Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Microbiol ; 15: 1423762, 2024.
Article in English | MEDLINE | ID: mdl-39193432

ABSTRACT

Background: Streptococcus dysgalactiae (SD) is an important pathogen in humans as well as in a broad range of animal species. Escalating rates of antibiotic resistance in SD has been reported in both human and veterinary clinical practice, but the dissemination of resistance determinants has so far never been examined in a One Health Perspective. We wanted to explore the occurrence of zoonotic transmission of SD and the potential for exchange of resistance traits between SD from different host populations. Methods: We compared whole genome sequences and phenotypical antimicrobial susceptibility of 407 SD isolates, comprising all isolates obtained from human bloodstream infections in 2018 (n = 274) and available isolates associated with animal infections from the years 2018 and 2019 (n = 133) in Norway. Results: Antimicrobial resistance genes were detected in 70 (26%), 9 (25%) and 2 (2%) of the isolates derived from humans, companion animals and livestock, respectively. Notably, distinct host associated genotypic resistomes were observed. The erm(A) gene was the dominant cause of erythromycin resistance in human associated isolates, whereas only erm(B) and lsa(C) were identified in SD isolates from animals. Moreover, the tetracycline resistance gene tet(O) was located on different mobile genetic elements in SD from humans and animals. Evidence of niche specialization was also evident in the phylogenetic analysis, as the isolates could be almost perfectly delineated in accordance with host species. Nevertheless, near identical mobile genetic elements were observed in four isolates from different host species including one human, implying potential transmission of antibiotic resistance between different environments. Conclusion: We found a phylogenetic delineation of SD strains in line with host adapted populations and niche specialization. Direct transmission of strains or genetic elements carrying resistance genes between SD from different ecological niches appears to be rare in our geographical region.

2.
Virol J ; 21(1): 102, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698421

ABSTRACT

Human parechovirus, a member of the Picornaviridae family (PeVs), can lead to severe infections, including severe meningitis, meningoencephalitis, and sepsis-like syndrome. We report a case of human parechovirus-related encephalitis in a 52-year-old woman diagnosed with glioblastoma multiforme. She underwent surgical resection in June 2022. Unfortunately, her disease recurred, and she underwent a second resection in August 2022, followed by radiation therapy and Temozolomide therapy. She presented to the hospital with acute confusion followed by seizures, necessitating intubation for airway support. A cerebrospinal fluid (CSF) sample was obtained and processed using the Biofire FilmArray, which reported the detection of HSV-1. Despite being on Acyclovir, the patient did not show signs of improvement. Consequently, a second CSF sample was obtained and sent for next-generation sequencing (NGS), which returned a positive result for Parechovirus. In this presented case, the patient exhibited symptoms of an unknown infectious cause. The utilization of NGS and metagenomic analysis helped identify Parechovirus as the primary pathogen present, in addition to previously identified HSV. This comprehensive approach facilitated a thorough assessment of the underlying infection and guided targeted treatment. In conclusion, the application of NGS techniques and metagenomic analysis proved instrumental in identifying the root cause of the infection.


Subject(s)
Immunocompromised Host , Parechovirus , Picornaviridae Infections , Humans , Female , Middle Aged , Picornaviridae Infections/virology , Picornaviridae Infections/diagnosis , Parechovirus/genetics , Parechovirus/isolation & purification , Parechovirus/classification , Saudi Arabia , High-Throughput Nucleotide Sequencing , Glioblastoma/virology , Metagenomics , Encephalitis, Viral/virology , Encephalitis, Viral/diagnosis , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Hospitalization
3.
Mod Pathol ; 36(12): 100336, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37742927

ABSTRACT

Phosphaturic mesenchymal tumors (PMT) are uncommon neoplasms that cause hypophosphatemia/osteomalacia mainly by secreting fibroblast growth factor 23. We previously identified FN1::FGFR1/FGF1 fusions in nearly half of the PMTs and frequent KL (Klotho or α-Klotho) overexpression in only those with no known fusion. Here, we studied a larger cohort of PMTs for KL expression and alterations. By FN1 break-apart fluorescence in situ hybridization (FISH) and reappraisal of previous RNA sequencing data, 6 tumors previously considered "fusion-negative" (defined by negative results of FISH for FN1::FGFR1 fusion and FGF1 break-apart and/or of RNA sequencing) were reclassified as fusion-positive PMTs, including 1 containing a novel FN1::ZACN fusion. The final cohort of fusion-negative PMTs included 33 tumors from 32 patients, which occurred in the bone (n = 18), soft tissue (n = 10), sinonasal tract (n = 4), and brain (n = 1). In combination with previous work, RNA sequencing, RNA in situ hybridization, and immunohistochemistry showed largely concordant results and demonstrated KL/α-Klotho overexpression in 17 of the 28 fusion-negative and none of the 10 fusion-positive PMTs studied. Prompted by a patient in this cohort harboring germline KL upstream translocation with systemic α-Klotho overexpression and multifocal PMTs, FISH was performed and revealed KL rearrangement in 16 of the 33 fusion-negative PMTs (one also with amplification), including 14 of the 17 cases with KL/α-Klotho overexpression and none of the 11 KL/α-Klotho-low fusion-negative and 11 fusion-positive cases studied. Whole genomic sequencing confirmed translocation and inversion in 2 FISH-positive cases involving the KL upstream region, warranting further investigation into the mechanism whereby these rearrangements may lead to KL upregulation. Methylated DNA immunoprecipitation and sequencing suggested no major role of promoter methylation in KL regulation in PMT. Interestingly, KL-high/-rearranged cases seemed to form a clinicopathologically homogeneous group, showing a predilection for skeletal/sinonasal locations and typically matrix-poor, cellular solitary fibrous tumor-like morphology. Importantly, FGFR1 signaling pathways were upregulated in fusion-negative PMTs regardless of the KL status compared with non-PMT mesenchymal tumors by gene set enrichment analysis, perhaps justifying FGFR1 inhibition in treating this subset of PMTs.


Subject(s)
Mesenchymoma , Paranasal Sinuses , Soft Tissue Neoplasms , Humans , In Situ Hybridization, Fluorescence , Fibroblast Growth Factor 1/genetics , Soft Tissue Neoplasms/genetics , Mesenchymoma/genetics , Mesenchymoma/pathology , Translocation, Genetic , Paranasal Sinuses/pathology
4.
J Clin Microbiol ; 61(7): e0042823, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37347171

ABSTRACT

Macrolides are a mainstay of therapy for infections due to nontuberculous mycobacteria (NTM). Among rapidly growing mycobacteria (RGM), inducible macrolide resistance is associated with four chromosomal 23S rRNA methylase (erm) genes. Beginning in 2018, we detected high-level inducible clarithromycin resistance (MICs of ≥16µg/mL) in clinical isolates of Mycobacterium chelonae, an RGM species not previously known to contain erm genes. Using whole-genome sequencing, we identified a novel plasmid-mediated erm gene. This gene, designated erm(55)P, exhibits <65% amino acid identity to previously described RGM erm genes. Two additional chromosomal erm(55) alleles, with sequence identities of 81% to 86% to erm(55)P, were also identified and designated erm(55)C and erm(55)T. The erm(55)T is part of a transposon. The erm(55)P allele variant is located on a putative 137-kb conjugative plasmid, pMchErm55. Evaluation of 133 consecutive isolates from 2020 to 2022 revealed 5 (3.8%) with erm(55). The erm(55)P gene was also identified in public data sets of two emerging pathogenic pigmented RGM species: Mycobacterium iranicum and Mycobacterium obuense, dating back to 2008. In both species, the gene appeared to be present on plasmids homologous to pMchErm55. Plasmid-mediated macrolide resistance, not described previously for any NTM species, appears to have spread to multiple RGM species. This has important implications for antimicrobial susceptibility guidelines and treatment of RGM infections. Further spread could present serious consequences for treatment of other macrolide-susceptible RGM. Additional studies are needed to determine the transmissibility of pMchErm55 and the distribution of erm(55) among other RGM species.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium chelonae , Mycobacterium , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrolides/pharmacology , Mycobacterium chelonae/genetics , Drug Resistance, Bacterial/genetics , Clarithromycin/therapeutic use , Nontuberculous Mycobacteria , Mycobacterium/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/microbiology
5.
Front Immunol ; 14: 967345, 2023.
Article in English | MEDLINE | ID: mdl-37350971

ABSTRACT

Introduction: Inborn errors of immunity (IEI) are a heterogeneous group of disorders characterized by increased risk of infections, autoimmunity, autoinflammatory diseases, malignancy and allergy. Next-generation sequencing has revolutionized the identification of genetic background of these patients and assists in diagnosis and treatment. In this study, we identified a probable unique monogenic cause of IEI, and evaluated the immunological methods and pathogenic detections. Methods: A family with a member with a clinical diagnosis of IEI was screened by whole genomic sequencing (WGS). Demographic data, clinical manifestations, medical history, physical examination, laboratory findings and imaging features of the patient were extracted from medical records. Comprehensive immune monitoring methods include a complete blood count with differential, serum levels of cytokines and autoantibodies, T-cell and B-cell subsets analysis and measurement of serum immunoglobulins. In addition, metagenomic sequencing (mNGS) of blood, cerebrospinal fluid and biopsy from small intestine were used to detect potential pathogens. Results: The patient manifested with recurrent infections and autoimmune disorders, who was eventually diagnosed with IEI. Repetitive mNGS tests of blood, cerebrospinal fluid and biopsy from small intestine didn't detect pathogenic microorganism. Immunological tests showed a slightly decreased level of IgG than normal, elevated levels of tumor necrosis factor and interleukin-6. Lymphocyte flow cytometry showed elevated total B cells and natural killer cells, decreased total T cells and B-cell plasmablasts. WGS of the patient identified a novel heterozygous mutation in IRF2BP2 (c.439_450dup p. Thr147_Pro150dup), which was also confirmed in his father. The mutation was classified as variant of uncertain significance (VUS) according to the American College of Medical Genetics and Genomics guidelines. Conclusion: We identified a novel IRF2BP2 mutation in a family with a member diagnosed with IEI. Immune monitoring and WGS as auxiliary tests are helpful in identifying genetic defects and assisting diagnosis in patients with clinically highly suspected immune abnormalities and deficiencies in inflammation regulation. In addition, mNGS techniques allow a more comprehensive assessment of the pathogenic characteristics of these patients. This report further validates the association of IRF2BP2 deficiency and IEI, and expands IEI phenotypes.


Subject(s)
Autoimmune Diseases , Reinfection , Humans , Autoimmune Diseases/diagnosis , Autoimmune Diseases/genetics , Autoantibodies , Autoimmunity , B-Lymphocytes , DNA-Binding Proteins , Transcription Factors
6.
Foods ; 11(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35681295

ABSTRACT

Frozen vegetables have emerged as a concern due to their association with foodborne outbreaks such as the multi-country outbreak of Listeria monocytogenes serogroup IVb linked to frozen corn. The capacity of L. monocytogenes to colonize food-processing environments is well-known, making the bacteria a real problem for consumers. However, the significance of the processing environment in the contamination of frozen foods is not well established. This study aimed to identify potential contamination niches of L. monocytogenes in a frozen processing plant and characterize the recovered isolates. A frozen vegetable processing plant was monitored before cleaning activities. A total of 78 points were sampled, including frozen vegetables. Environmental samples belonged to food-contact surfaces (FCS); and non-food-contact surfaces (n-FCS). Positive L. monocytogenes samples were found in FCS (n = 4), n-FCS (n = 9), and the final product (n = 1). A whole-genome sequencing (WGS) analysis revealed two clusters belonging to serotypes 1/2a-3a and 1/2b-3b). The genetic characterization revealed the presence of four different sequence types previously detected in the food industry. The isolate obtained from the final product was the same as one isolate found in n-FCS. A multi-virulence-locus sequence typing (MVLST) analysis showed four different virulence types (VT). The results obtained highlight the relevant role that n-FCS such as floors and drains can play in spreading L. monocytogenes contamination to the final product.

7.
Mol Biol Res Commun ; 11(3): 143-153, 2022.
Article in English | MEDLINE | ID: mdl-36718242

ABSTRACT

Enterococcus species are a long-standing and non-pathogenic commensal bacterium, representing an important part of the normal. Enterococcus durans is a rarely isolated species from animals and humans, and it was a tiny constituent of human oral cavity and animal intestinal flora, as well as animal-derived foods, particularly dairy products. This study evaluated the security of our strain E. durans NT21 by using whole-genome sequencing (WGS), physicochemical features, and antimicrobial activity. The complete genomic of our strain Enterococcus durans NT21was sequenced and analyzed by using several bioinformatics tools to identify bacteriocin genes, virulence genes, antibiotic resistance genes, Crispr-Cas and pathogenicity islands. The results showed that our strain NT21 lacks the presence of virulence genes, pathogenicity islands, plasmids and has only two antibiotic resistance genes. On the other hand, it produces three bacteriocin-like inhibitory substances (Enterolysin A, P and L50a). It has six gene-encoded Crisper-Cas and one cluster Crispr-Cas gene. According to our findings, E. durans NT21 is a possible probiotic strain that is safe for both human and animal use.

8.
Alzheimers Dement ; 18(10): 1846-1867, 2022 10.
Article in English | MEDLINE | ID: mdl-34918867

ABSTRACT

INTRODUCTION: A few copy number variations (CNVs) have been reported for Alzheimer's disease (AD). However, there is a lack of a systematic investigation of CNVs in AD based on whole genome sequencing (WGS) data. METHODS: We used four methods to identify consensus CNVs from the WGS data of 1,411 individuals and further investigated their functional roles in AD using the matched transcriptomic and clinicopathological data. RESULTS: We identified 3,012 rare AD-specific CNVs whose residing genes are enriched for cellular glucuronidation and neuron projection pathways. Genes whose mRNA expressions are significantly correlated with common CNVs are involved in major histocompatibility complex class II receptor activity. Integration of CNVs, gene expression, and clinical and pathological traits further pinpoints a key CNV that potentially regulates immune response in AD. DISCUSSION: We identify CNVs as potential genetic regulators of immune response in AD. The identified CNVs and their downstream gene networks reveal novel pathways and targets for AD.


Subject(s)
Alzheimer Disease , DNA Copy Number Variations , Humans , DNA Copy Number Variations/genetics , Alzheimer Disease/genetics , Whole Genome Sequencing , RNA, Messenger
9.
Diagnostics (Basel) ; 11(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34829431

ABSTRACT

Bartholin gland adenocarcinoma (BGA) is extremely rare and is characterized by high rates of lymph-node recurrence and distant metastases. No effective palliative treatments are available for metastatic BGA; therefore, advanced BGA remains a challenge for gynecologic oncologists. Considering the rarity of this disease and the lack of a standardized approach, the present study aims to discuss the available literature on current therapies for BGA and to describe an emblematic case treated with a novel tailored approach. A postmenopausal woman with advanced BGA was referred to our department for an adequate evaluation, staging and treatment. Notably, we used PET/CT as a fundamental imaging technique for staging and follow-up. The patient underwent primary surgery followed by standard chemotherapy and pelvic radiotherapy. Three months later, she relapsed, with the appearance of multiple metastatic sites. Considering the evident chemoresistance to standard chemotherapy and the absence of valid therapeutic alternatives for this rare cancer, she was treated with a combination of repeated minimally invasive surgical procedures for all the resectable metastatic lesions and innovative approaches comprising, firstly, chemoimmunotherapy with Nivolumab combined with metronomic vinorelbine, which resulted in a clinical response for approximately 7 months. Upon disease progression, we used a targeted systemic approach based on the whole genomic profile of the primary tumor, which showed PTEN loss, which is predictive of a benefit from an mTOR inhibitor, and a CCND1 amplification, which predicts sensitivity to CDK4/6 inhibitors. Therefore, she received Everolimus, resulting in a significant metabolic response that lasted 12 months. Thereafter, upon further progression of the disease, the patient started Palbociclib treatment, which is currently ongoing, with evidence of a metabolic response. The patient has survived for 54 months from diagnosis, with a good performance status. In conclusion, the present paper confirms the lack of efficacy of conventional therapeutic regimens in the context of advanced, recurrent or metastatic adenocarcinomas of the Bartholin gland. The case report shows how a personalized multidisciplinary approach based on repeated minimally invasive surgery and tailored anticancer treatment based on whole-genome sequencing analysis could be effective and associated with prolonged survival in this rare gynecological cancer.

10.
Front Genet ; 12: 682980, 2021.
Article in English | MEDLINE | ID: mdl-34220958

ABSTRACT

Platforms for "non-invasive prenatal testing" (NIPT), or also referred to as "non-invasive prenatal screening" (NIPS) have been available for over 10 years, and are the most recent tools available to obtain information about genetic condition(s) of an unborn child. The highly praised advantage of NIPT-screening is that results can provide early hints on the detection of fetal trisomies and gonosomal numerical aberrations as early as the 10th week of gestation onward, without any need for invasive procedures, such as amniocenteses or alternatives. Understandably, the public along with gynecologists and obstetricians eagerly await these early test results. Their general hope for normal (=negative) test results is also justified, as in >95% of the tested cases such an outcome is to be expected. However, pregnant women can be disappointed and confused, particularly regarding the genetic information and proposed care when the results are positive, and these emotions are also common with false-positive and false-negative NIPT results. Finally, such concerns in understanding the advantages and limitations of this routinely ordered screening tool end up at Clinical Geneticists and Genetic counselors. In this review, general background on NIPT, differences of NIPT platforms, advantages and limitations of NIPT, as well as consequences of insufficient counseling before and after NIPT are summarized. To provide comprehensive care in all pregnancies situations, professionals need a careful attitude toward offering NIPT along with specially training and qualifications in counseling for these procedures. Often it is gynecologists and obstetricians who discuss the use of NIPT with patients; however, although these physicians have a highly qualified background and knowledge in their respective specialty area(s), they may lack specific training on the interpretation of NIPT-screening results. These potential knowledge gaps must be closed quickly and comprehensively by the corresponding scientific societies to ensure optimal patient care.

11.
Vet Q ; 40(1): 331-341, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33269989

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) constitutes one of the main causes of mortality in children in low- to medium-income countries. Diverse animal species have been linked as reservoirs, including birds. The aim of this study was to describe the genomic and phylogenetic features of an EPEC recovered from a pet macaw and further characterizing the macro and microscopic lesion in a rabbit ileal loop experimental model. The isolate was whole-genome sequenced (WGS) obtaining its genotypic and phenotypic in silico characteristics and inoculated in a rabbit experimental model with subsequently evaluating the strain's pathogenicity by scanning electron microscopy (SEM) and histopathology. The isolate was characterized as O109:H21-B1-ST40 typical EPEC, harboring several virulence factors of diarrheagenic E. coli. The macaw EPEC genome was located in a monophyletic clade of human and animal ST40 EPEC sequences. In vivo inoculation demonstrated severe hemorrhage with SEM and histopathological analysis confirming these lesions to be associated with intra-epithelial lymphocytes. Therefore, the isolate not only shared several genotypic and phylogenetic similarities with EPEC that affects humans and animals, but was able to induce severe tissue injury in a mammal model. These findings highlight the underrated role of pet birds as zoonotic reservoirs and the diversity in virulence factors being unraveled by new WGS studies.


Subject(s)
Bird Diseases/microbiology , Enteropathogenic Escherichia coli/genetics , Escherichia coli Infections/veterinary , Ileum/microbiology , Parrots/microbiology , Animals , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Escherichia coli Infections/microbiology , Genome, Bacterial , Genotype , Ileum/pathology , Phylogeny , Rabbits
12.
Animals (Basel) ; 10(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182313

ABSTRACT

Canine brucellosis caused by Brucella canis is a zoonotic disease that causes reproductive alterations in dogs, such as infertility, abortion, and epididymitis. This pathogen is especially prevalent in South America, and due to the lack of official control programs and the growing trend of adopting dogs it constitutes a public health risk that must be addressed. The aim of this study was to determine the prevalence of B. canis infection in kennel, shelter, and household dogs and to characterize the genomic properties of circulating strains, including ure and virB operons and omp25/31 genes. Samples from 771 dogs were obtained, and the infection was detected by blood culture and/or serology in 7.0% of the animals. The complete ure and virB operons and the omp25/31 genes were detected. Interestingly, we found different single-nucleotide polymorphisms (SNPs) in some of the analyzed genes, which could mean a change in the fitness or virulence of these strains. This study provides further evidence about dogs as a source of B. canis strains that can infect people. This also highlights the need to implement official control programs, including the mandatory testing of dogs, especially stray dogs, before adoption.

13.
Clin Infect Dis ; 71(2): 323-331, 2020 07 11.
Article in English | MEDLINE | ID: mdl-31425575

ABSTRACT

BACKGROUND: Jails may facilitate spread of methicillin-resistant Staphylococcus aureus (MRSA) in urban areas. We examined MRSA colonization upon entrance to a large urban jail to determine if there are MRSA transmission networks preceding incarceration. METHODS: Males incarcerated in Cook County Jail (Chicago) were enrolled, with enrichment for people living with human immunodeficiency virus (PLHIV), within 72 hours of intake. Surveillance cultures assessed prevalence of MRSA colonization. Whole-genome sequencing (WGS) identified preincarceration transmission networks.We examined methicillin-resistant Staphylococcus aureus (MRSA) isolates to determine if there are transmission networks that precede incarceration. A large proportion of individuals enter jail colonized with MRSA. Molecular epidemiology and colonization risk factors provide clues to community reservoirs for MRSA. RESULTS: There were 718 individuals (800 incarcerations) enrolled; 58% were PLHIV. The prevalence of MRSA colonization at intake was 19%. In multivariate analysis, methamphetamine use, unstable housing, current/recent skin infection, and recent injection drug use were predictors of MRSA. Among PLHIV, recent injection drug use, current skin infection, and HIV care at outpatient clinic A that emphasizes comprehensive care to the lesbian, gay, bisexual, transgender community were predictors of MRSA. Fourteen (45%) of 31 detainees with care at clinic A had colonization. WGS revealed that this prevalence was not due to clonal spread in clinic but rather to an intermingling of distinct community transmission networks. In contrast, genomic analysis supported spread of USA500 strains within a network. Members of this USA500 network were more likely to be PLHIV (P < .01), men who have sex with men (P < .001), and methamphetamine users (P < .001). CONCLUSIONS: A large proportion of individuals enter jail colonized with MRSA. Molecular epidemiology and colonization risk factors provide clues to identify colonized detainees entering jail and potential community reservoirs of MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Sexual and Gender Minorities , Staphylococcal Infections , Chicago , Female , Homosexuality, Male , Humans , Illinois , Jails , Male , Methicillin-Resistant Staphylococcus aureus/genetics , Prevalence , Risk Factors , Staphylococcal Infections/epidemiology
14.
Chinese Medical Ethics ; (6): 273-277, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-706080

ABSTRACT

Advances in cell and molecular genetics have contributed to the development of human genetic re-search and personalized medicine. The enhanced capacity of the new DNA sequencing technologies, especially the high-throughput sequencing, is not only reducing the cost of sequencing but is also enabling some new questions. The potential utilization of whole exome sequencing ( WES) and whole genome sequencing ( WGS) is increasing in the research and clinical setting. And there is a potential for the genetic counselors' of recognition and reporting of incidental or secondary findings unrelated to the indication for ordering but of medical value for patient care, which inevitably create prominent legal and ethical issues. In addition, the internet increases the risk of private informa-tion and genetic information disclosure both for research and clinical practice. Moreover, these questions maybe more significant when commercial tests in multiplex genetic profiles are currently being provided to consumerswith-out the physicians' consultation, referred to as direct-to-consumer genetic tests ( DTCgt) . Existing laws, regula-tions and guidelines in China mostlycontrol and standardize technical aspects. Special regulations and rules for ge-netic arrangement and results explaining and interpretation remain needed; besides, the qualification of relevant personnel. The molecular genetic testing-related stakeholders include the providers, professional practitioners, and consumers &subjects, should realize these problems. Governments and professional organizations should produce policies, guidelines, and recommendations for the related stakeholders, such as testing providers andconsultants, to minimize the risks, and maximize the advantages of molecular genetic technologies, thus promote precision medi-cine and personalized therapy and disease prevention.

15.
J Pers Med ; 5(4): 470-86, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26690481

ABSTRACT

Despite dramatic drops in DNA sequencing costs, concerns are great that the integration of genomic sequencing into clinical settings will drastically increase health care expenditures. This commentary presents an overview of what is known about the costs and cost-effectiveness of genomic sequencing. We discuss the cost of germline genomic sequencing, addressing factors that have facilitated the decrease in sequencing costs to date and anticipating the factors that will drive sequencing costs in the future. We then address the cost-effectiveness of diagnostic and pharmacogenomic applications of genomic sequencing, with an emphasis on the implications for secondary findings disclosure and the integration of genomic sequencing into general patient care. Throughout, we ground the discussion by describing efforts in the MedSeq Project, an ongoing randomized controlled clinical trial, to understand the costs and cost-effectiveness of integrating whole genome sequencing into cardiology and primary care settings.

SELECTION OF CITATIONS
SEARCH DETAIL