Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Plant Dis ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39219003

ABSTRACT

Gummy stem blight (GSB), caused primarily by the fungus Stagonosporopsis citrulli in the southeastern United States, affects cucurbits and is particularly destructive on watermelon. Previous epidemiological models of GSB constructed for greenhouse cucumber showed leaf wetness and temperature were the primary and secondary environmental factors, respectively, that explained epidemic progress. The objective of this study was to construct a model that predicted GSB severity on field-grown watermelon based on environmental factors. Disease and weather data from six fungicide experiments in Charleston, South Carolina, in spring and fall 1997 and fall 2017, 2018, 2019, and 2022 were used as inputs. Fungicide treatments were grouped into nonsprayed, protectant (chlorothalonil and mancozeb) and GSB-specific (cyprodinil, difenoconazole and fludioxonil) applications. Cumulative hours of leaf wetness was the primary explanatory variable that modeled the increase in proportion GSB severity ≥2% across all epidemics. Incorporation of temperature or other environmental variables did not improve the model. Fit of the overall model was evaluated with k-fold cross validation, where individual experiments were each excluded from the model fitting process. Slopes of predicted disease progress curves were lowered significantly compared to the nonsprayed treatments by applications of protectant fungicides. Applying GSB-specific fungicides alternated with chlorothalonil further reduced slope values. The model successfully predicted progress of GSB epidemics under different weather patterns and fungicide applications.

2.
Ecol Evol ; 14(8): e11581, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39114172

ABSTRACT

Piping plovers (Charadrius melodus sp.) rank among North America's most endangered shorebird species, facing compounding environmental challenges that reduce habitat availability and suppress recruitment and survival rates. Despite these challenges, research on the direct effects of climate variability and extremes on their breeding ecology remains limited. Here, we employ a spatiotemporal modelling approach to investigate how location, nest timing and weather conditions influence reproductive success rates in a small breeding population of C. m. melodus in Prince Edward Island (PEI), Canada from 2011 to 2023. Analysis of 40 years of monitoring records from a subset of nesting sites revealed that flooding and predation have been persistent sources of reproductive failures in this population, with unexplained losses increasing in recent years. Contrary to our hypotheses, our modelled results did not support a negative impact of extreme high temperatures and strong precipitation events on reproductive outcomes. Instead, we identified a positive effect of T MAX and no effect of strong precipitation, perhaps due to limited exposure to extreme high temperatures (>32°C) and context-specific risks associated with precipitation-induced flooding. However, trends in regional climate change are likely to increase exposure to-and the influence of-such factors in the near future. Our models also identified spatiotemporal variability in apparent hatch success over the study period, as well as worse hatch outcomes across popular beachgoing regions and for delayed nesting attempts. While our results offer preliminary insights into factors affecting breeding success in this population, further research will be imperative to enhance understanding of constraints on recruitment. To this end, we encourage the collection and analysis of additional time-series data of prey populations, human activities, fine-scale weather data and predator/flood risks associated with each nest on PEI.

3.
Ecol Evol ; 14(7): e11651, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952664

ABSTRACT

Floral temperature is a flower characteristic that has the potential to impact the fitness of flowering plants and their pollinators. Likewise, the presence of floral temperature patterns, areas of contrasting temperature across the flower, can have similar impacts on the fitness of both mutualists. It is currently poorly understood how floral temperature changes under the influence of different weather conditions, and how floral traits may moderate these changes. The way that floral temperature changes with weather conditions will impact how stable floral temperatures are over time and their utility to plants and pollinators. The stability of floral temperature cues is likely to facilitate effective plant-pollinator interactions and play a role in the plant's reproductive success. We use thermal imaging to monitor how floral temperatures and temperature patterns of four plant species (Cistus 'snow fire' and 'snow white', Coreopsis verticillata and Geranium psilostemon) change with several weather variables (illumination, temperature; windspeed; cloud cover; humidity and pressure) during times that pollinators are active. All weather variables influenced floral temperature in one or more species. The directionality of these relationships was similar across species. In all species, light conditions (illumination) had the greatest influence on floral temperatures overall. Floral temperature and the extent to which flowers showed contrasting temperature patterns were influenced predominantly by light conditions. However, several weather variables had additional, lesser, influences. Furthermore, differences in floral traits, pigmentation and structure, likely resulted in differences in temperature responses to given conditions between species and different parts of the same flower. However, floral temperatures and contrasting temperature patterns that are sufficiently elevated for detection by pollinators were maintained across most conditions if flowers received moderate illumination. This suggests the presence of elevated floral temperature and contrasting temperature patterns are fairly constant and may have potential to influence plant-pollinator interactions across weather conditions.

4.
Plant Biotechnol J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975807

ABSTRACT

Decades of studies have shown that Bt corn, by reducing insect damage, has lower levels of mycotoxins (fungal toxins), such as aflatoxin and fumonisin, than conventional corn. We used crop insurance data to infer that this benefit from Bt crops extends to reducing aflatoxin risk in peanuts: a non-Bt crop. In consequence, we suggest that any benefit-cost assessment of how transgenic Bt crops affect food safety should not be limited to assessing those crops alone; because the insect pest control offered by Bt crops affects the food safety profile of other crops grown nearby. Specifically, we found that higher Bt corn and Bt cotton planting rates in peanut-growing areas of the United States were associated with lower aflatoxin risk in peanuts as measured by aflatoxin-related insurance claims filed by peanut growers. Drought-related insurance claims were also lower: possibly due to Bt crops' suppression of insects that would otherwise feed on roots, rendering peanut plants more vulnerable to drought. These findings have implications for countries worldwide where policies allow Bt cotton but not Bt food crops to be grown: simply planting a Bt crop may reduce aflatoxin and drought stress in nearby food crops, resulting in a safer food supply through an inter-crop "halo effect."

5.
Plant Dis ; 108(9): 2838-2844, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38736151

ABSTRACT

Grapevine anthracnose, caused by Elsinoë ampelina, is one of the most devastating diseases for wine and table grapes, particularly in hot, humid regions. This study explores how temperature and leaf age affect incubation and how temperature affects lesion development and sporulation. The influence of temperature and leaf age on incubation period (days) was tested under controlled conditions. Leaves from 1 to 8 days old were inoculated and maintained at temperatures of 5, 10, 15, 20, 25, and 30°C. The time elapsed between inoculation and the emergence of initial lesions was recorded. The effect of temperature on lesion development and sporulation was investigated under vineyard conditions. This was achieved through artificial inoculations, with 17, 11, and 11 inoculations conducted in 2016, 2017, and 2018, respectively. The average incubation period, considering all leaf ages, was 27.50 days at 5°C, 15.10 days at 10°C, 9.70 days at 15°C, 5.90 days at 20°C, 3.70 days at 25°C, and 2.26 days at 30°C. Regardless of temperature, the average incubation period was 3.6, 5.9, 8.3, 9.8, 11.9, 13.4, 15.6, and 17.1 days for leaves 1, 2, 3, 4, 5, 6, 7, and 8 days old, respectively. The exponential decay model accurately describes the incubation period as a function of both temperature and leaf age. On average, the relative lesion development (RLD) was 0.00, 0.00, 0.23, 0.47, 0.72, 0.93, 0.92, 0.90, 0.94, and 1.0 at 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 days after inoculation, respectively. The average relative sporulation (RSPO) was 0.03, 0.36, 0.82, 0.96, and 1.0 at 5, 10, 15, 20, and 25 days after inoculation, respectively. Both RLD and RSPO as a function of degree-days (Tbase = 0°C) since inoculation were well described by the logistic function. The rates of change in RLD and RSPO were 0.055 and 0.032, respectively. The results of this study provide new quantitative insights into three important stages (monocyclic processes) in the development of grapevine anthracnose caused by E. ampelina.


Subject(s)
Plant Diseases , Plant Leaves , Temperature , Vitis , Vitis/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Ascomycota/physiology , Spores, Fungal/physiology
6.
Ecol Evol ; 14(3): e11155, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476705

ABSTRACT

Agricultural intensification and climate change are serious threats toward animal populations worldwide. Agricultural intensification reduces the heterogeneity of agricultural habitats by diminishing crop variation and destroying microhabitats, such as small woody features, whereas the effects of climate change range from the growing frequency of weather extremes to disrupted prey-predator dynamics. We collected long-term ringing data from a population of Eurasian kestrels (Falco tinnunculus) located amidst agricultural areas in western Finland during 1985-2021, which we combined with density indices of their main prey species (voles), spatial data consisting of land cover classification of kestrel territories, and weather data, to study the effects of different environmental drivers on breeding density and success. We found that the density of inhabited nests rose with vole abundance and springtime snow depth, with the overall trend of population growth being stronger in areas with more heterogeneous landscapes. Clutch size was influenced negatively by the age of male parent and landscape heterogeneity, and positively by vole abundance, with rainfall having a negative influence conditional to other variables. Likewise, the number of produced fledglings was affected by male age, but it was additionally positively associated with landscape heterogeneity and its interaction with rainfall, with greater fledgling output in heterogeneous landscapes during high precipitation. The discrepancy between factors predicting large clutches and high numbers of fledglings suggests that while kestrels do not prefer heterogeneous landscapes when prospecting for territories, heterogeneous habitats provide better circumstances for foraging during the nestling period, which ensures nestling survival, particularly during adverse environmental conditions. Therefore, breeding in areas under intense agricultural use is more suboptimal to kestrels than their territory preferences would indicate. As changing climate may reduce prey availability and heighten the probability of weather extremities, agricultural intensification may lead to weaker reproductive success in densely populated farmland habitats.

7.
Plant Dis ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433110

ABSTRACT

In November 2022 and February 2023, CAL FIRE tree health experts examined four maples (Acer spp.) planted decades earlier in a residential setting in Elk Grove, Sacramento Co., California (USA). Three of the trees were silver maples (Acer saccharinum ) and one was a Norway maple (A. platanoides); both species are exotic to California. The trees were in an irreversible state of decline, with the canopy substantially thinned and browning. Extensive bark cankers elongating longitudinally along the stem were visible on all trees (Fig. S1). Cankers were filled by fungal stromata protruding through the bark and producing masses of elliptical dark brown conidia (Fig. S2), approximately 5.5 x 3.7 um in size, giving the cankers a sooty appearance. The cankered bark could be peeled off easily, revealing dark and discrete lesions in the phloem and xylem. Samples from the three trees were shipped to the U.C. Berkeley Forest Pathology and Mycology Laboratory and to the CDFA PPDC in Sacramento, CA. In the laboratories, small wood chips were taken from the margins of the lesions, surface sterilized by dipping them for 30 seconds in 70% Ethanol, rinsed for 30 seconds in sterile water and plated onto 2.5% Malt Extract Agar amended with 0.3g/L Streptomycin or onto one-half strength acidified potato dextrose agar (APDA). Two morphologically identical cultures were obtained, one (T2) from a silver maple and one (T6) from the Norway maple. Cultures were then grown in liquid 2.5% malt extract broth and, after one week, DNA was extracted using the Qiagen Plant DNeasy DNA extraction kit. The ITS sequences are diagnostic for this fungus (Li et al. 2021) and those of the two cultures (GB OR064033 and OR933565) were 100% homologous to GenBank sequences of Cryptostroma corticale ( e.g. GB OP474010-11). The RPB2 sequence of T2 ( GB OR992132) was 100% homologous to that of C. corticale (GB HG934116.1). The isolate obtained from silver maple was inoculated in four potted silver maples by removing a bark disk 50 mm in diameter with a cork borer in three spots staggered at different heights and sides on the stem, placing a colonized agar plug of C. corticale in contact with the phloem, replacing the bark disk and wrapping with parafilm. Two control trees were mock inoculated using sterile agar plugs. Trees were in 57 L pots, had an average stem caliper of 2.7 cm, an average height of 3.5 m and were kept in a lath house at average high temperatures of 18-24 degrees C. After ten weeks, average lesion length was 15.4 cm (SE= 4.6) and 4.3 cm (SE=2.3) in the fungus-inoculated and control trees, respectively. An ANOVA test, nesting lesions sizes within tree, determined lesions lengths were different between inoculated and mock trees (P= 0.04). The fungus was reisolated from all points in all inoculated trees but never from control trees. C. corticale was first described in the UK from sycamore maple (Acer pseudoplatanus) (Gregory et al. 1949) and is an emerging problem in Europe (Muller et al. 2023). In North America, it has been reported from A. negundo, A. campestre, A. macrophyllum and Cornus nuttallii (Worral 2020), and it appears to be present in the Pacific Northwest (Brooks et al. 2023, Goree 1969). Norway maple is included in the European Plant Protection Organization list of hosts for C. corticale (EPPO 2023), however our finding of C. corticale on silver maple is a first report of this host worldwide and of this pathogen in California. This report is noteworthy, given that C. corticale is also a human pathogen infecting the respiratory system (Braun et al. 2021).

8.
Plant Dis ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115570

ABSTRACT

In México, avocado production is an important economic source. In the last season it generated $ 3. 27 billion USD of foreign currency in the country. Irpex spp. are wood decay fungi. In the period 2019-2022, in the state of Michoacán (19°13' N; 101°55' W), México, basidiomes of Irpex sp. were observed on the base of trunks and crowns of 5-years-old and older avocado (Persea americana) trees. The trees exhibited disease symptoms that included white root rot, leaf yellowing, small leaves, branch diebacks, generalized defoliation, apical flaccidity, abundant but small sun burnt fruits due to the lack of foliage, and after 2-4 years of first disease appearance, the infected trees died. In the place where fungus was established, abundant white and cottony mycelium was formed, which caused trees decay. The incidence of the disease in the sampled orchards was estimated to be 30% per ha with 350 - 400 trees, which was determined through a simple sampling design focused on trees with signs and symptoms of the disease due to the phytopathogen. Samples of infected tissue (roots and stems) and fungal basidiomes were collected from 90 trees (5-6 per orchard). The symptomatic avocado trees studied were randomly selected from 17 orchards. For the fungal macroscopic characterization, the synoptic keys described by Gilbertson and Ryvarden (1986) and by Largent (1973) were used. The samples showed typical structures corresponding to Irpex sp., including rosettes, annual basidiomes, a system of monomitic hyphae, and subglobose basidiospores. In vitro fungal isolation from basidiomes and infected tree tissues was done according to the protocol of Agrios (2004). The fungal strains were maintained on PDA at 28 °C. At 16 days of incubation the colonies were opaque, whitish with fluffy and corky mycelium. Microscopic analysis of the fungus showed typical yellowish spores, with an ellipsoid shape of 3-4 x 4-5.5 µm (50 accounted structures per isolate [N=19]) and basidia of 20-25 x 4.5-5.5 µm (n=20 basidiomes). For molecular characterization, two molecular markers were used, the internal transcribed spacer rDNA-ITS1 5.8 rDNA-ITS2 (ITS; White et al. 1990) and the large ribosomal subunit (LSU; Vilgalys and Hester 1990). The PCR reaction was performed as described by Martínez-González et al. (2017). The consensus sequences were compared with those deposited in the NCBI-GenBank, using the BLASTN 2.2.19 tool (Zhang et al. 2000), the samples showed 99% match with the species, Irpex rosettiformis. GenBank accession numbers of the submitted isolates are summarized in supplementary Table 4. To test Koch's postulates, 3-months old avocado plants grown in greenhouse conditions were inoculated (n = 10 per each isolate [N= 19]) on the roots with 3 g of I. rosettiformis mycelium. The experiment was done twice with 20 non-inoculated plants as control. After 67 days, basidiomes (50 x 70 x 1.5 mm in average) were observed where the disease incidence was >77%, with subsequent tree decline. The pathogen was re-isolated in vitro in PDA and its identity was confirmed by morphological characteristics of mycelium. This work shows that I. rosettiformis is not only a wood decay fungus, but also a phytopathogen, the causative agent of white root rot disease in P. americana var. drymifolia, cultivar 'Hass', which establishes a precedent for monitoring and preventing its proliferation to other regions in the American continent and the world where nursery avocado seedlings are exported.

9.
Plant Dis ; 107(11): 3517-3522, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37163313

ABSTRACT

Fungal canker pathogens commonly infect trees at pruning wounds leading to branch dieback and loss of productivity in sweet cherry orchards. However, the seasonal susceptibility of sweet cherry pruning wounds to Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata is not well understood. This study compared the susceptibility of sweet cherry pruning wounds made during the dormant season (January) and the postharvest season (late May to June) to infection by main canker pathogens in California. Field trials were conducted in three cherry orchards and trees were pruned at the different periods over 2 years. Fresh pruning wounds were inoculated with spores of each pathogen, and pathogen recovery was assessed through microbiological isolations at 3 to 4 months after inoculations. Pruning wounds made in late May and June resulted in significantly higher infection by Cal. pulchella compared to pruning wounds made in January. Pruning wounds made during both seasons were generally equally susceptible to Cyt. sorbicola and E. lata infections. However, there was one orchard where dormant pruning wounds were more susceptible to infection by E. lata and there was one particularly cold winter where Cyt. sorbicola did not infect pruning wounds. Overall, our findings suggest that Cal. pulchella infections of cherry pruning wounds are more likely to occur during periods of warm temperatures such as late spring and early summer. However, infections by Cyt. sorbicola and E. lata can occur year-round if inoculum is present and if winter temperatures are not abnormally low for California. Finally, our results suggest that the emergence of Cal. pulchella as a major canker pathogen of sweet cherry in California may be the result of a shift from dormant to after-harvest pruning of sweet cherry trees.


Subject(s)
Prunus avium , Seasons
10.
Plant Dis ; 107(10): 3014-3025, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36880863

ABSTRACT

Temperature is an important environmental variable affecting Phytophthora spp. biology. It alters the ability of species to grow, sporulate, and infect their plant host, and it is also important in mediating pathogen responses to disease control measures. Average global temperatures are increasing as a consequence of climate change, yet there are few studies that compare the effects of temperature on Phytophthora spp. that are important to the nursery industry. To address this, we conducted a series of experiments to evaluate how temperature affects the biology and control of three soilborne Phytophthora spp. prevalent in the nursery industry. In the first set of experiments, we evaluated the mycelial growth and sporulation of several Phytophthora cinnamomi, P. plurivora, and P. pini isolates at temperatures ranging from 4 to 42°C for different amounts of time (0 to 120 h). In the second set of experiments, we evaluated the response of three isolates of each species to the fungicides mefenoxam and phosphorous acid at temperatures ranging from 6 to 40°C. Results showed that each species responds differently to temperature, with P. plurivora having the greatest optimal temperature (26.6°C), P. pini the least (24.4°C), and P. cinnamomi was intermediate between the two (25.3°C). P. plurivora and P. pini had the lowest minimum temperatures (approximately 2.4°C) compared with P. cinnamomi (6.5°C), while all three species had a similar maximum temperature (approximately 35°C). When tested against mefenoxam, all three species were generally more sensitive to mefenoxam at cool temperatures (6 to 14°C) than at warmer temperatures (22 to 30°C). P. cinnamomi was also more sensitive to phosphorous acid at cool temperatures (6 to 14°C). However, both P. plurivora and P. pini tended to be more sensitive to phosphorous acid at warmer temperatures (22 to 30°C). These findings help define the temperatures at which these pathogens will be the most damaging and help delineate the temperatures at which fungicides should be applied for maximum efficacy.


Subject(s)
Fungicides, Industrial , Phytophthora , Rhododendron , Phytophthora/physiology , Temperature , Fungicides, Industrial/pharmacology , Plant Diseases
11.
Plant Dis ; 107(5): 1408-1417, 2023 May.
Article in English | MEDLINE | ID: mdl-36222724

ABSTRACT

Blackleg of oilseed rape caused by Leptosphaeria maculans/L. biglobosa is a worldwide important disease. L. maculans is more virulent than L. biglobosa, so it causes a great concern for oilseed rape production. In China, blackleg (L. biglobosa) of oilseed rape was reported in the 2000s, but epidemiological features of blackleg have not been well elucidated. Moreover, whether L. maculans exists in China is still an open question. Therefore, a 5-year survey was done in China to collect blackleg-occurrence data for characterizing the features of blackleg epidemics and to identify the blackleg pathogens for assessing the risk of L. maculans invasion. The results showed that all the 19 surveyed provinces had blackleg on oilseed rape, and the most frequently occurring provinces are Gansu, Qinghai, Shaanxi, and Hubei. Phoma stem canker was the most common symptom, which was associated with stem cracks on winter oilseed rape and with stem-weevil activities on spring oilseed rape. Temperature and rainfall were the main factors for blackleg epidemics on winter oilseed rape, whereas rainfall was the main factor for blackleg epidemics on spring oilseed rape. Brassica campestris and B. juncea oilseed rapes were more susceptible than B. napus to blackleg. Oilseed rapes cultivated under the continuous dry land-cropping pattern were more prone to blackleg than those cultivated under the paddy land/dry land-cropping pattern. All 6,015 fungal isolates from blackleg plant tissues belonged to L. biglobosa. These results are helpful for understanding the blackleg epidemics of oilseed rapes and for management of this disease in China.


Subject(s)
Ascomycota , Brassica napus , Plant Diseases/microbiology , Brassica napus/microbiology , China
12.
Plant Dis ; 107(7): 2119-2125, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36471459

ABSTRACT

During the past two decades, the wheat-producing areas of the Great Plains region in North America experienced frequent, severe yield losses to stripe rust (Puccinia striiformis f. sp. tritici). In general, outbreaks of rust diseases in the Southern Great Plains region often precede disease problems in the Central and Northern Great Plains. However, these generalizations provide little information, and our objective for this study was to identify weather variables, geographical areas, and time periods that influence the early stages of stripe rust epidemics in the Great Plains. Data used in this analysis consisted of monthly summaries of temperature, precipitation, and soil moisture from 10 climate districts in Texas of the United States. These environmental variables were paired with estimates of wheat yield losses to stripe rust in Kansas from 2000 to 2019, with yield loss coded as a binary variable (1 = >4% statewide yield loss). An ensemble of simple models representing weather variables, time periods, and geographical locations were hypothesized to be influential in the development of stripe rust epidemics. Model performance was verified with observations not used in model development. Results of this study indicated that soil moisture within two to three climate districts in Texas were particularly influential in regional disease development. These areas of Texas were 700 to 1,000 km away from locations in Kansas where the disease-related yield losses were observed, and they often preceded disease losses by 3 to 6 months. In the future, these models could help establish priority locations and time periods for disease scouting and inform regional estimates of disease risk.


Subject(s)
Basidiomycota , Epidemics , United States , Kansas , Triticum , Seasons , Environmental Indicators , Plant Diseases , Texas
13.
Ecol Evol ; 12(9): e9261, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36091338

ABSTRACT

Insect population dynamics are the result of an interplay between intrinsic factors such as density dependence, trophic web interactions, and external forces such as weather conditions. We investigate potential mechanisms of population dynamics in a natural, low-density insect population. Eggs and larvae of the noctuid moth, Abrostola asclepiadis, develop on its host plant during summer. The population density, and mortality, was closely monitored throughout this period during 15 years. Densities fluctuated between one and two orders of magnitude. Egg-larval developmental time varied substantially among years, with lower survival in cool summers with slower development. This was presumably due to the prolonged exposure to a large guild of polyphagous arthropod enemies. We also found a density-dependent component during this period that could be a result of intraspecific competition for food among the last larval instars. Dynamics during the long period from pupation in late summer through winter survival in the ground to adult emergence and oviposition the next year displayed few clear patterns and more unexplained variability, thus giving a more random appearance. The population hence shows more unexplained or unpredictable variation during the long wintering period, but seems more predictable over the summer egg-larval period. Our study illustrates how weather-via a window of exposure to enemies and in combination with density-dependent processes-can determine the course of population change through the insect life cycle.

14.
Oecologia ; 199(3): 611-623, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35829792

ABSTRACT

Weather conditions can profoundly affect avian reproduction. It is known that weather conditions prior to and after the onset of reproduction can affect the breeding success of birds. However, little is known about how seasonal weather variability can affect birds' breeding performance, particularly for species with a slow pace of life. Long-term studies are key to understanding how weather variability can affect a population's dynamics, especially when extreme weather events are expected to increase with climate change. Using a 32-year population study of the Blue-footed booby (Sula nebouxii) in Mexico, we show that seasonal variation in weather conditions, predominantly during the incubation stage, affects offspring survival and body condition at independence. During most of the incubation period, warm sea surface temperatures were correlated with low hatching success, while rainfall in the middle of the incubation stage was correlated with high fledging success. In addition, chicks from nests that experienced warm sea surface temperatures from the pre-laying stage to near-fledging had lower body condition at 70 days of age. Finally, we show that variable annual SST conditions before and during the incubation stage can impair breeding performance. Our results provide insight into how seasonal and interannual weather variation during key reproductive stages can affect hatching success, fledging success, and fledgling body condition in a long-lived neotropical seabird.


Subject(s)
Reproduction , Weather , Animals , Birds , Seasons , Temperature
15.
Microorganisms ; 10(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208855

ABSTRACT

Landscape effects might impede or increase spore dispersal and disease risk for crops, as trees and hedges buffer winds and can behave as spore traps, therefore limiting diffusion of fungi, or, on the contrary, behave as disease relay once vegetation is infected and become inoculum sources. In this study, we investigated weekly prevalence of the pathogenic fungus Colletotrichum gloeosporioides on guava tree leaves, differentiating impacts of leaf height on tree, age, and location within leaf. We first estimated differences in prevalence for each covariate, and then related infection rates to weather effects during the year. Our results highlighted a great variance of prevalence among individual trees, and a lower contamination of tree tops, as well as a tendency for greater odds of infection in tips of young leaves compared to older ones. Last, we show evidence that individual tree contaminations are associated with different disease dynamics: early and dispersal-based, late and growth-based, as well as with intermediate dynamic ranges. Pathogen infection dynamics will thus be greatly impacted by cover characteristics at local scale, and tree cover should not be perceived as homogeneously driving disease levels.

16.
Plant Dis ; 106(9): 2424-2432, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35171640

ABSTRACT

Between 2000 and 2020, canker diseases of nut and stone fruit trees have become very widespread and severe in California. This study determined the effects of temperature on the development of canker-causing pathogens of almond and prune. Five pathogen taxa, Botryosphaeria dothidea, Cytospora leucostoma, Diaporthe (Phomopsis) neotheicola, Lasiodiplodia citricola, and Neofusicoccum mediterraneum, were used. Colony growth on medium and canker lesion development on detached shoots were measured at 10, 15, 20, 25, 30, and 35°C. The effects of temperature on colony growth differed among different pathogen taxa, although 25°C was the optimal temperature for most of the pathogens tested. The patterns of lesion growth as response to temperature were different among the different pathogens and tree crops. On almond, the highest growth rates appeared at 30°C for B. dothidea and L. citricola, but at 20°C for N. mediterraneum. The growth rates for C. leucostoma were lower than those of the other three pathogen taxa, with the highest rates recorded at 25°C. However, on prune, C. leucostoma showed greater lesion growth rates at different temperatures than the other pathogen taxa and maximum growth at 30 to 35°C. Similar trends were observed for L. citricola. The growth rates of B. dothidea and N. mediterraneum were comparatively lower than those of C. leucostoma and L. citricola.


Subject(s)
Fruit , Prunus dulcis , Crops, Agricultural , Plant Diseases , Temperature , Trees
17.
Plant Dis ; 105(1): 96-107, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33197378

ABSTRACT

Epidemics of wheat blast, caused the Triticum pathotype of Magnaporthe oryzae, were studied in the Santa Cruz del la Sierra region of Bolivia to quantify and compare the temporal dynamics of the disease under different growing conditions. Six plots of a susceptible wheat cultivar were planted at Cuatro Cañadas (CC), Okinawa 1 (OK1), and Okinawa 2 (OK2) in 2015. Spike blast incidence (INC) and severity (SEV) and leaf blast severity (LEAF) were quantified in each plot at regular intervals on a 10 × 10 grid (n = 100 clusters of spikes), beginning at head emergence (Feekes growth stage 10.5), for a total of nine assessments at CC, six at OK1, and six at OK2. Spike blast increased over time for 20 to 30 days before approaching a mean INC of 100% and a mean SEV of 60 to 75%. The logistic model was the most appropriate for describing the temporal dynamics of spike blast. The highest absolute rates of disease increase occurred earliest at OK1 and latest at OK2, and in all cases it coincided with major rain events. Estimated y0 values (initial blast intensity) were significantly (P < 0.05) higher at OK1 than at CC or OK2, whereas rL values (the logistic rate parameter) were significantly higher at OK2 than at CC or OK1. It took about 10 fewer days for SEV to reach 10, 15, or 20% at OK1 compared with OK2 and CC. Based on survival analyses, the survivor functions for time to 10, 15 and 20% SEV (ts) were significantly different between OK1 and the other locations, with the probabilities of SEV reaching the thresholds being highest at OK1. LEAF at 21 days after Feekes 10.5 had a significant effect on ts at OK1. For every 5% increase in LEAF, the chance of SEV reaching the thresholds by day 21 increased by 30 to 55%.


Subject(s)
Epidemics , Magnaporthe , Ascomycota , Bolivia , Plant Diseases , Triticum
18.
Plant Dis ; 105(1): 114-126, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33197383

ABSTRACT

Gibberella ear rot (GER) severity (percent area of the ear diseased) and associated grain contamination with mycotoxins were quantified in plots of 15 to 16 maize hybrids planted at 10 Ohio locations from 2015 to 2018. Deoxynivalenol (DON) was quantified in grain samples in all 4 years, whereas nivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol (15ADON) were quantified only in the last 2 years. Only DON and 15ADON were detected. The highest levels of GER and DON contamination were observed for 2018, followed by 2016 and 2017. No GER symptoms or DON were detected in 2015. Approximately 41% of the samples from asymptomatic ears had detectable levels of DON, and 7% of these samples from 2016 had DON > 5 ppm. Associations between DON contamination and 43 variables representing summaries of temperature (T), relative humidity (RH), rainfall (R), surface wetness, and T-RH combinations for different window lengths and positions relative to R1 growth stage were quantified with Spearman correlation coefficients (r). Fifteen-day window lengths tended to show the highest correlations. Most of the variables based on T, R, RH, and T-RH were significantly correlated with DON for the 15-day window, as well as other windows. For moisture-related variables, there generally was a negative correlation before R1, changing to a positive correlation after R1. Results showed that GER and DON can be frequently found in Ohio maize fields, with the risk of DON being associated with multiple weather variables, particularly those representing combinations of T between 15 and 30°C and RH > 80 summarized during the 3 weeks after R1.


Subject(s)
Gibberella , Mycotoxins , Food Contamination/analysis , Ohio , Weather , Zea mays
19.
Plant Dis ; 104(11): 2817-2822, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32986537

ABSTRACT

On susceptible varieties, indirect damage to vines infected by Elsinoë ampelina range from reduced vigor to complete defoliation while, on berries, damage ranges from reduced quality to complete yield loss. Limited knowledge about the relationship between weather conditions and infection makes anthracnose management difficult and favors routine application of fungicides. The influence of leaf wetness duration and temperature on infection of grape leaves by E. ampelina was studied under both controlled and vineyard conditions. For the controlled conditions experiments, the five youngest leaves of potted vines (Vidal) were inoculated with a conidia suspension and exposed to combinations of six leaf wetness durations (from 0 to 24 h) and six constant temperatures (from 5 to 30°C). A week after each preset infection period, the percent leaf area diseased (PLAD) was assessed. At 5°C, regardless of the leaf wetness duration, no disease developed. At 10 and at 15 to 30°C, the minimum leaf wetness durations were 4 and 6 h, respectively. Above the minimum wetness duration, at temperatures from 10 to 30°C, PLAD increased linearly, with increasing leaf wetness up to 12 h, and then at a lower rate from 12 to 24 h. The optimal temperature for infection was 25°C. Relative infection was modeled as a function of both temperature and wetness duration using a Richards model (R2 = 0.93). The predictive capacity of the model was evaluated with data collected in experimental vineyard plots exposed to natural wetness durations or artificial wetness durations created using sprinklers. In total, 264 vineyard infection events were used to validate the controlled experiments model. There was a linear relationship between the risk of infection estimated with the model and the observed severity of anthracnose (R2 = 90); however, the model underestimated disease severity. A risk chart was constructed using the model corrected for vineyard observations and three levels of risk, with light, moderate, and severe risks corresponding to ≤5, >5% to ≤25, and >25% leaf area diseased, respectively. Overall, 93.9% of 132 independent observations were correctly classified, with 100, 29.4, and 9.4% of the light, moderate, and severe risks, respectively.


Subject(s)
Infections , Vitis , Farms , Humans , Plant Diseases , Plant Leaves , Temperature , Water
20.
Plant Dis ; 104(10): 2622-2633, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32804014

ABSTRACT

The Triticum pathotype of Magnaporthe oryzae (MoT) that causes wheat blast has not yet been reported in the U.S., but the closely related M. oryzae Lolium pathotype (MoL), also capable of inciting blast, is found in several wheat growing regions. Since the epidemiology of MoL-incited wheat blast is unknown, it is difficult to project where and under what conditions this pathogen may be of importance. To quantify conditions favorable for MoL infection and temporal development of wheat blast, separate cohorts of wheat spikes were spray or point inoculated at anthesis and immediately subjected to different combinations of temperature (TEMP; 20, 25, and 30°C) and 100% relative humidity (RH) duration (0, 3, 6, 12, 24, and 48 h). Blast developed under all tested conditions, with both incidence (INC) and severity (SEV) increasing over time. The effects of TEMP on angular-transformed INC and SEV (arcINC and arcSEV) were significant (P < 0.05) in most cases, with the magnitude of the TEMP effect influenced by RH duration when spikes were spray-inoculated. Between 12 and 21 days after inoculation (DAI), there were significant, positive linear relationships between hours of high RH and arcINC and arcSEV at 25 and 30°C, but not at 20°C. The estimated rates of increase in transformed INC or SEV per hour increase in high RH duration were significantly higher at 30°C than at 25°C at 12 to 14 DAI, but not at 19 to 21 DAI. The highest estimated temporal rates of increase in INC and SEV and the shortest estimated incubation periods (5 to 8 days) occurred at 25 and 30°C, with 24 and 48 h of high RH immediately after inoculation. These results will contribute to ongoing efforts to better understand the epidemiology of wheat blast incited by MoL as well as MoT.


Subject(s)
Lolium , Magnaporthe , Humidity , Plant Diseases , Temperature , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL