Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Ecol Evol Physiol ; 97(1): 11-28, 2024.
Article in English | MEDLINE | ID: mdl-38717370

ABSTRACT

AbstractSeasonally breeding birds express variations of traits (phenotypic flexibility) throughout their life history stages that represent adaptations to environmental conditions. Changes of body condition during migration have been well studied, whereas alterations of skeletal and cardiac muscles, body mass, and fat scores have yet to be characterized throughout the spring or fall migratory stages. Additionally, we examined flexible patterns of muscle, body mass, and fat score in migrant white-crowned sparrows (Zonotrichia leucophrys gambelii) in comparison with those in a resident subspecies (Zonotrichia leucophrys nuttalli) during the stages they share to evaluate the influence of different life histories. Migrants showed hypertrophy of the pectoralis muscle fiber area on the wintering grounds in late prealternate molt, yet increased pectoralis muscle mass was not detected until birds readied for spring departure. While pectoralis profile and fat scores enlarged at predeparture in spring and fall, pectoralis, cardiac, and body masses were greater only in spring stages, suggesting seasonal differences for migratory preparation. Gastrocnemius mass showed little change throughout all stages, whereas gastrocnemius fiber area declined steadily but rebounded in fall on the wintering grounds, where migrants become more sedentary. In general, residents are heavier birds with larger leg structures, while migrants sport longer wings and greater heart mass. Phenotypic flexibility was most prominent among residents with peaks of pectoralis, gastrocnemius, and body masses during the winter stage, when local weather is most severe. Thus, the subspecies express specific patterns of phenotypic flexibility with peaks coinciding with the stages of heightened energy demands: the winter stage for residents and the spring stages for migrants.


Subject(s)
Animal Migration , Muscle, Skeletal , Phenotype , Seasons , Sparrows , Animals , Animal Migration/physiology , Muscle, Skeletal/physiology , Body Composition/physiology , Male , Pectoralis Muscles/physiology , Female
2.
Ecol Evol ; 11(17): 11700-11717, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34522334

ABSTRACT

Ecological, environmental, and geographic factors all influence genetic structure. Species with broad distributions are ideal systems because they cover a range of ecological and environmental conditions allowing us to test which components predict genetic structure. This study presents a novel, broad geographic approach using molecular markers, morphology, and habitat modeling to investigate rangewide and local barriers causing contemporary genetic differentiation within the geographical range of three white-crowned sparrow (Zonotrichia leucophrys) subspecies: Z. l. gambelii, Z. l. oriantha, and Z. l. pugetensis. Three types of genetic markers showed geographic distance between sampling sites, elevation, and ecosystem type are key factors contributing to population genetic structure. Microsatellite markers revealed white-crowned sparrows do not group by subspecies, but instead indicated four groupings at a rangewide scale and two groupings based on coniferous and deciduous ecosystems at a local scale. Our analyses of morphological variation also revealed habitat differences; sparrows from deciduous ecosystems are larger than individuals from coniferous ecosystems based on principal component analyses. Habitat modeling showed isolation by distance was prevalent in describing genetic structure, but isolation by resistance also had a small but significant influence. Not only do these findings have implications concerning the accuracy of subspecies delineations, they also highlight the critical role of local factors such as habitat in shaping contemporary population genetic structure of species with high dispersal ability.

3.
Microb Ecol ; 81(1): 253-266, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32803364

ABSTRACT

Habitats are changing rapidly around the globe and urbanization is one of the primary drivers. Urbanization changes food availability, environmental stressors, and the prevalence of disease for many species. These changes can lead to divergence in phenotypic traits, including behavioral, physiological, and morphological features between urban and rural populations. Recent research highlights that urbanization is also changing the gut microbial communities found in a diverse group of host species. These changes have not been uniform, leaving uncertainty as to how urban habitats are shaping gut microbial communities. To better understand these effects, we investigated the gut bacterial communities of White-Crowned Sparrow (Zonotrichia leucophrys) populations along an urbanization gradient in the San Francisco Bay area. We examined how gut bacterial communities vary with the local environment and host morphological characteristics. We found direct effects of environmental factors, including urban noise levels and territory land cover, as well as indirect effects through body size and condition, on alpha and beta diversity of gut microbial communities. We also found that urban and rural birds' microbiomes differed in which variables predicted their diversity, with urban communities driven by host morphology, and rural communities driven by environmental factors. Elucidating these effects provides a better understanding of how urbanization affects wild avian physiology.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome/genetics , Sparrows/microbiology , Urbanization , Animals , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Ecosystem , Male , Noise/adverse effects , RNA, Ribosomal, 16S/genetics , Rural Population/statistics & numerical data , San Francisco , Urban Population/statistics & numerical data , Wilderness
4.
Gen Comp Endocrinol ; 292: 113462, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32171744

ABSTRACT

There is a renewed interest in investigating individual variation in hormone levels in relation to fitness metrics, as hormones act as mediators of life-history trade-offs. Hormone concentrations, however, are labile, responding to both internal and external stimuli, so the relationship between hormones and fitness can be non-consistent. One explanation of this inconsistent relationship is that a single hormone sample may not be representative of individual phenotypes in a free-living species. We addressed this issue by repeatedly sampling a free-living population of mountain white-crowned sparrows, Zonotrichia leucophrys oriantha, for baseline and stress-induced corticosterone (cort) and testosterone (T) across different stages of the breeding season. We measured (co)variation using three different methods, taking into account inter- and intra-individual variances, to determine whether hormone levels and the stress response are repeatable. We documented the temporal (over 3 months) and spatial (home-range) variation of individual hormone phenotypes and investigated how these components related to nesting success. At the population level, we found significant repeatability in male stress-induced cort concentrations but no repeatability in male or female baseline cort or male T concentrations. Using a new metric of intra-individual variance focusing on the stress response (profile repeatability), we found a wide range of variance scores, with most individuals showing high variation in their stress response. Similarly, we found a low level of repeatability of the reaction norm intercept and slope for the stress response across different life-history stages. Males with higher concentrations of stress-induced cort had more central home-ranges. Males with higher body condition had larger home-ranges; however, home-range size did not relate to male hormone concentrations or nesting success. We also did not find any significant relationship between variation in hormone levels and nesting success. We recommend that future studies combine both physiological and environmental components to better understand the relationship between hormones and fitness.


Subject(s)
Hormones/metabolism , Nesting Behavior , Sparrows/physiology , Animals , Corticosterone/metabolism , Female , Homing Behavior , Male , Reproducibility of Results , Testosterone/metabolism , Time Factors
5.
Behav Processes ; 163: 24-31, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29462650

ABSTRACT

Behavioral ontogeny involves the interaction of innate predispositions and experience. In bird song learning, one approach to exploring this interaction is to examine the songs rehearsed by young birds whose exposure to tutor models has been carefully controlled. Here, I analyzed the rehearsed repertoire in Nuttall's white-crowned sparrows (Zonotrichia leucophrys nuttalli) tutored with individual phrases of conspecific and heterospecific songs. The proportions of phrase types rehearsed indicate that the learning biases evident in crystallized song are manifest early on, suggesting preferential memorization rather than preferential retention during attrition. The proportion of songs beginning with whistles increased during song rehearsal and phrase sequence variability decreased, consistent with the idea that innate syntax specifications guide song rehearsal. Single-phrase tutored birds overproduced phrases to the same extent previously observed in birds tutored with full, normal song but retained fewer phrase types in their crystallized repertoires. This suggests that in this subspecies, acquired syntax information does not affect the number of phrase types memorized and rehearsed but does affect repertoire attrition at the end of the sensorimotor phase. I discuss these results with a focus on the action of innate templates in song development and subspecies differences in this process.


Subject(s)
Learning , Sparrows , Vocalization, Animal , Animals , Male
6.
Brain Res ; 1687: 104-116, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29510141

ABSTRACT

Extra-retinal, non-pineal, encephalic photoreceptors (EP) play important roles in mediating development of the reproductive system by the annual change in day length (photoperiodic gonadal response - PGR) in birds. However, the distribution of rhodopsin-like EPs and their functional daily, circadian and seasonal changes are still unclear in the avian brain. This study identifies two novel groups of rhodopsin-immunoreactive cells in the nucleus paraventricularis magnocellularis (PVN) of the hypothalamus and in the medial basal hypothalamus (MBH) in a seasonally breeding species, Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii). In the PVN, rhodopsin-ir cell number showed both daily and circadian changes with more labeled cells apparent in the night phase in photosensitive birds, while only circadian changes were observed involving fewer labeled cells in the night phase in photorefractory birds. Single long day photo-stimulation significantly decreased the rhodopsin-ir cell number only in photosensitive birds, coincident with a rise in plasma levels of luteinizing hormone (LH). In the MBH, rhodopsin-ir cell number did not show daily, circadian or single long day induced changes in either photoperiodic states. But, overall these rhodopsin expressing neurons significantly increased from photosensitive to photorefractory states. In the median eminence (ME), more intense rhodopsin-ir was detected in photorefractory birds compared to photosensitive birds. For expression of GnRH and vasoactive intestinal polypeptide (VIP), seasonal differences were found with opposite relationships, consistent with previous studies. Our results suggest different roles of the two groups of rhodopsin-like EPs in the regulation of PGR in white-crowned sparrows.


Subject(s)
Circadian Rhythm , Hypothalamus, Middle/cytology , Intralaminar Thalamic Nuclei/cytology , Photoreceptor Cells/metabolism , Rhodopsin/metabolism , Seasons , Animals , Gonadotropin-Releasing Hormone/metabolism , Sparrows/physiology , Vasoactive Intestinal Peptide/metabolism
7.
Conserv Physiol ; 5(1): cox054, 2017.
Article in English | MEDLINE | ID: mdl-28959450

ABSTRACT

Many species that use or require early-successional forest are of conservation concern, including a number of songbirds that have experienced long-term population declines. In this study, our initial goal was to test whether herbicide application intensity was linked to offspring sex ratio in the White-crowned Sparrow (Zonotrichia leucophrys), a species that requires early-successional forest within forested landscapes. However, a rapid and accurate method using direct PCR to sex a large sample of birds (n > 1000 individuals) was unavailable, so our secondary goal was to develop a new approach for rapidly determine offspring sex. We obtained blood samples from sparrow young during the 2013-2014 breeding seasons in regenerating conifer plantations that were treated with one of four treatments (i.e. light, moderate, and intensive herbicide application, or no-spray control). We then optimized a protocol that used a commercially available, direct PCR kit to amplify sex-specific fragments of the CHD (chromo-helicase-DNA-binding) genes directly from whole blood stored in lysis buffer. Using this approach, we found no evidence that offspring sex ratio was linked to herbicide application intensity or to food availability across herbicide treatments. Our molecular sexing technique was 100% accurate when validated on known-sex adults, and 99.9% of our blood samples amplified successfully after being stored in lysis buffer stored for up to 3 years. The application of direct PCR for sexing birds eliminated the need for DNA extraction and substantially reduced sample processing time, cost, and the opportunity for errors during the extraction step. We conclude that forest herbicide application intensity does not influence sparrow offspring sex ratio in our study system, and that our approach provides a rapid, accurate, and tractable method for sexing birds that can facilitate studies that require processing of a large number of samples.

8.
Oecologia ; 185(1): 69-80, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28779226

ABSTRACT

Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration, and intensity just as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affects vegetation phenology, while far fewer have examined how the breeding phenology of arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and white-crowned sparrows, Zonotrichia leucophrys gambelii, across five consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, including the timing of arrival on breeding grounds, territory establishment, and clutch initiation. Spring temperatures, precipitation, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover. In response, we found a significant delay in breeding-cycle phenology for both study species in 2013 relative to other study years: the first bird observed was delayed by 6-10 days, with mean arrival by 3-6 days, territory establishment by 6-13 days, and clutch initiation by 4-10 days. Further, snow cover, temperature, and precipitation during the territory establishment period were important predictors of clutch initiation dates for both species. These findings suggest that Arctic-breeding passerine communities may have the flexibility required to adjust breeding phenology in response to the increasingly extreme and unpredictable environmental conditions-although future generations may encounter conditions that exceed their current range of phenological flexibility.


Subject(s)
Animal Migration/physiology , Seasons , Songbirds/physiology , Animals , Arctic Regions , Reproduction/physiology , Snow , Temperature , Tundra , Weather
9.
Parasitology ; 142(8): 1033-43, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25800822

ABSTRACT

The impact of haematozoan infection on host fitness has received substantial attention since Hamilton and Zuk posited that parasites are important drivers of sexual selection. However, short-term studies testing the assumption that these parasites consistently reduce host fitness in the wild have produced contradictory results. To address this complex issue, we conducted a long-term study examining the relationship between naturally occurring infection with Haemoproteus and Plasmodium, and lifetime reproductive success and survival of Mountain White-crowned Sparrows. Specifically, we tested the hypothesis that birds infected with haematozoan parasites have reduced survival (as determined by overwinter return rates) and reproductive success. Contrary to expectation, there was no relationship between Haemoproteus and Plasmodium infection and reproduction or survival in males, nor was there a relationship between Plasmodium infection and reproduction in females. Interestingly, Haemoproteus-infected females had significantly higher overwinter return rates and these females fledged more than twice as many chicks during their lifetimes as did uninfected females. We discuss the impact of parasitic infections on host fitness in light of these findings and suggest that, in the case of less virulent pathogens, investment in excessive immune defence may decrease lifetime reproduction.


Subject(s)
Bird Diseases/parasitology , Haemosporida/parasitology , Host-Parasite Interactions , Malaria, Avian/parasitology , Reproduction , Sparrows/parasitology , Animals , Female , Haemosporida/physiology , Male , Plasmodium/parasitology , Plasmodium/physiology
10.
Glob Chang Biol ; 21(4): 1508-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25294359

ABSTRACT

Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat characteristics that are critical to accurately predicting future habitat extent for many wildlife species.


Subject(s)
Animal Distribution , Biodiversity , Climate Change , Ecosystem , Plant Physiological Phenomena , Songbirds/physiology , Tundra , Alaska , Animals , Arctic Regions , Diet , Models, Biological
11.
Article in English | MEDLINE | ID: mdl-25072921

ABSTRACT

The aim of this study was to determine circulating patterns of the three major adrenal steroids in blood in response to stress during acute restraint handling in two subspecies of white-crowned sparrow. Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) are long distance migrants that breed at high latitudes and Nuttall's white-crowned sparrows (Zonotrichia leucophrys nuttalli) are residents of coastal California. Column partition chromatography was developed to separate progesterone, dehydroepiandrosterone (DHEA), and corticosterone from a small plasma sample. Each of these steroids has the capability to modulate the stress response through various mechanisms. For example, progesterone is bound to corticosterone binding globulin (CBG) with a higher affinity than corticosterone. If plasma levels of progesterone rise during acute stress, then this could displace corticosterone from CBG and increase the amount of biologically active, free, corticosterone in blood. Dehydroepiandrosterone (DHEA) has been implicated to have many anti-stress properties with the potential to mitigate some of the actions of corticosterone. Results indicate that progesterone levels in both subspecies are elevated in response to acute stress handling. DHEA levels declined in Gambel's but did not change in Nuttall's. Thus DHEA does not follow the same secretory pattern as in mammals. Corticosterone levels were elevated in response to acute stress handling in both subspecies. This study provides new insight into an integrated stress response among three steroids.


Subject(s)
Corticosterone/blood , Dehydroepiandrosterone/blood , Progesterone/blood , Sparrows/blood , Sparrows/physiology , Stress, Physiological/physiology , Animals , Female , Male
12.
PeerJ ; 2: e396, 2014.
Article in English | MEDLINE | ID: mdl-24883256

ABSTRACT

Emberizid sparrows (emberizidae) have played a prominent role in the study of avian vocal communication and social behavior. We present here brain transcriptomes for three emberizid model systems, song sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis, and Gambel's white-crowned sparrow Zonotrichia leucophrys gambelii. Each of the assemblies covered fully or in part, over 89% of the previously annotated protein coding genes in the zebra finch Taeniopygia guttata, with 16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated and white-crowned sparrows, respectively. As in previous studies, we find tissue of origin (auditory forebrain versus hypothalamus and whole brain) as an important determinant of overall expression profile. We also demonstrate the successful isolation of RNA and RNA-sequencing from post-mortem samples from building strikes and suggest that such an approach could be useful when traditional sampling opportunities are limited. These transcriptomes will be an important resource for the study of social behavior in birds and for data driven annotation of forthcoming whole genome sequences for these and other bird species.

13.
J Evol Biol ; 27(2): 259-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24341364

ABSTRACT

Glucocorticoid hormones are considered potent modulators of trade-offs between reproduction and survival. As such, selection should affect glucocorticoid physiology, although relatively little is known about how selection may act on glucocorticoid profiles. In general, the evolution of physiology is less studied and less well understood than morphological or life history traits. Here, we used a long-term data set from a population of mountain white-crowned sparrows to estimate natural selection on glucocorticoid profiles. Our study suggests that survival selection favours higher hormone concentrations for multiple components of glucocorticoid physiology (both baseline and stress-induced glucocorticoid levels). Fecundity selection varies depending on the component of hypothalamic-pituitary-adrenal physiology; greater reproductive output was associated with higher baseline glucocorticoid levels, but lower stress-induced glucocorticoid levels. Additionally, the selection gradient was greater for glucocorticoids than for a morphological trait (wing length). These results support the hypothesis that stress-induced glucocorticoids increase survival over reproduction within a wild population (the CORT-trade-off hypothesis). Taken together, these results add to our knowledge of how selection operates on physiological traits and also provide an evolutionary and ecological perspective on several key open issues in the field of glucocorticoid physiology.


Subject(s)
Biological Evolution , Glucocorticoids/physiology , Selection, Genetic , Sparrows/physiology , Animals , Reproduction , Sparrows/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL