Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
Sensors (Basel) ; 24(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39275471

ABSTRACT

Acoustic waves can be used for wireless telemetry as an alternative to situations where electrical or optical penetrators are unsuitable. However, the response of the ultrasonic transducer can be greatly affected by temperature variations, mechanical deformations, misalignment between transducers, and multiple layers in the propagation zone. Therefore, this work sought to quantify such influences on communication between ultrasonic transducers. The experimental measurements were performed at the frequency where power transfer is maximized. Moreover, there were four experimental models, each with its own performed setup. The ultrasonic transducers are attached to both sides of a 6 mm thick stainless-steel plate for configuring just one barrier. Multiple layers of transducers are attached to the outer side of two plates immersed in an acoustic fluid with a 100 mm thick barrier. In both cases, the S21 parameter was used to quantify the influence of the physical barrier because it correlates with the power flow between ports that return after a given excitation. The results showed that when a maximum deformation of 1250 µm/m was applied, the amplitude of the S21 parameter varied around +0.7 dB. Furthermore, increasing the temperature from 30 to 100 °C slightly affected the S21 (+0.8 dB), but the signal decayed quickly for temperatures beyond 100 °C. Additionally, the ultrasonic communication with a multiple layer was found to occur under misalignment with an intersection area of up to 40%. None of the factors evaluated resulted in insufficient power transfer, except for a large misalignment between the transducers. Such results indicate that this type of communication can be a robust alternative, with a minimum alignment of 40% between transducers and electrical penetrators.

2.
Heart Rhythm ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39304004

ABSTRACT

BACKGROUND: Pacing cycle length (PCL)-dependent changes in left atrial (LA) electrophysiologic properties have not been fully elucidated. OBJECTIVE: We aimed to elucidate these changes using a high-resolution mapping system. METHODS: Forty-eight patients underwent atrial fibrillation ablation with RHYTHMIA HDx. Paired LA maps under a baseline PCL (600 ms) and rapid PCL (300 ms) were acquired after pulmonary vein isolation under right atrial appendage pacing. The PCL-dependent change in the low-voltage area (LVA; area with <0.5 mV bipolar voltage), LA activation time (interval from first LA activation to wavefront collision at lateral wall), regional mean voltage, regional mean wave propagation velocity, and slow conduction area (area with <0.3 m/s wave propagation velocity) were quantitatively analyzed. RESULTS: Under the rapid PCL, the total LVA was significantly increased (7.6 ± 9.5 cm2 vs 6.7 ± 7.6 cm2; P = .031), especially in patients with a 10 cm2 LVA on the baseline PCL map (21.5 ± 9.1 cm2 vs 18.1 ± 6.5 cm2; P = .013). The LA activation time was also prolonged (87.9 ± 16.2 ms vs 84.0 ± 14.0 ms; P < .0001). Although the rapid PCL did not decrease the regional mean voltage, it significantly decreased the regional mean wave propagation velocity and increased the slow conduction area in all measured regions. CONCLUSION: LVA and slow conduction area can be emphasized by rapid PCL LA mapping. There may be poor validity in using these areas as absolute atrial fibrillation substrates without considering the PCL-dependent changes.

3.
Comput Methods Programs Biomed ; 257: 108427, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39326359

ABSTRACT

BACKGROUND AND OBJECTIVE: Computational models of hemodynamics can contribute to optimizing surgical plans, and improve our understanding of cardiovascular diseases. Recently, machine learning methods have become essential to reduce the computational cost of these models. In this study, we propose a method that integrates 1-D blood flow equations with Physics-Informed Graph Neural Networks (PIGNNs) to estimate the propagation of blood flow velocity and lumen area pulse waves along arteries. METHODS: Our methodology involves the creation of a graph based on arterial topology, where each 1-D line represents edges and nodes in the blood flow analysis. The innovation lies in decoding the mathematical data connecting the nodes, where each node has velocity and lumen area pulse waveform outputs. The training protocol for PIGNNs involves measurement data, specifically velocity waves measured from inlet and outlet vessels and diastolic lumen area measurements from each vessel. To optimize the learning process, our approach incorporates fundamental physical principles directly into the loss function. This comprehensive training strategy not only harnesses the power of machine learning but also ensures that PIGNNs respect fundamental laws governing fluid dynamics. RESULTS: The accuracy was validated in silico with different arterial networks, where PIGNNs achieved a coefficient of determination (R2) consistently above 0.99, comparable to numerical methods like the discontinuous Galerkin scheme. Moreover, with in vivo data, the prediction reached R2 values greater than 0.80, demonstrating the method's effectiveness in predicting flow and lumen dynamics using minimal data. CONCLUSIONS: This study showcased the ability to calculate lumen area and blood flow rate in blood vessels within a given topology by seamlessly integrating 1-D blood flow with PIGNNs, using only blood flow velocity measurements. Moreover, this study is the first to compare the PIGNNs method with other classic Physics-Informed Neural Network (PINNs) approaches for blood flow simulation. Our findings highlight the potential to use this cost-effective and proficient tool to estimate real-time arterial pulse waves.

4.
Ultrasonics ; 143: 107428, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39121794

ABSTRACT

Numerical analyses are performed to investigate ultrasonic wave propagation in fluid-solid half-spaces subject to a directional source. This research is particularly concerned with the behavior of refracted waves within fluid mediums and their utility in determining the acoustic velocities of solid materials. The simulations encompass solids with various mechanical parameters and highlight the influence of incident angles on wave propagation. The analysis reveals that as the disparity between incident and critical angles increases, both the dominant frequencies and amplitudes of the corresponding refracted waves decrease substantially, which is detrimental to the accurate extraction of solid velocities. For the low-velocity solid characterized by its shear wave velocity being less than the fluid's acoustic velocity, refracted longitudinal waves are susceptible to interference from direct and reflected waves. This interference often results in underestimated velocity measurements. The challenge can be addressed by either extending the source-receiver offset or by adjusting the incident angle closer to the critical angle. Regarding solids with shear wave velocities exceeding the fluid's acoustic velocity, although the velocity-time correlation (VTC) method can accurately determine longitudinal wave velocities, shear wave velocity extraction may be compromised by the presence of the leaky Rayleigh wave. We further compare velocities calculated by dividing the spacing distance of two receivers by the time difference of their respective wave packet arrivals. Results indicate that the initial trough and peak of the S wave packet are predominantly influenced by refracted shear waves and the leaky Rayleigh wave, respectively. This occurs because refracted shear waves propagate slightly faster than the leaky Rayleigh wave. Consequently, using the first trough of the shear wave packet as the wave onset can mitigate the impact of the leaky Rayleigh wave, yielding precise shear wave velocity measurements. These studies are of considerable importance for applications in geophysical downhole measurements and nondestructive testing.

5.
Polymers (Basel) ; 16(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125215

ABSTRACT

This article deals with stress wave decay performance, analysing the stress wave propagation generated by an impulsive unit load in a 2D representative unit cell (RUC) of a polymer composite with circular particles representing spherical particles, elliptical particles, and short fibres. The micro-scale numerical simulation uses explicit finite element analysis (FEA). The micro-response to an impulsive unit load creates a stress wave amplitude interacting with the material structure and tends to weaken and absorb energy. The stress wave damping is determined by the decaying amplitudes of Mises stress at the front of the stress wave. The stress wave damping is evaluated for different ratios of tensile modules and material densities of matrix and reinforcing material and other factors, such as percentage and particle size, applied to nine topologies of RUCs, and even the presence of an interfacial region is analysed. Moreover, the article visualises the phases of stress wave decay in various particle distributions, i.e., various topologies. Analysing the different topologies of the same particle volume (area) percentage, the study proved that the composite topology and resulting wave-particle and wave-wave interactions are other sources of material damping. The presence of even a small percentage, 3.5 area%, of reinforcing circular particles in the matrix brings a significant increase in stress wave damping up to about 40-43% (depending on the topology) compared to a homogeneous matrix with stress wave damping of 12.5% under the same conditions. Moreover, the topology with the same volume (area) percentage can increase particle stress wave damping by 15.3%.

6.
Microsc Microanal ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158213

ABSTRACT

Probe formation in scanning electron microscope (SEM) is often reduced to objective lens action modeling based on a point-spread function or Fourier transforms. In this study, we present the first complete wave optical modeling of the whole SEM column based on plane-by-plane propagation of the electron beam wavefunction without simplifying the optical system. We identify the challenges in plane-by-plane beam propagation and show how sampling limitations produce aliased results. Through a careful selection and combination of propagators, we have developed a general wave optical propagation method that is able to overcome the aliasing problem to achieve the appropriate probe widths. Using a two-step propagator, we show that it is possible to model the electron beam distribution throughout the column from the virtual source plane to the specimen plane. We also show that our results from the wave optical simulations are consistent with the geometrical theory of probe formation. Finally, as a direct application of this method, we demonstrated that the combined effect of aberrations in the condenser lens and the probe forming objective lens cannot be accurately represented using only the objective lens. Designing beam shaping experiments and studying the effect of partial coherence can be some novel applications.

7.
Philos Trans A Math Phys Eng Sci ; 382(2279): 20240037, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39129404

ABSTRACT

Recently, non-local configurations have been proposed by adding beyond nearest neighbour couplings among elements in lattices to obtain roton-like dispersion relations and phase and group velocities with opposite signs. Even though the introduction of non-local elastic links in metamaterials has unlocked unprecedented possibilities, literature models and prototypes seem neither to provide criteria to compare local and non-local lattices nor to discuss any related rules governing the transition between the two configurations. A physically reasonable principle that monoatomic one-dimensional chains must obey to pass from single- to multi-connected systems is here proposed through a mass conservation law for elastic springs thereby introducing a suitable real dimensionless parameter [Formula: see text] to tune stiffness distribution. Therefore, the dispersion relations as a function of [Formula: see text] and of the degree of non-locality [Formula: see text] are derived analytically, demonstrating that the proposed principle can be rather interpreted as a general mechanical consistency condition to preserve proper dynamics, involving the spring-to-bead mass ratio. Finally, after discussing qualitative results and deriving some useful inequalities, numerical simulations and two-dimensional FFTs are performed for some paradigmatic examples to highlight key dynamics features exhibited by chains with finite length as the parameters [Formula: see text] and [Formula: see text] vary.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.

8.
Philos Trans A Math Phys Eng Sci ; 382(2279): 20230363, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39129406

ABSTRACT

An innovative concept of metabarrier is presented for seismic Rayleigh wave attenuation, which consists of a periodic array of cylindrical water tanks acting as resonant units above the soil surface. A pertinent theoretical framework is developed and implemented in COMSOL Multiphysics. The framework treats the dynamics of the water tank by a well-established three-dimensional linear, pressure-based model for fluid-structure interaction under earthquake excitation, accounting for the flexibility of the tank wall; furthermore, the soil is idealized as a homogeneous and isotropic medium. Floquet-Bloch dispersion analysis of the unit cell demonstrates the presence of relevant band gaps in the low-frequency range below 20 Hz and in the higher frequency range as well. The dispersion analysis is validated by comparison with the frequency-domain analysis of a soil domain with a finite array of water tanks. The band gaps are of interest to attenuate seismic Rayleigh waves and, more generally, Rayleigh waves caused by other ground vibration sources such as road or railway traffic. The water-tank resonant units are readily tunable by varying the water level, which allows changing opening frequencies/widths of the wave attenuation zones. This is a remarkable advantage over alternative seismic metamaterials that, in general, are not designed to be tunable.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.

9.
Article in English | MEDLINE | ID: mdl-39073691

ABSTRACT

Pulmonary hypertension (PH) is a debilitating disease that alters the structure and function of both the proximal and distal pulmonary vasculature. This alters pressure-flow relationships in the pulmonary arterial and venous trees, though there is a critical knowledge gap in the relationships between proximal and distal hemodynamics in disease. Multiscale computational models enable simulations in both the proximal and distal vasculature. However, model inputs and measured data are inherently uncertain, requiring a full analysis of the sensitivity and uncertainty of the model. Thus, this study quantifies model sensitivity and output uncertainty in a spatially multiscale, pulse-wave propagation model of pulmonary hemodynamics. The model includes fifteen proximal arteries and twelve proximal veins, connected by a two-sided, structured tree model of the distal vasculature. We use polynomial chaos expansions to expedite sensitivity and uncertainty quantification analyses and provide results for both the proximal and distal vasculature. We quantify uncertainty in blood pressure, blood flow rate, wave intensity, wall shear stress, and cyclic stretch. The latter two are important stimuli for endothelial cell mechanotransduction. We conclude that, while nearly all the parameters in our system have some influence on model predictions, the parameters describing the density of the microvascular beds have the largest effects on all simulated quantities in both the proximal and distal arterial and venous circulations.

10.
Sci Rep ; 14(1): 17562, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079982

ABSTRACT

This study investigates the nonlinear Pochhammer-Chree equation, a model crucial for understanding wave propagation in elastic rods, through the application of the Khater III method. The research aims to derive precise analytical solutions and validate them using He's variational iteration method (VIM). The Pochhammer-Chree equation's relationship to other nonlinear evolution equations, such as the Korteweg-de Vries and nonlinear Schrödinger equations, underscores its significance in the field of nonlinear wave dynamics. The methodology employs the Khater III method for deriving analytical solutions, while He's VIM serves as a numerical validation tool, ensuring the accuracy and stability of the obtained results. This dual approach not only yields novel solutions but also provides a robust framework for analyzing complex wave phenomena in elastic media. The findings of this study have significant implications for material science and engineering applications, offering new insights into the behavior of waves in elastic rods. By bridging the gap between theoretical models and practical applications, this research contributes to the advancement of both mathematical theory and physical understanding of nonlinear wave dynamics. Situated within the domain of applied mathematics, with a focus on nonlinear wave equations, this work exemplifies the interdisciplinary nature of contemporary research in mathematical physics. The results presented herein open new avenues for future investigations in related fields and highlight the potential for innovative applications in material science and engineering.

11.
Sci Rep ; 14(1): 17547, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080386

ABSTRACT

The objective is to study the harmonic forced wave motion over a beach by a finite Fourier transform technique. The constructed approximate solution has a logarithmic singularity at the shoreline. It accounts for reflexion and local perturbations. Trapping of waves may take place for particular choices of the applied surface pressure excess. The case of a wave incident against a cliff with horizontal bottom is solved exactly. The method deals invariably with a variety of bottom shapes, including the case where there is an additional corrugation of the bottom on a finite interval. Other bottom boundary conditions than impermeability can be treated as well. The results may be of interest in several practical applications, in particular the evaluation of the reflected wave. Numerical applications for a plane sloping beach, a parabolic-type beach and a shelf-type beach are presented and the systems of streamlines have been drawn over and in the proximity of the beach.

12.
Sci Rep ; 14(1): 16716, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030208

ABSTRACT

Accurate estimation of the effects of dynamic disturbances on stress concentration is crucial for the stability of rock engineering and the corresponding analytical approaches are needed. This study presents an analytical approach to calculate the relative stress distribution with a point source inside and outside a hole using the linear theory of elasticity. The Helmholtz potentials and Sommerfeld integral are employed to describe the displacement and stress components, and then formulate the equilibrium equations to solve the equivalent stress distribution around the hole. Numerical examples demonstrate the impact of model parameters on the equivalent stress, such as frequency, hole radius, source location, etc. It is found that sometimes high frequencies can make the equivalent stress greater far from the source than that close to the source. Additionally, when the ratio of the distance between the source and the hole axis to the hole radius exceeds ten, the equivalent stress distribution around the hole remains nearly constant. This approach can be used for the design and assessment of underground engineering structures' stability under dynamic disturbances.

13.
Sci Rep ; 14(1): 15282, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961091

ABSTRACT

This study presents a comprehensive analysis of a nonlinear telecommunications model, exploring bifurcation, stability, and wave solutions using Hamiltonian and Jacobian techniques. The investigation begins with a thorough examination of bifurcation behavior, identifying critical points and their stability characteristics, leading to the discovery of diverse bifurcation scenarios. The stability of critical points is further assessed through graphical and numerical methods, highlighting the sensitivity to parameter variations. The study delves into the derivation of both numerical and analytical wave solutions, aligning them with energy orbits depicted in phase portraits, revealing a spectrum of wave behaviors. Additionally, the analysis extends to traveling wave solutions, providing insights into wave propagation dynamics. Notably, the study underscores the efficacy of the planar dynamical approach in capturing system behavior in harmony with phase portrait orbits. The findings have significant implications for telecommunications engineers and researchers, offering insights into system behavior, stability, and signal propagation, ultimately advancing our understanding of complex nonlinear dynamics in telecommunications networks.

14.
Sci Rep ; 14(1): 17456, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075147

ABSTRACT

Since their invention, tissue expanders, which are designed to trigger additional skin growth, have revolutionised many reconstructive surgeries. Currently, however, the sole quantitative method to assess skin growth requires skin excision. Thus, in the context of patient outcomes, a machine learning method which uses non-invasive measurements to predict in vivo skin growth and other skin properties, holds significant value. In this study, the finite element method was used to simulate a typical skin expansion protocol and to perform various simulated wave propagation experiments during the first few days of expansion on 1,000 individual virtual subjects. An artificial neural network trained on this dataset was shown to be capable of predicting the future skin growth at 7 days (avg. R 2 = 0.9353 ) as well as the subject-specific shear modulus ( R 2 = 0.9801 ), growth rate ( R 2 = 0.8649 ), and natural pre-stretch ( R 2 = 0.9783 ) with a very high degree of accuracy. The method presented here has implications for the real-time prediction of patient-specific skin expansion outcomes and could facilitate the development of patient-specific protocols.


Subject(s)
Machine Learning , Skin , Tissue Expansion , Humans , Skin/growth & development , Tissue Expansion/methods , Neural Networks, Computer , Finite Element Analysis
15.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001011

ABSTRACT

This paper presents an in-depth study of the stress wave behavior propagating in a Rayleigh-Love rod with sudden cross-sectional area variations. The analytical solutions of stress waves are derived for the reflection and transmission propagation behavior at the interface of the cross-sectional area change in the rod, considering inertia and Poisson's effects on the rod material. Examples solved using the finite element method are provided to verify the correctness of the analytical results. Based on the forward analysis of Rayleigh-Love wave propagation in a rod impacted by a striker rod, an impact-echo-type nondestructive testing (NDT) method is proposed to conduct defect assessment in rod-type structural components with sudden cross-sectional area changes within a cover medium. This proposed NDT method can identify the location, extension, and cross-sectional area drop ratios of an irregular zone in the rod to be inspected.

16.
Philos Trans A Math Phys Eng Sci ; 382(2278): 20240058, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39069759

ABSTRACT

In this work, the Schwarz primitive unit cell is used as the building block of different types of metastructures for steering and focusing elastic vibrations. The emergence of a Bragg-type bandgap when constructing a two-dimensional plate from such unit cells is experimentally validated. It is demonstrated that increasing both mass and porosity of the Schwarz primitive leads to a decrease in the frequency of the out-of-plane propagating wave targeted in this study. By arranging these modified Schwarz primitive unit cells in constant and graded layouts, two-dimensional plates with an embedded metabarrier and a metalens are numerically designed. The metabarrier protects an interior area of the plate from the propagating waves on a wide frequency band (approx. 1.4-3.4 kHz). Equally, the refractive index profile necessary for gradient index lenses is obtained via a progressive variation of the added mass or, alternatively, the porosity of the unit cell over a rectangular area. For the first time, bending of the out-of-plane mode towards the focusing point is practically validated in a challenging mesoscale experiment requiring the assembly of different three-dimensional printed sections of the plate. The increased porosity design is advantageous not only in terms of overall lightweight, but also towards additive manufacturing as it requires less material.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1)'.

17.
Ultrasonics ; 142: 107385, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936288

ABSTRACT

The second harmonic generation (SHG) technique offers a quantitative damage parameter known as the acoustic nonlinearity parameter (ß) capable of detecting the change in the inherent material nonlinearity. However, current SHG methods, in particular, those used for measuring ß in construction materials, have an unresolved issue in their application due to limited sample sizes. The restricted sample dimensions lead to the generation of boundary-reflected waves, which hinder the selective detection of propagating waves and thus the precise evaluation of material nonlinearity through ß. Furthermore, the use of large samples limits the compatibility of the SHG method with other characterization modalities, such as mechanical tests, X-ray diffraction, and computerized tomography. To address this issue, this paper introduces a new SHG method that is based on the use of nonlinear standing waves - the dominant longitudinal standing waves in a forced-free configuration. The corrections for phase delay and attenuation effect of each reflected wave are made, enabling accurate measurements of ß in thin samples with no requirement in the thickness-wavelength ratio. The measured ß is then employed to quantify the microstructural modification in cement paste induced by thermal damage, validating the proposed method as a promising tool for quantifying microstructural changes in materials.

18.
Sci Rep ; 14(1): 14131, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898131

ABSTRACT

To study the influence of pits on shock wave propagation and the propagation of shock waves within pits, numerical simulations were used to calculate the distribution of overpressure peak values at the bottom and rear of the pits at 5 depths and 5 explosion center distances. The results indicate that diffraction occurs when the explosion shock wave passes through the edge of the crater; The peak overpressure of the shock wave at the bottom of the pit exhibits a "spoon shaped" distribution, and the peak overpressure on the right side is significantly higher than that on the left side; There are two distinct boundary regions for the overpressure of the shock wave behind the crater due to the influence of the crater; The distance between the explosion centers has little effect on the distribution trend of the overpressure peak of the shock wave at the bottom and rear of the pit, mainly affecting the magnitude of the overpressure peak. The research results provide theoretical support for the analysis of the propagation law of explosion shock waves and guidance for the design of protective engineering structures, with significant engineering application value.

19.
Ultrasonics ; 141: 107336, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714061

ABSTRACT

This paper deals with the accurate modelling of ultrasonic wave propagation in concrete at the mesoscopic level. This was achieved through the development of a discrete element method (DEM) model capable of simulating elastic wave signals comparable to those measured experimentally. The main objective of the work was to propose a novel methodology for constructing a meso-scale model of concrete dedicated to the analysis of elastic wave propagation. All the material parameters necessary to prepare a numerical DEM model of concrete at the mesoscopic level were explored and explained. Calibration of the mechanical parameters of the DEM model to match the experimental values involved linking the local, micro-parameters between particles with the global response of the whole sample. The developed numerical model was further used to simulate the propagation of elastic waves in a cubic concrete sample, in the frequency range of 100-500 kHz. The results of the DEM calculations showed good agreement with the experimental ultrasonic signals.

20.
Materials (Basel) ; 17(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793433

ABSTRACT

Honeycomb structures have attracted much attention for their excellent characteristics of reducing vibration and noise in recent years. In this study, through band analysis of different ligament structures, we aim to optimize the design of a steel structure that can isolate most of the noise in the 1500-5000 Hz range. The present study examines several different chiral structures. We calculate the band gaps of chiral structures under different geometric configurations and identify the variations in band gaps with geometric layouts. It is found that compared to other chiral structures, the triligaments chiral structure exhibits excellent band gap characteristics. The calculation results demonstrate that enhancing axial symmetry while filling central nodes can effectively enhance the structure's band gap properties. Frequency-response functions of different lattice structures are computed, and the results align with the calculations of band structures. This study then analyzes the influence of the number of periods on the magnitude of vibration attenuation, revealing that under the same number of periods, the wider the band gap of the structure, the greater the vibration attenuation. Both the triligaments chiral structure and the vertical triligaments structure possess ideal band gap widths, effectively suppressing wave propagation. Subsequently, harmonic response analyses and transient wave calculations further validate the accuracy of the band structure and frequency-response curve calculations. Our study results provide a new way to design a sound insulation structure that can isolate noise signals within the frequency range from 1500 to 5000 Hz in engineering.

SELECTION OF CITATIONS
SEARCH DETAIL