ABSTRACT
Abstract Solid dispersions (SDs) of ursolic acid (UA) were developed using polyvinylpyrrolidone K30 (PVP K30) in combination with non-ionic surfactants, such as D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) or poloxamer 407 (P407) with the aim of enhancing solubility and in vitro release of the UA. SDs were investigated using a 24 full factorial design, subsequently the selected formulations were characterized for water solubility, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), particle diameter, scanning electron microscopy, drug content, physical-chemical stability and in vitro release profile. SDs showed higher UA water-solubility than physical mixtures (PMs), which was attributed by transition of the drug from crystalline to amorphous or molecular state in the SDs, as indicated by XRD and DSC analyses. SD1 (with P407) and SD2 (with TPGS) were chosen for further investigation because they had higher drug load. SD1 proved to be more stable than SD2, revealing that P407 contributed to ensure the stability of the UA. Furthermore, SD1 and SD2 increased UA release by diffusion and swelling-controlled transport, following the Weibull model. Thus, solid dispersions obtained with PVP k-30 and P407 proved to be advantageous to enhance aqueous solubility and stability of UA.
Subject(s)
Polyethylene Glycols/administration & dosage , Solubility , Poloxamer/adverse effects , Diffusion , X-Rays/adverse effects , In Vitro Techniques , Calorimetry, Differential Scanning/methods , Pharmaceutical Preparations/analysis , Microscopy, Electron, Scanning/methodsABSTRACT
Hydroxycinnamic acids (HCAs) such as caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA) and rosmarinic acid (RA) are natural phenolic acids with widespread distribution in vegetal foods and well-documented pharmacological activities. However, the low bioavailability of HCAs impairs their administration by the oral route. The present review addresses new findings and important factors/obstacles for their oral administration, which were unexplored in the reviews published a decade ago concerning the bioavailability of phenolic acids. Based on this, the article aims to perform an updated review of the water solubility and gastrointestinal stability of HCAs, as well as describe their oral absorption, distribution, metabolism and excretion (ADME) processes by in vitro, ex vivo, in situ and in vivo methods.
ABSTRACT
Starch is an excellent alternative to produce packaging materials, however, due to its high hydrophilicity, it is necessary to mix it with other polymers. Chitosan (CTS) is a polymer extracted from shrimp shells and crabs, which can be used to make biodegradable materials. The principal component of biodegradable was corn starch and chitosan, the copolymer pluronic F127 was incorporated in several concentrations and its effect on the water vapor barrier, morphological, thermal, and mechanical properties of the films was evaluated, because its incorporation in the formulation of biodegradable materials could increase its hydrophobicity. The surface of starch-chitosan composite films obtained was more homogeneous and smoother with the increase in the content of pluronic F127. The %S and WVP of the starch-chitosan films decreased from 42 to 3%, and 21 × 10-11 to 3 × 10-14 g. m-1s-1 Pa-1, respectively, with the incorporation of pluronic from 3%, which makes these materials a good alternative for product packaging.
Subject(s)
Biodegradable Plastics/chemistry , Chitosan/chemistry , Food Packaging , Poloxamer/chemistry , Starch/chemistry , Hydrophobic and Hydrophilic Interactions , Permeability , Solubility , Steam , Tensile Strength , Water/chemistryABSTRACT
SUMMARY The purpose of this study was to evaluate physicochemical properties and dissolution studies of furosemide (FUR), hydrochlorothiazide (HCTZ) and nifedipine (NIF), low water solubility drugs, in raw materials and pharmaceutical formulations. Surface and physicochemical characterization techniques -scanning electronic microscopy (SEM), thermogravimetry (TG), X-ray diffraction (XRD) and infrared (IR) spectrometry- as well as physical and physicochemical tests on tablets and capsules were applied as supporting information on drug quality control. Simple, rapid, and efficient UV-Vis methods were developed and validated for the determination of FUR, HCTZ and NIF samples. SEM exhibited considerable differences in the crystal morphological structures. Among the drugs studied, except for furosemide, more than one polymorph was present in the samples. Drug release profiles were satisfactory for all products. FUR and HCTZ tablets exhibited similar dissolution profiles, with very rapid release to the pharmaceutical specialties (reference, similar and generic). For HCTZ tablets, the similar drug (f2= 48.74) is not equivalent to the reference drug. NIF capsules (reference and compounded) showed a release >80% of stated on product labels, in 10 minutes. The results obtained in this study suggest that the quality parameters and drug dissolution profiles may have been influenced by the morphology and size of the crystals, excipients, and technological processes.
RESUMEN El propósito de este estudio fue evaluar las propiedades fisicoquímicas y los estudios de disolución de furosemida (FUR), hidroclorotiazida (HCTZ) y nifedipina (NIF), medicamentos de baja solubilidad en agua, en materias primas y formulaciones farmacéuticas. Técnicas de caracterización fisicoquímica y de superficie: microscopía electrónica de barrido (SEM), termogravimetría (TG), difracción de rayos X (XRD) y espectrometría infrarroja (IR), así como pruebas físicas y fisicoquímicas en tabletas y cápsulas que se aplicaron como información de apoyo sobre el control de calidad. Se desarrollaron y validaron métodos simples, rápidos y eficientes de UV-Vis para la determinación de muestras de FUR, HCTZ y NIF. SEM exhibió diferencias considerables en las estructuras morfológicas de cristal. Entre las drogas estudiadas, a excepción de la furosemida, más de un polimorfo estaba presente en las muestras. Los perfiles de liberación de fármacos fueron satisfactorios para todos los productos. Las tabletas FUR y HCTZ exhibieron perfiles de disolución similares, con una liberación muy rápida a las especialidades farmacéuticas (referencia, similares y genéricas). Para las tabletas de HCTZ, el medicamento similar (f2= 48,74) no es equivalente al medicamento de referencia. Las cápsulas NIF (de referencia y compuestas) mostraron una liberación >80% de la indicada en las etiquetas del producto, en 10 minutos. Los resultados obtenidos en este estudio sugieren que los parámetros de calidad y los perfiles de disolución del fármaco pueden haber sido influenciados por la morfología y el tamaño de los cristales, excipientes y procesos tecnológicos.
ABSTRACT
The assessment of the environmental fate and (eco)toxicological effects of pesticide compounds is of crucial importance. The present review is focused on Quantitative Structure-Property Relationships (QSPR) applications on three environmentally relevant physicochemical properties of pesticides, which can be used for assessing their environmental partition and transport, as well as exposure potential namely water solubility, octanol-water partition coefficient and vapour pressure. This article revises various interesting QSPR applications with special emphasis on studies developed during the 2009-2019 period.
Subject(s)
Environmental Pollutants/chemistry , Octanols/chemistry , Pesticides/chemistry , Quantitative Structure-Activity Relationship , Water/chemistry , Solubility , Vapor PressureABSTRACT
Abstract Sweet orange juice is an important part of diet since it is nutritious beverage offering good taste and play significant part in a healthy diet. High hygroscopicity, thermo-plasticity and presence of low molecular weight components in sweet orange juice offer low glass transition temperature (Tg), likely to form soft particle with sticky surface leading to sticky powder during drying. Maltodextrins are amorphous drying aids that tend to inhibit sugar crystallization and form a high Tg product after drying. In this study, the effect of the different spray drying parameters on the quality of powder derived from control and concentrated juice at three inlet air temperatures 120, 130 and 140 °C and at three levels of juice total soluble solids (TSS): maltodextrin levels at 1:0.5; 1:1 and 1:1.5 were studied. The impact of inlet air temperature and maltodextrin concentration has significantly affected various properties of sweet orange powder. For control juice, process yields increased with increase in inlet air temperature and maltodextrin concentration. However, for reverse osmosis (RO) concentrate, process yield increased with increase in maltodextrin concentration and decreased with increase in inlet air temperature. For control juice, process yields obtained were in the range of 12.59-41.16% and in case of concentrated juice, the process yield obtained was in the range of 21.35-56.95% at different combinations of inlet air temperature and maltodextrin concentrations. Spray-dried powder was considered as "possible" and "fair" in terms of flowability and cohesiveness. Vitamin C retention was high at lower inlet air temperature with lower concentration of maltodextrin.
Subject(s)
Polysaccharides/pharmacology , Temperature , Food Production , Citrus sinensis , Fruit and Vegetable Juices/analysisABSTRACT
ABSTRACT Amaranth flour is of high nutritional value, which makes it a potential food. Grinding of the grains is a necessary operation to obtain products with physical properties that provide the food products with adequate characteristics. To analyze the effect of grinding velocity and time on the particle diameters and physical properties of Amaranth flour by ball mill, a Doehlert design with triplicate at the central point was used. The tests were carried out with the mass ratio (balls/samples) (R1:5). Granulometry curve of each design system was fitted to the Rosin-Ramler-Bennet and Holmes-Hukki equations. A found a very significant effect of the velocity on the particle diameters (D50, D63 and D80). The flour obtained were modeled satisfactorily (r2>0.99) by using the Rosin-Ramler-Bennet equation, where the homogeneity index of (n1) was obtained, which was directly influenced by the milling energy. By using the Holmes-Hukki model, were able to model the characteristic diameters with the grinding energy; a critical region was observed between 100μm and 200μm, where lost efficiency in the size reduction. The excess energy, released in the critical region, caused the decrease in starch crystallinity and structural changes in the protein, which affect the functional properties of the flour. The planetary mill is emerging as an effective mean of modifying the functional properties in the development of new food products.
RESUMEN La harina de amaranto es de alto valor nutricional, convirtiéndola en un alimento potencial. La molienda de los granos es una operación necesaria, para brindarle a los productos alimenticios unas adecuadas propiedades físicas. Para analizar el efecto de la velocidad y el tiempo de molienda sobre el diámetro de particular y las propiedades físicas de la harina obtenida por molienda de bolas, se usó un diseño experimental Doehlert, con réplica en el punto central. En las pruebas de molinería se tuvo en cuenta la relación masa de bolas/masa de muestra (R1:5). Las curvas de granulometría de cada punto del diseño experimental fueron modeladas por las ecuaciones de Rosin-Ramler-Bennet y Holmes-Hukki. Se encontró un efecto muy significativo de la velocidad de molienda sobre los diámetros característicos (D50, D63 y D80). El modelo de Rosin-Ramler-Bennet ajustó satisfactoriamente (r2>0.99), además, se obtuvo el índice de homogeneidad (n1), el cual, fue afectado directamente por la energía de molienda. El uso del modelo de Holmes-Hukki permitió relacionar el diámetro de partícula con la energía de molienda y se logró observar una región crítica entre 100μm y 200μm, donde hay una reducción en la eficiencia de la reducción de tamaño de partícula. El exceso de energía liberada en la región crítica causó el descenso en la cristalinidad del almidón y provocó cambios en la estructura de las proteínas, lo cual, modificó las propiedades físicas de la harina. El Molino planetario es una técnica emergente y efectiva para modificar las propiedades funcionales en el desarrollo de nuevo productos alimenticios.
ABSTRACT
This research work evaluated the influence of the type of incorporation and variation in the concentration of blackberry pulp (BL) and microencapsulated blackberry pulp (ML) powders by freeze-drying on the chemical and physical properties of arrowroot starch films. Blackberry powders were added to the film-forming suspension in different concentrations, 0%, 20%, 30% and 40% (mass/mass of dry starch) and through two different techniques, directly (D) and by sprinkling (S). Scanning electron microscopy (SEM) images revealed that the incorporation of blackberry powder has rendered the surface of the film rough and irregular. Films incorporated with BL and ML powders showed an increase in thickness and water solubility and a decrease in tensile strength in comparison with the film containing 0% powder. The incorporation of blackberry BL and ML powders into films transferred colour, anthocyanins and antioxidant capacity to the resulting films. Films added with blackberry powder by sprinkling were more soluble in water and presented higher antioxidant capacity than films incorporated directly, suggesting great potential as a vehicle for releasing bioactive compounds into food.
ABSTRACT
OBJECTIVE: This study aimed to evaluate the impact of extended photoactivation time on ultimate tensile strength (UTS), water sorption (WS) and solubility (WSB) of resin-based materials used as fissure-sealants. METHODS: A fissure-sealant (Fluroshield) and a flowable composite (Permaflo) polymerized for 20 and 60 seconds were tested. For UTS, 20 hourglass shaped samples were prepared representing two materials and two photoactivation time (n=5). After 24-h dry-storage, samples were tested in tension using a universal testing machine at a cross-head speed of 0.5 mm/min (UTS was calculated in MPa). For WS and WSB, 20 disks with 5 mm diameter and 1 mm height (n=5) were prepared and volumes were calculated (mm(3)). They were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). Samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2-m3/V and m1-m3/V, respectively. Data were subjected to two-way ANOVA and Tukey's HSD test (P<.05). RESULTS: There was no significant difference between materials or photoactivation times for the UTS and WS. Permaflo presented lower but negative WSB compared to Fluroshield. CONCLUSIONS: Extended photoactivation time did not improve the physical properties tested. Fluroshield presented physical properties that were similar to or better than Permaflo.
ABSTRACT
OBJECTIVE: The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) and their exposure modes (high-intensity and soft-start) by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. Material and methods: A total of 720 disc-shaped samples (1 mm height and 5 mm diameter) were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem). Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes), light-emitting diode (standard and exponential modes) and plasma arc (normal and ramp-curing modes) curing units through ceramic discs. Then the samples (n=8/per group) were stored dry in the dark at 37°C for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV). For sorption and solubility tests; the samples were stored in a desiccator at 37°C and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days) and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5 percent significance level. RESULTS: Resin cement and light-curing unit had significant effects (p<0.05) on microhardness, diametral tensile strength, water solubility and sorption. However, no significant differences (p>0.05) were obtained with different modes of LCUs. Conclusion: The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties.