ABSTRACT
Quillay (Quillaja saponaria Molina) and peumo (Cryptocarya alba [Molina] Looser) are two tree species endemic to Chile that grow in Mediterranean climate zones, characterized by a summer season with high temperatures, high solar radiation, and low soil water availability. A study was conducted with 2-year-old Q. saponaria and C. alba plants and two substrate water conditions: well-watered and controlled water restriction. At the end of the study, anatomical leaf modifications were analyzed. The tissues were anatomically described in transverse sections of juvenile and adult leaves, measuring leaf thickness, cuticle thickness, and cell density of the mesophyll parenchymal tissues. In the young leaves of Q. saponaria plants undergoing water restriction treatment, an increase in cuticle and leaf thickness and a decrease in the density of the palisade and spongy parenchyma were observed. In contrast, a significant reduction in leaf thickness was observed in adult leaves of both species with water restriction treatment. The anatomical changes in the leaves of Q. saponaria and C. alba suggest an adaptation to adverse environmental conditions, such as water restriction.
ABSTRACT
Lake Burlan, a lentic ecosystem artificially created by untreated runoff from adjacent rice fields, is located in the Amazon region within the dry forests of northern Peru. This body of water plays a fundamental role in agriculture and recreational activities in the area, which are fundamental to the local economy. This research aimed to evaluate the water quality of Lake Burlan using the Water Quality Index of Peru (WQI-PE). In addition, both spatial and depth variations of limnological parameters and trace elements were determined. The WQI-PE was calculated at seven sampling stations at two depths (surface level and one meter), using 18 limnological parameters and nine trace elements. The WQI-PE assessment indicated that the lake water quality ranged from poor to fair for both depths. Statistical analysis showed that nine limnological parameters and five trace elements showed spatial differences across seven sampling stations, while three limnological parameters and two trace elements showed depth-dependent variations. Concentrations of arsenic, cadmium, mercury, and lead were in exceedance of the national and international standards on environmental water quality. Therefore, the water quality of Lake Burlan is affected mainly by the impact of the surrounding rice fields and recreational activities. This research establishes a starting point for future monitoring to assist in the implementation of prevention and mitigation.