Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2306732, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38073322

ABSTRACT

Currently, most reported 2D conjugated metal-organic frameworks (2D c-MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs) with symmetrical functional groups, limiting the possibility of introducing additional substituents to fine-tune the crystallinity and electrical properties. Herein, a novel class of wavy 2D c-MOFs with highly substituted, core-twisted hexahydroxy-hexa-cata-benzocoronenes (HH-cHBCs) as ligands is reported. By tailoring the substitution of the c-HBC ligands with electron-withdrawing groups (EWGs), such as fluorine, chlorine, and bromine, it is demonstrated that the crystallinity and electrical conductivity at the molecular level can be tuned. The theoretical calculations demonstrate that F-substitution leads to a more reversible coordination bonding between HH-cHBCs and copper metal center, due to smaller atomic size and stronger electron-withdrawing effect. As a result, the achieved F-substituted 2D c-MOF exhibits superior crystallinity, comprising ribbon-like single crystals up to tens of micrometers in length. Moreover, the F-substituted 2D c-MOF displays higher electrical conductivity (two orders of magnitude) and higher charge carrier mobility (almost three times) than the Cl-substituted one. This work provides a new molecular design strategy for the development of wavy 2D c-MOFs and opens a new route for tailoring the coordination reversibility by ligand substitution toward increased crystallinity and superior electric conductivity.

2.
ACS Appl Mater Interfaces ; 15(4): 5657-5666, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36662029

ABSTRACT

Lithium isotope separation has attracted extensive interest due to its important role in fusion and fission reactions. Up to now, it is still a great challenge to separate lithium isotopes (6Li and 7Li) in an efficient manner due to the low capture ability for lithium ions of related materials and highly similar physicochemical properties between lithium isotopes. In this work, three calix[4]arene-decorated crystalline covalent organic frameworks (COFs) with wave-like extension and AA-stacking configuration were designed and utilized for lithium adsorption and its isotope separation. Experimental studies show that these COFs exhibit an outstanding lithium adsorption capacity up to 94.66 mg·g-1, which is about 2 times beyond that of adsorbents reported in the literature. The high adsorption capacity of COFs could be attributed to the abundant adsorption sites from calix[4]arene unit. More importantly, this study demonstrates for the first time that calixarene groups can separate lithium isotopes with an excellent separation factor up to 1.053 ± 0.002, comparable to the most successful solid-phase lithium separation adsorbent. The calculation based on density functional theory showed that calixarene played an important role in the lithium adsorption. Interestingly, the lithium isotope separation performance is mainly affected by the amine bridging units. This work demonstrated that calixarene COFs are promising adsorbents for lithium isotope separation.

3.
Mater Sci Eng C Mater Biol Appl ; 126: 112181, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34082981

ABSTRACT

The development of tendon-biomimetic nanofibrous scaffolds with mesenchymal stem cells may represent a promising strategy to improve the unsatisfactory outcomes of traditional treatments in tendon repair. In the present study, the nanofibrous scaffolds comprised of poly(p-dioxanone) (PPDO) and silk fibroin (SF) composites were fabricated by using electrospinning technique and subsequent thermal ethanol treatment. The PPDO/SF composite scaffolds presented parallel fiber arrangement with crimped features and nonlinear mechanical properties, which mimic the structure-function relationship of native tendon tissue mechanics. We demonstrated that the fiber crimp degree and mechanical properties of as-prepared PPDO/SF wavy nanofibrous scaffolds (WNSs) could be tunable by adjusting the mass ratio of PPDO/SF. The biological tests revealed that the addition of SF obviously promoted the cell adhesion, proliferation, and phenotypic maintenance of human tenocytes on the WNSs. A preliminary study on the subcutaneous implantation showed that the PPDO/SF WNSs notably decreased the inflammatory response compared with pure PPDO WNSs. More importantly, a combination of growth factor induction and mechanical stimulation was found to notably enhance the tenogenic differentiation of human adipose derived mesenchymal stem cells on the PPDO/SF WNSs by upregulating the expressions of tendon-associated protein and gene markers. Overall, this study demonstrated that our PPDO/SF WNSs could provide a beneficial microenvironment for various cell activities, making them an attractive candidate for tendon tissue engineering research.


Subject(s)
Fibroins , Nanofibers , Anisotropy , Cell Proliferation , Humans , Polyesters , Tendons , Tissue Engineering , Tissue Scaffolds
4.
Sensors (Basel) ; 20(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751740

ABSTRACT

Laser-induced graphene (LIG) has the advantages of one-step fabrication, prominent mechanical performance, as well as high conductivity; it acts as the ideal material to fabricate flexible strain sensors. In this study, a wearable flexible strain sensor consisting of three-dimensional (3D) wavy LIG and silicone rubber was reported. With a laser to scan on a polyimide film, 3D wavy LIG could be synthesized on the wavy surface of a mold. The wavy-LIG strain sensor was developed by transferring LIG to silicone rubber substrate and then packaging. For stress concentration, the ultimate strain primarily took place in the troughs of wavy LIG, resulting in higher sensitivity and less damage to LIG during stretching. As a result, the wavy-LIG strain sensor achieved high sensitivity (gauge factor was 37.8 in a range from 0% to 31.8%, better than the planar-LIG sensor), low hysteresis (1.39%) and wide working range (from 0% to 47.7%). The wavy-LIG strain sensor had a stable and rapid dynamic response; its reversibility and repeatability were demonstrated. After 5000 cycles, the signal peak varied by only 2.32%, demonstrating the long-term durability. Besides, its applications in detecting facial skin expansion, muscle movement, and joint movement, were discussed. It is considered a simple, efficient, and low-cost method to fabricate a flexible strain sensor with high sensitivity and structural robustness. Furthermore, the wavy-LIG strain senor can be developed into wearable sensing devices for virtual/augmented reality or electronic skin.


Subject(s)
Graphite , Lasers , Silicone Elastomers , Wearable Electronic Devices , Light
5.
ACS Appl Mater Interfaces ; 9(12): 10865-10873, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28276240

ABSTRACT

Networks of silver nanowires (Ag NWs) have been considered as promising materials for stretchable and transparent conductors. Despite various improvements of their optoelectronic and electromechanical properties over the past few years, Ag NW networks with a sufficient stretchability in multiple directions that is essential for the accommodation of the multidirectional strains of human movement have seldom been reported. For this paper, biaxially stretchable, transparent conductors were developed based on 2D mass-spring networks of wavy Ag NWs. Inspired by the traditional papermaking process, the 2D wavy networks were produced by floating Ag NW networks on the surface of water and subsequently applying biaxial compression to them. It was demonstrated that this floating-compression process can reduce the friction between the Ag NW-water interfaces, providing a uniform and isotropic in-plane waviness for the networks without buckling or cracking. The resulting Ag NW networks that were transferred onto elastomeric substrates successfully acted as conductors with an excellent transparency, conductivity, and electromechanical stability under a biaxial strain of 30%. The strain sensors that are based on the prepared conductors demonstrated a great potential for the enhanced performances of future wearable devices.

SELECTION OF CITATIONS
SEARCH DETAIL