Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.215
Filter
1.
Article in English | MEDLINE | ID: mdl-39112615

ABSTRACT

BACKGROUND: The nucleus basalis of Meynert (NBM) is known to play a crucial role in the development and pathogenesis of Alzheimer's Disease (AD), particularly the cholinergic system within the NBM. However, the relationship between synaptic loss in the NBM and the clinical profile of AD remains unclear. METHODS: In our study, we included 44 Aß-negative normal controls (CN) and 76 Aß-positive participants with cognitive impairment (CI). All participants underwent structural and diffusion magnetic resonance imaging (MRI), as well as positron emission tomography (PET) imaging to measure synaptic vesicle glycoprotein 2 A (SV2A) levels (Trial registration: NCT05623124. Registered 21 November 2022). The SV2A standardized uptake value ratios (SUVR) distribution in the NBM of CN participants was used as the reference norm. We investigated the association between NBM synaptic density and clinical performance, traditional AD biomarkers, and white matter tracts that passed the NBM. RESULTS: Participants with cognitive impairment (CI) who had NBM synaptic density below 1.5 standard deviations (SD) or 0.5 SD of the norm exhibited worse cognitive performance compared to cognitively normal (CN) individuals. Crucially, the extent of deviation in synaptic density from the norm was directly proportional to the severity of cognitive impairment and neurodegeneration biomarkers. Furthermore, among patients with cognitive impairment, synaptic loss in the NBM was associated with potential impairment in the density and organization of neurites within the white matter tracts connected to the NBM. Finally, neurite density index in the medial tracts may play a mediating role in the relationship between NBM synaptic density and MMSE scores. CONCLUSION: The extent that synaptic density in NBM deviated from the norm suggested the extent of worse cognitive performance and severe neurodegeneration. Furthermore, cognitive impairment associated with synaptic loss in the NBM may be mediated by its pathological impact on NBM white matter tracts.

2.
J Cereb Blood Flow Metab ; : 271678X241270538, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113409

ABSTRACT

White matter hyperintensity (WMH) shape is associated with long-term dementia risk in community-dwelling older adults, however, the underlying structural correlates of this association are unknown. We therefore aimed to investigate the association between baseline WMH shape and cerebrovascular disease progression over time in community-dwelling older adults. The association of WMH shape and cerebrovascular disease markers was investigated using linear and logistic regression models in the Age, Gene/Environment Susceptibility-Reykjavik (AGES) study (n = 2297; average time to follow-up: 5.2 years). A more irregular shape of periventricular/confluent WMH at baseline was associated with a larger increase in WMH volume, and with occurrence of new subcortical infarcts, new microbleeds, new enlarged perivascular spaces, and new cerebellar infarcts at the 5.2-year follow-up (all p < 0.05). Furthermore, less elongated and more irregularly shaped deep WMHs were associated with a larger increase in WMH volume, and new cortical infarcts at follow-up (p < 0.05). A less elongated shape of deep WMH was associated with new microbleeds at follow-up (p < 0.05). Our findings show that WMH shape may be indicative of the type of cerebrovascular disease marker progression. This underlines the significance of WMH shape to aid in the assessment of cerebrovascular disease progression.

3.
Geroscience ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115640

ABSTRACT

Brain magnetic resonance imaging frequently reveals white matter lesions (WMLs) in older adults. They are often associated with cognitive impairment and risk of dementia. Given the continuous search for the optimal segmentation algorithm, we broke down this question by exploring whether the output of algorithms frequently used might be biased by the presence of different influencing factors. We studied the impact of age, sex, blood glucose levels, diabetes, systolic blood pressure and hypertension on automatic WML segmentation algorithms. We evaluated three widely used algorithms (BIANCA, LPA and LGA) using the population-based 1000BRAINS cohort (N = 1166, aged 18-87, 523 females, 643 males). We analysed two main aspects. Firstly, we examined whether training data (TD) characteristics influenced WML estimations, assessing the impact of relevant factors in the TD. Secondly, algorithm's output and performance within selected subgroups defined by these factors were assessed. Results revealed that BIANCA's WML estimations are influenced by the characteristics present in the TD. LPA and LGA consistently provided lower WML estimations compared to BIANCA's output when tested on participants under 67 years of age without risk cardiovascular factors. Notably, LPA and LGA showed reduced accuracy for these participants. However, LPA and LGA showed better performance for older participants presenting cardiovascular risk factors. Results suggest that incorporating comprehensive cohort factors like diverse age, sex and participants with and without hypertension in the TD could enhance WML-based analyses and mitigate potential sources of bias. LPA and LGA are a fast and valid option for older participants with cardiovascular risk factors.

4.
Transl Stroke Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103659

ABSTRACT

White matter injury (WMI) subsequent to subarachnoid hemorrhage (SAH) frequently leads to an unfavorable patient prognosis. Previous studies have indicated that microglial M1 polarization following SAH results in the accumulation of amyloid precursor protein (APP) and degradation of myelin basic protein (MBP), thereby catalyzing the exacerbation of WMI. Consequently, transitioning microglial polarization towards the M2 phenotype (neuroprotective state) represents a potential therapeutic approach for reversing WMI. The SIRT2 gene is pivotal in neurological disorders such as neurodegeneration and ischemic stroke. However, its function and underlying mechanisms in SAH, particularly how it influences microglial function to ameliorate WMI, remain unclear. Our investigations revealed that in post-SAH, there was a temporal increase in SIRT2 expression, predominantly in the cerebral corpus callosum area, with notable colocalization with microglia. However, following the administration of the SIRT2 inhibitor AK-7, a shift in microglial polarization towards the M2 phenotype and an improvement in both short-term and long-term neuronal functions in rats were observed. Mechanistically, CO-IP experiments confirmed that SIRT2 can interact with the receptor tyrosine kinase Axl within the TAM receptor family and act as a deacetylase to regulate the deacetylation of Axl. Concurrently, the inhibition of SIRT2 by AK-7 can lead to increased expression of Axl and activation of the anti-inflammatory pathway PI3K/Akt signaling pathway, which regulates microglial M2 polarization and consequently reduces WMI. However, when Axl expression was inhibited by the injection of the shAxl virus into the lateral ventricles, the downstream signaling pathways were significantly suppressed. Rescue experiments also confirmed that the neuroprotective effects of AK-7 can be reversed by PI3K inhibitors. These data suggest that SIRT2 influences WMI by affecting microglial polarization through the Axl/PI3K/AKT pathway, and that AK-7 could serve as an effective therapeutic drug for improving neurological functions in SAH patients.

5.
Front Pediatr ; 12: 1426874, 2024.
Article in English | MEDLINE | ID: mdl-39105161

ABSTRACT

Objective: To examine whether variation of regional cerebral oxygen saturation (rScO2) within three days after delivery predicts development of brain injury (intraventricular/cerebellar hemorrhage or white matter injury) in preterm infants. Study design: A prospective study of neonates <32 weeks gestational age with normal cranial ultrasound admitted between 2018 and 2022. All received rScO2 monitoring with near-infrared spectroscopy at admission up to 72 h of life. To assess brain injury a magnetic resonance imaging was performed at term-equivalent age. We assessed the association between rScO2 variability (short-term average real variability, rScO2ARV, and standard deviation, rScO2SD), mean rScO2 (rScO2MEAN), and percentage of time rScO2 spent below 60% (rScO2TIME<60%) during the first 72 h of life and brain injury. Results: The median [IQR] time from birth to brain imaging was 68 [59-79] days. Of 81 neonates, 49 had some form of brain injury. Compared to neonates without injury, in those with injury rScO2ARV was higher during the first 24 h (P = 0.026); rScO2SD was higher at 24 and 72 h (P = 0.029 and P = 0.030, respectively), rScO2MEAN was lower at 48 h (P = 0.042), and rScO2TIME<60% was longer at 24, 48, and 72 h (P = 0.050, P = 0.041, and P = 0.009, respectively). Similar results were observed in multivariable logistic regression. Although not all results were statistically significant, increased rScO2 variability (rScO2ARV and rScO2SD) and lower mean values of rScO2 were associated with increased likelihood of brain injury. Conclusions: In preterm infants increased aberration of rScO2 in early postdelivery period was associated with an increased likelihood of brain injury diagnosis at term-equivalent age.

6.
Neuroimage Clin ; 43: 103646, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39106542

ABSTRACT

BACKGROUND AND OBJECTIVES: After a concussion diagnosis, the most important issue for patients and loved ones is how long it will take them to recover. The main objective of this study is to develop a prognostic model of concussion recovery. This model would benefit many patients worldwide, allowing for early treatment intervention. METHODS: The Concussion Assessment, Research and Education (CARE) consortium study enrolled collegiate athletes from 30 sites (NCAA athletic departments and US Department of Defense service academies), 4 of which participated in the Advanced Research Core, which included diffusion-weighted MRI (dMRI) data collection. We analyzed the dMRI data of 51 injuries of concussed athletes scanned within 48 h of injury. All athletes were cleared to return-to-play by the local medical staff following a standardized, graduated protocol. The primary outcome measure is days to clearance of unrestricted return-to-play. Injuries were divided into early (return-to-play < 28 days) and late (return-to-play >= 28 days) recovery based on the return-to-play clinical records. The late recovery group meets the standard definition of Persisting Post-Concussion Symptoms (PPCS). Data were processed using automated, state-of-the-art, rigorous methods for reproducible data processing using brainlife.io. All processed data derivatives are made available at https://brainlife.io/project/63b2ecb0daffe2c2407ee3c5/dataset. The microstructural properties of 47 major white matter tracts, 5 callosal, 15 subcortical, and 148 cortical structures were mapped. Fractional Anisotropy (FA) and Mean Diffusivity (MD) were estimated for each tract and structure. Correlation analysis and Receiver Operator Characteristic (ROC) analysis were then performed to assess the association between the microstructural properties and return-to-play. Finally, a Logistic Regression binary classifier (LR-BC) was used to classify the injuries between the two recovery groups. RESULTS: The mean FA across all white matter volume was negatively correlated with return-to-play (r = -0.38, p = 0.00001). No significant association between mean MD and return-to-play was found, neither for FA nor MD for any other structure. The mean FA of 47 white matter tracts was negatively correlated with return-to-play (rµ = -0.27; rσ = 0.08; rmin = -0.1; rmax = -0.43). Across all tracts, a large mean ROC Area Under the Curve (AUCFA) of 0.71 ± 0.09 SD was found. The top classification performance of the LR-BC was AUC = 0.90 obtained using the 16 statistically significant white matter tracts. DISCUSSION: Utilizing a free, open-source, and automated cloud-based neuroimaging pipeline and app (https://brainlife.io/docs/tutorial/using-clairvoy/), a prognostic model has been developed, which predicts athletes at risk for slow recovery (PPCS) with an AUC=0.90, balanced accuracy = 0.89, sensitivity = 1.0, and specificity = 0.79. The small number of participants in this study (51 injuries) is a significant limitation and supports the need for future large concussion dMRI studies and focused on recovery.

7.
Comput Biol Med ; 180: 108936, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39106675

ABSTRACT

BACKGROUND: Segmentation of white matter hyperintensities (WMH) in CADASIL, one of the most severe cerebral small vessel disease of genetic origin, is challenging. METHOD: We adapted and validated an automatic method based on a convolutional neural network (CNN) algorithm and using a large dataset of 2D and/or 3D FLAIR and T1-weighted images acquired in 132 patients, to measure the progression of WMH in this condition. RESULTS: The volume of WMH measured using this method correlated strongly with reference data validated by experts. WMH segmentation was also clearly improved compared to the BIANCA segmentation method. Combining two successive learning models was found to be of particular interest, reducing the number of false-positive voxels and the extent of under-segmentation detected after a single-stage process. With the two-stage approach, WMH progression correlated with measures derived from the reference masks for lesions increasing with age, and with the variable WMH progression trajectories at individual level. We also confirmed the expected effect of the initial load of WMH and the influence of the type of MRI acquisition on measures of this progression. CONCLUSION: Altogether, our findings suggest that WMH progression in CADASIL can be measured automatically with adequate confidence by a CNN segmentation algorithm.

8.
Front Neurosci ; 18: 1378841, 2024.
Article in English | MEDLINE | ID: mdl-39114487

ABSTRACT

Ibogaine is a psychedelic alkaloid being investigated as a possible treatment for opioid use disorder. Ibogaine has a multi-receptor profile with affinities for mu and kappa opioid as well as NMDA receptors amongst others. Due to the sparsity of research into ibogaine's effects on white matter integrity and given the growing evidence that opioid use disorder is characterized by white matter pathology, we set out to investigate ibogaine's effects on two markers of myelination, 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP). Fifty Sprague Dawley rats were randomly assigned to five experimental groups of n = 10; (1) a saline control group received daily saline injections for 10 days, (2) a morphine control group received escalating morphine doses from 5 to 15 mg/kg over 10 days, (3) an ibogaine control group that received 10 days of saline followed by 50 mg/kg ibogaine hydrochloride, (4) a combination morphine and ibogaine group 1 that received the escalating morphine regime followed by 50 mg/kg ibogaine hydrochloride and (5) a second combination morphine and ibogaine group 2 which followed the same morphine and ibogaine regimen yet was terminated 72 h after administration compared to 24 h in the other groups. White matter from the internal capsule was dissected and qPCR and western blotting determined protein and gene expression of CNP and MBP. Morphine upregulated CNPase whereas ibogaine alone had no effect on CNP mRNA or protein expression. However, ibogaine administration following repeated morphine administration had an immediate effect by increasing CNP mRNA expression. This effect diminished after 72 h and resulted in a highly significant upregulation of CNPase protein at 72 h post administration. Ibogaine administration alone significantly upregulated protein expression yet downregulated MBP mRNA expression. Ibogaine administration following repeated morphine administration significantly upregulated MBP mRNA expression which increased at 72 h post administration resulting in a highly significant upregulation of MBP protein expression at 72 h post administration. These findings indicate that ibogaine is able to upregulate genes and proteins involved in the process of remyelination following opioid use and highlights an important mechanism of action of ibogaine's ability to treat substance use disorders.

9.
Biol Psychiatry ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117167

ABSTRACT

Maternal prenatal depression can affect child brain and behavioural development. Specifically, altered limbic network structure and function is a likely mechanism through which prenatal depression impacts the life-long mental health of exposed children. While developmental trajectories are influenced by many factors that exacerbate risk or promote resiliency, the role of child age and sex in the relationship between prenatal depression and the child brain remains unclear. Here, we review studies of associations between prenatal depression and brain structure and function, with a focus on the role of age and sex in these relationships. After exposure to prenatal depression, altered amygdala, hippocampal and frontal cortical structure, as well as changes in functional and structural connectivity within the limbic network are evident during the fetal, infant, preschool, childhood, and adolescent stages of development. Sex appears to play a key role in this relationship, with evidence of differential findings particularly in infants, with males showing smaller and females larger hippocampal and amygdala volumes following prenatal depression. Longitudinal studies in this area have only begun to emerge within the last five years and will be key to understanding critical windows of opportunity. Future research focused on the role of age and sex in this relationship is essential to further inform screening, policy, and interventions for children exposed to prenatal depression, interrupt the intergenerational transmission of depression, and ultimately support healthy brain development.

10.
Cureus ; 16(7): e64335, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39130881

ABSTRACT

This case report presents a 23-year-old male diagnosed with Charcot-Marie-Tooth (CMT) disease, who exhibited additional neurological symptoms suggestive of leukodystrophy. The patient experienced recurrent episodes of slurred speech, imbalance, and a recent tonic-clonic seizure, prompting admission. Neurological examination and imaging revealed bilateral white matter changes, raising suspicion of leukoencephalopathy. Further investigations confirmed a nonsense mutation c.64C>T (p.Arg22*) in the gap junction beta 1 (GJB1) gene. This case underscores the complexity of Charcot-Marie-Tooth disease type 1 (CMTX1) with atypical central nervous system (CNS) manifestations, highlighting the importance of comprehensive diagnostic evaluations and a multidisciplinary approach to management.

11.
Cureus ; 16(8): e66475, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39132091

ABSTRACT

Cerebral amyloid angiopathy-related inflammation (CAA-ri) is a rare condition primarily driven by an autoimmune reaction against cerebrovascular amyloid beta protein. Accurate diagnosis hinges on recognizing characteristic clinical symptoms and imaging features, such as asymmetric cerebral white matter lesions often linked to angioedema. We report the case of a woman in her 70s with progressive, irreversible CAA-ri who initially presented with left homonymous hemianopia and experienced significant psychiatric and neurological deterioration following an epileptic seizure. Despite initiating corticosteroid therapy seven months after onset, her condition continued to worsen, ultimately leading to her death in the 11th month due to general decline. This report reviews the clinical progression and imaging findings of the case, discusses the diagnostic process for CAA-ri, differentiates it from related conditions, and evaluates the timing of corticosteroid treatment.

12.
Biol Psychiatry Glob Open Sci ; 4(4): 100323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39132576

ABSTRACT

Background: During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods: We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results: Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions: We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.


In their study, Korbmacher et al. benchmark healthy aging processes in the brain's white matter. Findings of degrading white matter at higher ages were consistent with recent cross-sectional and longitudinal findings, particularly outlining changes in ventricle-near and cerebellar white matter. Degenerative processes were also found to accelerate at a higher age. Finally, the polygenic risk to develop psychiatric and neurodegenerative disorders was weakly associated with the white matter change in the otherwise healthily aging participants.

13.
Psychiatry Investig ; 21(8): 850-859, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39111744

ABSTRACT

OBJECTIVE: White matter hyperintensities (WMH) are common among the elderly. Although WMH play a key role in lowering the threshold for the clinical expression of dementia in Alzheimer's disease (AD)-related pathology, the clinical significance of their location is not fully understood. This study aimed to investigate the association between WMH and cognitive function according to the location of WMH in AD. METHODS: Subjects underwent clinical evaluations including volumetric brain magnetic resonance imaging study and neuropsychological tests using the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Assessment Packet. WMH were calculated using automated quantification method. According to the distance from the lateral ventricular surface, WMH within 3 mm, WMH within 3-13 mm, and WMH over 13 mm were classified as juxtaventricular WMH (JVWMH), periventricular WMH (PVWMH), and deep WMH (DWMH), respectively. RESULTS: Total WMH volume was associated with poor performance in categorical verbal fluency test (ß=-0.197, p=0.035). JVWMH volume was associated with poor performances on categorical verbal fluency test (ß=-0.201, p=0.032) and forward digit span test (ß= -0.250, p=0.012). PVWMH volume was associated with poor performances on categorical verbal fluency test (ß=-0.185, p=0.042) and word list memory test (ß=-0.165, p=0.042), whereas DWMH volume showed no association with cognitive tests. PVWMH volume were also related to Clinical Dementia Rating Scale Sum of Boxes score (ß=0.180, p=0.026). CONCLUSION: WMH appear to exhibit different associations with the severity of dementia and cognitive impairment according to the distance from ventricle surface in AD.

14.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125683

ABSTRACT

Age-dependent cerebral small vessel disease (CSVD) is a common disease with a high social burden characterized by heterogeneity of forms and frequent comorbidity with Alzheimer's disease (AD). Previously, we identified two MRI types of CSVD with specific clinical presentation and, probably, different mechanisms. The present study included 34 patients with CSVD and white matter hyperintensity (WMH) of stage Fazekas (F) 3 (mean age 61.7 ± 8.9) and 11 volunteers (mean age 57.3 ± 9.7). Total RNA was isolated from peripheral blood leukocytes. The expression of 58 protein-coding genes associated with CSVD and/or AD and 4 reference genes were assessed as part of the original panel for the NanoString nCounter analyzer. Testing results were validated by real-time PCR. There was a significant decrease in the expression levels of the ACOX1, CD33, CD2AP, TNFR1, and VEGFC genes in MRI type 2 relative to the control group as well as a decrease in the expression level of the CD33 gene in MRI type 2 compared to MRI type 1. Processes associated with inflammatory pathways with decreased expression of the identified genes are important in the development of MRI type 2 of CSVD. Given the direct connection of the established genes with AD, the importance of this form of CSVD in comorbidity with AD has been assumed.


Subject(s)
Cerebral Small Vessel Diseases , Magnetic Resonance Imaging , Humans , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Female , Male , Middle Aged , Aged , Inflammation/genetics , Inflammation/pathology , Gene Expression Regulation , Alzheimer Disease/genetics , Alzheimer Disease/pathology
15.
Int J Mol Sci ; 25(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125778

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy is the most common cause of long-term disability in term neonates, and white matter injury is the primary cause of cerebral palsy. Therapies that focus on the neuroprotection of myelination and oligodendrocyte proliferation could potentially ameliorate long-lasting neurological impairments after hypoxic-ischemic encephalopathy. Clemastine, a histamine H1 antagonist, has been shown to exert neuroprotective effects in multiple sclerosis and spinal cord injury by promoting oligodendrogenesis and re-myelination. In this study, we demonstrated the neuroprotective effects of clemastine in our rat model of neonatal hypoxic-ischemic brain injury. Animals received a single intraperitoneal injection of either vehicle or clemastine (10 mg/kg) for 6 consecutive days. Our results showed a significant reduction in white matter loss after treatment, with a clear effect of clemastine on oligodendrocytes, showing a significant increase in the number of Olig2+ cells. We characterized the MAPK/ERK pathway as a potential mechanistic pathway underlying the neuroprotective effects of clemastine. Altogether, our results demonstrate that clemastine is a potential compound for the treatment of hypoxic-ischemic encephalopathy, with a clear neuroprotective effect on white matter injury by promoting oligodendrogenesis.


Subject(s)
Animals, Newborn , Cell Proliferation , Clemastine , Disease Models, Animal , Hypoxia-Ischemia, Brain , MAP Kinase Signaling System , Neuroprotective Agents , Oligodendroglia , Animals , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Rats , Clemastine/pharmacology , MAP Kinase Signaling System/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley
16.
J Psychiatr Res ; 178: 107-113, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39128219

ABSTRACT

In the field of autism spectrum disorder (ASD), research on functional connectivity between gray matter and white matter remains under-researched. To address this gap, this study innovatively introduced a nested cross-validation method that integrates gray-white matter functional connectivity with an F-Score algorithm. This method calculates the correlation based on signals extracted from functional magnetic resonance imaging data using gray matter and white matter brain region templates. After applying the method to a New York University Langone Medical Center dataset consisting of 55 individuals with high-functioning ASD and 52 healthy subjects, we achieved a classification accuracy of 72.94%. This study found abnormal functional connectivity, primarily involving the left anterior prefrontal cortex and right superior corona radiata, left retrosplenial cortex and left superior corona radiata, as well as the left ventral anterior cingulate cortex and body of corpus callosum. Besides, we discovered that these abnormal connections are closely related to social impairment and restrictive and repetitive behaviors in ASD. In conclusion, this study provides a gray-white matter functional connectivity perspective for the diagnosis and understanding of ASD.

17.
J Stroke Cerebrovasc Dis ; : 107923, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128500

ABSTRACT

OBJECTIVE: Neuroticism was found to be associated with cerebral small vessel disease (CSVD) in observational studies. We aimed to explore the causal relationship between distinct components of neuroticism and CSVD. METHODS: Two-sample mendelian randomization (MR) study was conducted to explore the bidirectional causal relationships between three genetically distinct subclusters of neuroticism (depressed affect, worry, and sensitivity to environmental stress and adversity [SESA]) and MRI markers of CSVD using publicly available genome-wide association studies (GWAS) data. Inverse variance weighted (IVW) method was used for the primary causal estimates. Alternative MR approaches and extensive sensitivity analyses were conducted to ensure the robustness of the findings. Multivariable MR (MVMR) analysis was used to estimate the direct causal effects with adjustment of other known risk factors for CSVD. RESULTS: Genetically determined SESA was significantly associated with reduced fractional anisotropy (FA) (beta: -1.94, 95%CI: -3.04 to -0.84, p=5.29e-4), and associated with increased mean diffusivity (MD) (beta=1.55, 95%CI: 0.29 to 2.81, p=0.016) and white matter hyperintensities (WMH) (beta=0.25, 95% CI: 0.03 to 0.47, p=0.029) at the nominally significant level. MVMR analysis suggested the significant associations remained significant after accounting for body mass index (BMI), smoking, alcohol drinking, type 2 diabetes (T2D), hypertension, and depression. The other two neuroticism subclusters (depressed affect and worry) didn't have significant causal effects on the MRI markers. In the reverse MR analysis with the MRI markers as exposures, no significant associations were found. CONCLUSION: This study supported the casual role of SESA in the development of CSVD. Further research to explore the underlying mechanism are warranted.

18.
J Physiol ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129269

ABSTRACT

It is a paradox of neurological rehabilitation that, in an era in which preclinical models have produced significant advances in our mechanistic understanding of neural plasticity, there is inadequate support for many therapies recommended for use in clinical practice. When the goal is to estimate the probability that a specific form of therapy will have a positive clinical effect, the integration of mechanistic knowledge (concerning 'the structure or way of working of the parts in a natural system') may improve the quality of inference. This is illustrated by analysis of three contemporary approaches to the rehabilitation of lateralized dysfunction affecting people living with stroke: constraint-induced movement therapy; mental practice; and mirror therapy. Damage to 'cross-road' regions of the structural (white matter) brain connectome generates deficits that span multiple domains (motor, language, attention and verbal/spatial memory). The structural integrity of these regions determines not only the initial functional status, but also the response to therapy. As structural disconnection constrains the recovery of functional capability, 'disconnectome' modelling provides a basis for personalized prognosis and precision rehabilitation. It is now feasible to refer a lesion delineated using a standard clinical scan to a (dis)connectivity atlas derived from the brains of other stroke survivors. As the individual disconnection pattern thus obtained suggests the functional domains most likely be compromised, a therapeutic regimen can be tailored accordingly. Stroke is a complex disorder that burdens individuals with distinct constellations of brain damage. Mechanistic knowledge is indispensable when seeking to ameliorate the behavioural impairments to which such damage gives rise.

19.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129270

ABSTRACT

INTRODUCTION: Frontotemporal dementia (FTD) can be phenotypically divided into behavioral variant FTD (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA). However, the neural underpinnings of this phenotypic heterogeneity remain elusive. METHODS: Cortical morphology, white matter hyperintensities (WMH), diffusion tensor image analysis along the perivascular space (DTI-ALPS), and their interrelationships were assessed in subtypes of FTD. Neuroimaging-transcriptional analyses on the regional cortical morphological deviances among subtypes were also performed. RESULTS: Changes in cortical thickness, surface area, gyrification, WMH, and DTI-ALPS were subtype-specific in FTD. The three morphologic indices are related to whole-brain WMH volume and cognitive performance, while cortical thickness is related to DTI-ALPS. Neuroimaging-transcriptional analyses identified key biological pathways linked to the formation and/or spread of TDP-43/tau pathologies. DISCUSSION: We found subtype-specific changes in cortical morphology, WMH, and glymphatic function in FTD. Our findings have the potential to contribute to the development of personalized predictions and treatment strategies for this disorder. HIGHLIGHTS: Cortical morphologic changes, white matter hyperintensities (WMH), and glymphatic dysfunction are subtype-specific. Cortical morphologic changes, WMH, and glymphatic dysfunction are inter-correlated. Cortical morphologic changes and WMH burden contribute to cognitive impairments.

20.
Alzheimers Dement ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132759

ABSTRACT

INTRODUCTION: We investigated the associations of leptin markers with cognitive function and magnetic resonance imaging (MRI) measures of brain atrophy and vascular injury in healthy middle-aged adults. METHODS: We included 2262 cognitively healthy participants from the Framingham Heart Study with neuropsychological evaluation; of these, 2028 also had available brain MRI. Concentrations of leptin, soluble leptin receptor (sOB-R), and their ratio (free leptin index [FLI]), indicating leptin bioavailability, were measured using enzyme-linked immunosorbent assays. Cognitive and MRI measures were derived using standardized protocols. RESULTS: Higher sOB-R was associated with lower fractional anisotropy (FA, ß = -0.114 ± 0.02, p < 0.001), and higher free water (FW, ß = 0.091 ± 0.022, p < 0.001) and peak-width skeletonized mean diffusivity (PSMD, ß = 0.078 ± 0.021, p < 0.001). Correspondingly, higher FLI was associated with higher FA (ß = 0.115 ± 0.027, p < 0.001) and lower FW (ß = -0.096 ± 0.029, p = 0.001) and PSMD (ß = -0.085 ± 0.028, p = 0.002). DISCUSSION: Higher leptin bioavailability was associated with better white matter (WM) integrity in healthy middle-aged adults, supporting the putative neuroprotective role of leptin in late-life dementia risk. HIGHLIGHTS: Higher leptin bioavailability was related to better preservation of white matter microstructure. Higher leptin bioavailability during midlife might confer protection against dementia. Potential benefits might be even stronger for individuals with visceral obesity. DTI measures might be sensitive surrogate markers of subclinical neuropathology.

SELECTION OF CITATIONS
SEARCH DETAIL