Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
PeerJ ; 11: e16165, 2023.
Article in English | MEDLINE | ID: mdl-37842044

ABSTRACT

The Pollard-Yates transect is a widely used method for sampling butterflies. Data from these traditional transects are analyzed to produce density estimates, which are then used to make inferences about population status or trends. A key assumption of the Pollard-Yates transect is that detection probability is 1.0, or constant but unknown, out to a fixed distance (generally 2.5 m on either side of a transect line). However, species-specific estimates of detection probability would allow for sampling at farther distances, resulting in more detections of individuals. Our objectives were to (1) evaluate butterfly density estimates derived from Pollard-Yates line transects and distance sampling, (2) estimate how detection probabilities for butterflies vary across sampling distances and butterfly wing lengths, and (3) offer advice on future butterfly sampling techniques to estimate population density. We conducted Pollard-Yates transects and distance-sampling transects in central Iowa in 2014. For comparison to densities derived from Pollard-Yates transects, we used Program DISTANCE to model detection probability (p) and estimate density (D) for eight butterfly species representing a range of morphological characteristics. We found that detection probability among species varied beyond 2.5 m, with variation apparent even within 5 m of the line. Such variation correlated with wing size, where species with larger wing size generally had higher detection probabilities. Distance sampling estimated higher densities at the 5-m truncation for five of the eight species tested. At this truncation, detection probability was <0.8 for all species, and ranged from 0.53 to 0.79. With the exception of the little yellow (Pyrisitia lisa), species with median wing length <5.0 mm had the lowest detection probabilities. We recommend that researchers integrate distance sampling into butterfly sampling and monitoring, particularly for studies utilizing survey transects >5 m wide and when smaller species are targeted.


Subject(s)
Butterflies , Animals , Iowa , Population Density , Species Specificity , Surveys and Questionnaires
2.
Ecol Evol ; 13(10): e10588, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37869428

ABSTRACT

Functional trait approaches are common in ecology, but a lack of clear hypotheses on how traits relate to environmental gradients (i.e., trait-niche relationships) often makes uncovering mechanisms difficult. Furthermore, measures of community functional structure differ in their implications, yet inferences are seldom compared among metrics. Community-weighted mean trait values (CWMs), a common measure, are largely driven by the most common species and thus do not reflect community-wide trait-niche relationships per se. Alternatively, trait-niche relationships can be estimated across a larger group of species using hierarchical joint species distribution models (JSDMs), quantified by a parameter Γ. We investigated how inferences about trait-niche relationships are affected by the choice of metric. Using deadwood-dependent (saproxylic) beetles in fragmented Finnish forests, we followed a protocol for investigating trait-niche relationships by (1) identifying environmental filters (climate, forest age, and deadwood volume), (2) relating these to an ecological function (dispersal ability), and (3) identifying traits related to this function (wing morphology). We tested 18 hypothesized dispersal relationships using both CWM and Γ estimates across these environmental gradients. CWMs were more likely than Γ to show support for trait-niche relationships. Up to 13% of species' realized niches were explained by dispersal traits, but the directions of effects were consistent with fewer than 11%-39% of our 18 trait-niche hypotheses (depending on the metric used). This highlights the difficulty in connecting morphological traits and ecological functions in insects, despite the clear conceptual link between landscape connectivity and flight-related traits. Caution is thus warranted in hypothesis development, particularly where apparent trait-function links are less clear. Inferences differ when CWMs versus Γ estimates are used, necessitating the choice of a metric that reflects study questions. CWMs help explain the effects of environmental gradients on community trait composition, whereas the effects of traits on species' niches are better estimated using hierarchical JSDMs.

3.
J Am Mosq Control Assoc ; 38(4): 250-260, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36318783

ABSTRACT

Chemical control of vectors depends on the effective application of formulated insecticides. In this study we evaluated formulated larvicides using a larval bioassay against susceptible Aedes aegypti. The estimated larvicide lethal concentrations for 50% mortality (LC50s) were 25.7 µg/liter (Natular 2EC), 3.13 µg/liter (Abate 4E), 0.43 µg/liter (Altosid), 0.03 µg/liter (Nyguard), and 500.6 ITU/liter (VectoBac12AS containing Bacillus thuringiensis israelensis). Sublethal effects were identified and documented from adults that survived exposure to these estimated LC50s (body size and sex proportion). We observed changes in net growth as measured by adult wing lengths. For those larvae exposed to estimated LC50s, the average size of adults was between 0.1% and 10.6% smaller for males and between 1.1% and 13.6% smaller for females compared to controls. Sex proportions varied between larvicides, but some were significantly different from the control, favoring greater survival of females than males.


Subject(s)
Aedes , Bacillus thuringiensis , Insecticides , Animals , Female , Male , Mosquito Control , Mosquito Vectors , Temefos/pharmacology , Insecticides/pharmacology , Larva
4.
Br Poult Sci ; 63(6): 747-753, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35848598

ABSTRACT

1. A total of 772, 420-day-old Xingguo grey geese (XGG) were sequenced using a low-depth (~1 x) whole-genome resequencing strategy to reveal the genetic mechanism of wing length-related traits by genome-wide association analysis (GWAS).2. The results showed that 119 SNPs had genome-wide significance for wing length in five regions of chromosome 4, of which the most significant locus (P = 7.95E-11) was located upstream of RBM47 and explained 7.3% of the phenotypic variation.3. A total of 219 SNPs located on chromosome 4 were associated with 2-joint-wing length, of which four SNPs reached the genome-wide significant level. However, for the length of 1-joint-wing and primary feather, we did not detect any associated locus.4. Six promising candidate genes, RBM47, SLAIN2, GRXCR1, SLC10A4, APBB2 and NSUN7 on chromosome 4, may play an important role in the growth and development of feathers, muscles and bones.


Subject(s)
Geese , Genome-Wide Association Study , Animals , Genome-Wide Association Study/veterinary , Geese/genetics , Quantitative Trait Loci , Chickens , Phenotype , Polymorphism, Single Nucleotide
5.
Ecol Evol ; 12(4): e8792, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35386866

ABSTRACT

Most insects engage in winged flight. Wing loading, that is, the ratio of body mass to total wing area, has been demonstrated to reflect flight maneuverability. High maneuverability is an important survival trait, allowing insects to escape natural enemies and to compete for mates. In some ecological field experiments, there is a need to calculate the wing area of insects without killing them. However, fast, nondestructive estimation of wing area for insects is not available based on past work. The Montgomery equation (ME), which assumes a proportional relationship between leaf area and the product of leaf length and width, is frequently used to calculate leaf area of plants, in crops with entire linear, lanceolate leaves. Recently, the ME was proved to apply to leaves with more complex shapes from plants that do not have any needle leaves. Given that the wings of insects are similar in shape to broad leaves, we tested the validity of the ME approach in calculating the wing area of insects using three species of cicadas common in eastern China. We compared the actual area of the cicadas' wings with the estimates provided by six potential models used for wing area calculation, and we found that the ME performed best, based on the trade-off between model structure and goodness of fit. At the species level, the estimates for the proportionality coefficients of ME for three cicada species were 0.686, 0.693, and 0.715, respectively. There was a significant difference in the proportionality coefficients between any two species. Our method provides a simple and powerful approach for the nondestructive estimation of insect wing area, which is also valuable in quantifying wing morphological features of insects. The present study provides a nondestructive approach to estimating the wing area of insects, allowing them to be used in mark and recapture experiments.

6.
Acta Trop ; 231: 106430, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35367409

ABSTRACT

Intraspecific competition between mosquito larvae can affect several adult traits, particularly size. This study tested the hypothesis that intraspecific competition during the larval stage affects wing length in Ae. aegypti and Ae. albopictus adults, in turn influencing locomotor activity. L1 larvae of both species were reared in trays under conditions of low and high competition. After adults had emerged, the locomotor activity of virgin females of Ae. aegypti and Ae. albopictus was evaluated under light-dark cycles of 12:12 h at 25 °C and 70% relative humidity. At the end of the locomotor activity experiment, the left wings of the mosquitoes were removed to be measured, and wing length was used as an indicator of adult female size. Although the results showed that the wing lengths of Ae. aegypti and Ae. albopictus females reared under low larval competition were significantly greater than those of females reared under high larval competition, this difference did not affect locomotor activity in females of either species, demonstrating that locomotor activity in small Ae. aegypti and Ae. albopictus females is not lower than in larger females. Our findings reinforce the idea that intraspecific competition alters the wing length of Ae. aegypti and Ae. albopictus females and provide new evidence about this effect on the locomotor activity of these species.


Subject(s)
Aedes , Animals , Body Size , Female , Larva , Locomotion
7.
Biol J Linn Soc Lond ; 133(3): 671-684, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34539176

ABSTRACT

Heterosis, Haldane and Bateson-Dobzhansky-Muller effects have been widely documented amongst a range of plants and animals. However, typically these effects are shown by taking parents of known genotype into the laboratory and measuring components of the F1 progeny under laboratory conditions. This leaves in doubt the real significance of such effects in the field. Here we use the well-known colour pattern genotypes of the African monarch or queen (Danaus chrysippus), which also control wing length, to test these effects both in the laboratory and in a contact zone in the field. By measuring the wing lengths in animals of known colour pattern genotype we show clear evidence for all three hybrid effects at the A and BC colour patterning loci, and importantly, that these same effects persist in the same presumptive F1s when measured in hybrid populations in the field. This demonstrates the power of a system in which genotypes can be directly inferred in the field and highlights that all three hybrid effects can be seen in the East African contact zone of this fascinating butterfly.

8.
Parasit Vectors ; 14(1): 409, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34407870

ABSTRACT

BACKGROUND: Tsetse flies (Diptera: Glossinidae) transmit trypanosomiasis (sleeping sickness in humans and nagana in livestock). Several studies have indicated that age, sex, site of capture, starvation and microbiome symbionts, among others, are important factors that influence trypanosome infection in tsetse flies. However, reasons for a higher infection rate in females than in males still largely remain unknown. Considering that tsetse species and sexes of larger body size are the most mobile and the most available to stationary baits, it was hypothesized in this study that the higher trypanosome prevalence in female than in male tsetse flies was a consequence of females being larger than males. METHODS: Black screen fly rounds and Epsilon traps were used to collect tsetse flies in eastern Zambia. Measurement of wing vein length and examination for presence of trypanosomes in the flies were carried out by microscopy. Principal component method was carried out to assess the potential of wing vein length as a predictor variable. The multilevel binary logistic regression method was applied on whole data, one-method data and one-sex data sets to evaluate the hypothesis. RESULTS: Data derived from a total of 2195 Glossina morsitans morsitans were evaluated (1491 males and 704 females). The wing length variable contributed the highest variance percentage (39.2%) to the first principal component. The variable showed significant influence on prevalence of trypanosomes when the analysis was applied on the whole data set, with the log odds for the prevalence of trypanosomes significantly increasing by 0.1 (P = 0.032), per unit increase in wing length. Females had higher trypanosome prevalence rates than males, though not always significant. Furthermore, moving from females to males, wing length significantly reduced by 0.2 (P < 0.0001). CONCLUSIONS: We conclude that wing length is an important predictor variable for trypanosome prevalence in Glossina morsitans morsitans and could partially explain the higher prevalence of trypanosomes in females than in males. However, reasonably representative population data are required for analysis-a serious challenge with the current tsetse sampling methods. Thus, analysis combining data from mobile and stationary methods that include both sexes' data could be useful to verify this hypothesis.


Subject(s)
Insect Vectors/parasitology , Trypanosomiasis/epidemiology , Tsetse Flies/anatomy & histology , Tsetse Flies/parasitology , Wings, Animal , Animals , Body Size , Female , Insect Vectors/anatomy & histology , Male , Prevalence , Sex Factors , Trypanosomiasis/transmission , Zambia/epidemiology
9.
Insects ; 12(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34357265

ABSTRACT

Mitogenomes have been widely used for exploring phylogenetic analysis and taxonomic diagnosis. In this study, the complete mitogenomes of five species of Filchnerella were sequenced, annotated and analyzed. Then, combined with other seven mitogenomes of Filchnerella and four of Pamphagidae, the phylogenetic relationships were reconstructed by maximum likelihood (ML) and Bayesian (BI) methods based on PCGs+rRNAs. The sizes of the five complete mitogenomes are Filchnerella sunanensis 15,656 bp, Filchnerella amplivertica 15,657 bp, Filchnerella nigritibia 15,661 bp, Filchnerella pamphagoides 15,661 bp and Filchnerella dingxiensis 15,666 bp. The nucleotide composition of mitogenomes is biased toward A+T. All tRNAs could be folded into the typical clover-leaf structure, except that tRNA Ser (AGN) lacked a dihydrouridine (DHU) arm. The phylogenetic relationships of Filchnerella species based on mitogenome data revealed a general pattern of wing evolution from long wing to increasingly shortened wing.

10.
J Anim Ecol ; 90(10): 2348-2361, 2021 10.
Article in English | MEDLINE | ID: mdl-34151433

ABSTRACT

Advancements in phenology and changes in morphology, including body size reductions, are among the most commonly described responses to globally warming temperatures. Although these dynamics are routinely explored independently, the relationships among them and how their interactions facilitate or constrain adaptation to climate change are poorly understood. In migratory species, advancing phenology may impose selection on morphological traits to increase migration speed. Advancing spring phenology might also expose species to cooler temperatures during the breeding season, potentially mitigating the effect of a warming global environment on body size. We use a dataset of birds that died after colliding with buildings in Chicago, IL to test whether changes in migration phenology are related to documented declines in body size and increases in wing length in 52 North American migratory bird species between 1978 and 2016. For each species, we estimate temporal trends in morphology and changes in the timing of migration. We then test for associations between species-specific rates of phenological and morphological changes while assessing the potential effects of migratory distance and breeding latitude. We show that spring migration through Chicago has advanced while the timing of fall migration has broadened as a result of early fall migrants advancing their migrations and late migrants delaying their migrations. Within species, we found that longer wing length was linked to earlier spring migration within years. However, we found no evidence that rates of phenological change across years, or migratory distance and breeding latitude, are predictive of rates of concurrent changes in morphological traits. These findings suggest that biotic responses to climate change are highly multidimensional and the extent to which those responses interact and influence adaptation to climate change requires careful examination.


Subject(s)
Animal Migration , Birds , Animals , Climate Change , Seasons , Temperature
11.
J Evol Biol ; 34(7): 1010-1021, 2021 07.
Article in English | MEDLINE | ID: mdl-33813789

ABSTRACT

Avian trans-Saharan migrants travelling long distances and crossing ecological barriers experience different constraints in terms of time, energy and safety than short-/medium-distance migrants without barrier-crossings. As such, natural selection shapes the aerodynamic properties of these groups differently. Yet, to the best of our knowledge, we lack information on whether natural selection has contributed to reducing energetic flight costs through generally lower body mass in trans-Saharan migrants. To fill parts of this gap, we investigated this eco-morphological pattern in 5,410 individuals of 22 Palearctic songbird species ranging from short-/medium-distance to trans-Saharan migrants. We used individual size-independent scaled lean body mass values based on wing length as a measure of body size and, for the first time, precisely determined lean body mass values by direct measurements via quantitative magnetic resonance technology. Scaled lean body mass for a given body size was significantly higher in short-/medium-distance migrants than in trans-Saharan migrants. Although scaled lean body mass significantly decreased with increasing migration distance in short-/medium-distance migrants, no such effect was found in trans-Saharan migrants. Our results thus show an eco-morphological pattern relating species' lean body mass not only to migration distance but also to migration group. This suggests that selective effects of the presence/absence of ecological barriers and/or of a threshold level for migration distance on migrant birds may be more important than the linear continuum of migration distance per se.


Subject(s)
Animal Migration , Songbirds , Animals , Body Composition , Body Size , Humans , Wings, Animal
12.
Front Zool ; 18(1): 10, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750400

ABSTRACT

BACKGROUND: The yellow fever mosquito, Aedes aegypti, is the principal vector of medically-important infectious viruses that cause severe illness such as dengue fever, yellow fever and Zika. The transmission potential of mosquitoes for these arboviruses is largely shaped by their life history traits, such as size, survival and fecundity. These life history traits, to some degree, depend on environmental conditions, such as larval and adult nutrition (e.g., nectar availability). Both these types of nutrition are known to affect the energetic reserves and life history traits of adults, but whether and how nutrition obtained during larval and adult stages have an interactive influence on mosquito life history traits remains largely unknown. RESULTS: Here, we experimentally manipulated mosquito diets to create two nutritional levels at larval and adult stages, that is, a high or low amount of larval food (HL or LL) during larval stage, and a good and poor adult food (GA or PA, represents normal or weak concentration of sucrose) during adult stage. We then compared the size, survival and fecundity of female mosquitoes reared from these nutritional regimes. We found that larval and adult nutrition affected size and survival, respectively, without interactions, while both larval and adult nutrition influenced fecundity. There was a positive relationship between fecundity and size. In addition, this positive relationship was not affected by nutrition. CONCLUSIONS: These findings highlight how larval and adult nutrition differentially influence female mosquito life history traits, suggesting that studies evaluating nutritional effects on vectorial capacity traits should account for environmental variation across life stages.

13.
Zootaxa ; 4908(1): 85-101, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33510570

ABSTRACT

The paper explores the adult-forewing-length to larval-head-width relationship as a basis for instar determination of final instar caddisfly larvae on a family level. In addition, reference data from published sources were used to extract series of percentage-head-width increments and factors-of-increase for penultimate to first instars. This material provides estimates for head widths of earlier instars on the family level.


Subject(s)
Holometabola , Insecta , Larva , Animals , Head
14.
J Med Entomol ; 58(3): 1442-1447, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33367602

ABSTRACT

Dengue virus infection, transmitted via mosquito bites, poses a substantial risk to global public health. Studies suggest that the mosquito's microbial community can profoundly influence vector-borne pathogen transmissions, including dengue virus. Ascogregarina culicis (Ross) of the phylum Apicomplexa is among the most common parasites of Aedes aegypti (Linnaeus), the principal vector of dengue. Despite a high prevalence worldwide, including in the areas where dengue is endemic, the impact of A. culicis on Ae. aegypti vector competence for dengue virus is unknown. This study aimed to investigate the effects of A. culicis infection on mosquito size and fitness, as measured by wing length, and the susceptibility to dengue virus infection in Ae. aegypti. Our results showed that there was no statistically significant difference in wing lengths between Ae. aegypti infected and not infected with A. culicis. Furthermore, A. culicis infection did not significantly affect dengue virus infection or disseminated infection rate. However, there was a significant association between shorter wings and higher dengue virus infection rate, whereby a 0.1-mm increase in wing length decreased the odds of the mosquito being infected by 32%. Thus, based on our result, A. culicis infection does not influence the body size and dengue virus infection in Ae. aegypti. This study helps to shed light on a common but neglected eukaryotic mosquito parasite.


Subject(s)
Aedes/virology , Apicomplexa/physiology , Dengue Virus/physiology , Host-Pathogen Interactions , Mosquito Vectors/virology , Aedes/physiology , Animals , Body Size , Female , Mosquito Vectors/physiology
15.
J Vector Ecol ; 45(2): 366-379, 2020 12.
Article in English | MEDLINE | ID: mdl-33207064

ABSTRACT

Wing lengths of parous (P) and nulliparous (NP) PCR-identified female Anopheles belenrae, An. kleini, An. pullus, and An. sinensis were determined from weekly trap collections at Camp Humphreys (CH), Ganghwa Island (GH), and Warrior Base (WB), Republic of Korea (ROK) during Jun-Oct, 2009. Wing length was greatest at the beginning and end of the study period. Wing length of NPs tended to be less than that of Ps before the period of maximum greening (Jul-Aug) but greater thereafter. Larger specimens tended to be Ps, and weekly wing length of Ps appeared less variable than NPs, possibly due to selection. A bimodal wing length frequency distribution of An. sinensis suggested two forms comprising small- (≤4.5 mm, SW) and large-winged females (>4.5 mm, LW). LW comprised the majority of peaks in abundance, however %SW, while still a minority, often increased during these times suggesting a density-dependent effect. At WB and GH, a two to three-week periodicity in %SW was obvious for An. sinensis and An. kleini. Analyses of weather station and satellite data showed that smaller-winged An. sinensis were associated with warmer, more humid, and greener times of the year. SW and LW specimens possibly result from agricultural practices that are common across large areas; regular synchronous peaks of SW and LW were observed from different sites. Peaks in SW Ps followed peaks in NPs in a 'ripple effect' one to two weeks apart, suggesting that wing length combined with parity could be used to follow the emergence and survival of mosquito cohorts.


Subject(s)
Anopheles , Mosquito Vectors , Wings, Animal , Animals , Female , Anopheles/growth & development , Mosquito Vectors/growth & development , Population Dynamics , Republic of Korea , Seasons , Weather , Wings, Animal/growth & development
16.
Acta Trop ; 204: 105333, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31926912

ABSTRACT

INTRODUCTION: A variety of techniques have been used to control tsetse with varying degrees of success. In a study on the population structure of Glossina fuscipes fuscipes that recovered after a previous vector control trial on two Kenyan islands, it was reported that the average fly size on the intervention islands was significantly smaller than on the none intervention islands and also compared to the size before the intervention. The conclusion was that vector control using tiny targets exerted size selection pressure on the population. The study recommended for further studies and suggested that this phenomenon could be among the reasons why targets used as a sole control method have rare reports of successful elimination of tsetse populations. Therefore, in this paper we report on a study of body size of tsetse flies caught in epsilon traps (as a stationary device) and black screen fly rounds (as a mobile trapping device). MATERIALS AND METHODS: The study was carried out in eastern Zambia to test the hypothesis that the body size (measured as wing length) of G. m. morsitans males or females, captured by epsilon traps and fly rounds is the same. RESULTS: A total of 1442 (489 females and 953 males) wing length measurements of G. m. morsitans were used in the analysis. It was established that tsetse flies caught by epsilon traps are on average larger than those caught by fly rounds. The likelihood of a large female or male fly being caught by traps, relative to a small one, significantly increased by 5.088 times (95% CI: 3.138-8.429) and by 2.563 times (95% CI: 1.584-4.148), respectively, p < 0.0001, compared with being caught by fly rounds. The hypothesis was rejected. CONCLUSION: This study showed that epsilon traps capture significantly larger G. m. morsitans than fly rounds do. Therefore, further research is recommended to verify i) whether the predilection of traps to capture larger flies has an effect on the process of tsetse elimination when targets are used e.g. targets may take longer to reach elimination than if the predilection was not there, ii) whether different results can be obtained on ecogeographic distribution of different sizes of the species if fly rounds are used for sampling instead of epsilon traps. The results from such studies could influence the strategies used in future control operations.


Subject(s)
Insect Control/methods , Tsetse Flies/anatomy & histology , Wings, Animal/anatomy & histology , Animals , Body Size , Female , Male , Simuliidae
17.
Biota Neotrop. (Online, Ed. ingl.) ; 20(2): e20190867, 2020. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1089120

ABSTRACT

Abstract Populations that breed along steep elevation gradients show diverse physiological and morphological changes in response to the different environmental conditions. The latter has been discussed by Bergmann's and Allen's ecogeographic rules about body and appendage sizes and environmental temperature. We compared morphometric measures (mass, bill width, tarsus, wing, and tail length) of a Zonotrichia capensis population in two localities at different elevations with similar latitudes and photoperiods on the western slope of the Colombian Central Andes. We compared a Low Elevation locality (LE) at 1800 m a.s.l. and a High Elevation locality (HE) at 3853 m a.s.l. that have approximate wind speeds of 1.3 m/s and 8.4 m/s, respectively. During 12 months of sampling, we captured 46 adults using mist-nets; 26 in the LE and 20 in the HE. Each individual was sexed using molecular techniques at the Laboratory of Genetics of the Department of Biological Sciences of Universidad de Caldas. Individuals (males + females) from the HE had longer wings and tails than those from the LE (F1,44 = 5.93; P = 0.019). Also, wings of males in the HE were longer than those of females in both localities and tails of males in the HE were longer than those of LE males. Our results did not agree with what was expected according to Allen's and Bergmann's ecogeographic rules. Longer wings and tails increase sustainment, maneuverability, and balance in low atmospheric pressures and strong air currents and these conditions are found at high elevation habitats. Most likely, the longer wings found for HE males allow greater movement during territorial behavior. Further, these differences in morphological traits along elevational gradients could result from micro-evolutionary changes between localities or phenotypic plasticity of individuals exposed to different environmental conditions.


Resumen Las poblaciones que se reproducen en gradientes altitudinales, adoptan diversos cambios morfológicos para afrontar las condiciones ambientales. En el presente estudio se compararon las medidas morfológicas (peso corporal, longitud del tarso, ala, cola y culmen) de una población de Zonotrichia capensis, a diferente altitud en los Andes colombianos. Las localidades de tierra baja (TB) y alta (TA) se encuentran a 1800 m.s.n.m. y 3853 m.s.n.m., con velocidad aproximada del viento de 1.3 m/s y 8.4 m/s, respectivamente. Durante 12 meses se realizó la captura de 46 individuos (TB n=26, TA n=20) para la medición de los rasgos morfológicos. La longitud del ala de los individuos de TA fue mayor que en TB. Así mismo, en machos de TA la longitud del ala fue mayor que en hembras en general. Es posible que a las más grandes incrementen la eficiencia del vuelo en zonas ventosas y con baja presión atmosférica, como ocurre en TA. Probablemente la diferencia del tamaño del ala entre los machos de TA y las hembras, se deba a un mayor desplazamiento dentro de la conducta territorial. Estas diferencias podrían ser el resultado de cambios microevolutivos entre localidades o la plasticidad fenotípica de individuos expuestos a diferentes condiciones ambientales.

18.
Malar J ; 18(1): 416, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31829189

ABSTRACT

BACKGROUND: In the Solomon Island, the dominant malaria vector, Anopheles farauti, is highly anthropophagic and increasingly exophilic and early biting. While long-lasting insecticide-treated nets remain effective against An. farauti, supplemental vector control strategies will be needed to achieve malaria elimination. Presently, the only World Health Organization recommended supplemental vector control strategy is larval source management (LSM). Effective targeted larval source management requires understanding the associations between abiotic, chemical and biological parameters of larval habitats with the presence or density of vector larvae. METHODS: Potential and actual An. farauti larval habitats were characterized for presence and density of larvae and associated abiotic, chemical and biological parameters. RESULTS: A third of all sampled potential habitats harboured An. farauti larvae with 80% of An. farauti positive habitats being in three habitat classifications (swamps/lagoons, transient pools and man-made holes). Large swamps were the most abundant positive habitats surveyed (43% of all An. farauti positive habitats). Habitats with An. farauti larvae were significantly associated with abiotic (pH, nitrate, ammonia and phosphate concentrations and elevated temperature) and biotic (predators) parameters. CONCLUSION: Large swamps and lagoons are the largest and most abundant An. farauti habitats in the Solomon Islands. Positive habitats were more frequently associated with the presence of predators (vertebrates and invertebrates) and higher water temperatures. Cohabitation with predators is indicative of a complex habitat ecosystem and raises questions about the potential of biological control as an effective control strategy. Increased presence of An. farauti with higher water temperature suggests a potential explanation for the coastal distribution of this species which is not found inland at elevated altitudes where temperatures would be cooler.


Subject(s)
Anopheles/growth & development , Ecosystem , Larva/growth & development , Mosquito Vectors/growth & development , Animals , Melanesia , Population Density , Stress, Physiological , Wetlands
19.
Malar J ; 18(1): 208, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31234876

ABSTRACT

BACKGROUND: Malaria transmission varies in intensity amongst Solomon Island villages where Anopheles farauti is the only vector. This variation in transmission intensity might be explained by density-dependent processes during An. farauti larval development, as density dependence can impact adult size with associated fitness costs and daily survivorship. METHODS: Adult anophelines were sampled from six villages in Western and Central Provinces, Solomon Islands between March 2014 and February 2017. The size of females was estimated by measuring wing lengths, and then analysed for associations with biting densities and rainfall. RESULTS: In the Solomon Islands, three anopheline species, An. farauti, Anopheles hinesorum and Anopheles lungae, differed in size. The primary malaria vector, An. farauti, varied significantly in size among villages. Greater rainfall was directly associated with higher densities of An. farauti biting rates, but inversely associated with body size with the smallest mean sized mosquitoes present during the peak transmission period. A measurable association between body size and survivorship was not found. CONCLUSIONS: Density dependent effects are likely impacting the size of adult An. farauti emerging from a range of larval habitats. The data suggest that rainfall increases An. farauti numbers and that these more abundant mosquitoes are significantly smaller in size, but without any reduced survivorship being associated with smaller size. The higher malaria transmission rate in a high malaria focus village appears to be determined more by vector numbers than size or survivorship of the vectors.


Subject(s)
Anopheles/anatomy & histology , Anopheles/physiology , Body Size , Malaria/transmission , Mosquito Vectors/anatomy & histology , Mosquito Vectors/physiology , Seasons , Animals , Bites and Stings , Female , Humans , Melanesia , Rain
20.
Ecol Evol ; 9(3): 1202-1210, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30805153

ABSTRACT

The optimum body mass of passerine birds typically represents a trade-off between starvation risk, which promotes fat gain, and predation pressure, which promotes fat loss to maintain maneuvrability. Changes in ecological factors that affect either of these variables will therefore change the optimum body masses of populations of passerine birds. This study sought to identify and quantify the effects of changing temperatures and predation pressures on the body masses and wing lengths of populations of passerine birds throughout Britain and Ireland over the last 50 years. We analyzed over 900,000 individual measurements of body mass and wing length of blue tits Cyanistes caeruleus, coal tits Periparus ater, and great tits Parus major collected by licenced bird ringers throughout Britain and Ireland from 1965 to 2017 and correlated these with publicly available temperature data and published, UK-wide data on the abundance of a key predator, the sparrowhawk Accipiter nisus. We found highly significant, long-term, UK-wide decreases in winter body masses of adults and juveniles of all three species. We also found highly significant negative correlations between winter body mass and winter temperature, and between winter body mass and sparrowhawk abundance. Independent of these effects, body mass further correlated negatively with calendar year, suggesting that less well understood dynamic factors, such as supplementary feeding levels, may play a major role in determining population optimum body masses. Wing lengths of these birds also decreased, suggesting a hitherto unobserved large-scale evolutionary adjustment of wing loading to the lower body mass. These findings provide crucial evidence of the ways in which species are adapting to climate change and other anthropogenic factors throughout Britain and Ireland. Such processes are likely to have widespread implications as the equilibria controlling evolutionary optima in species worldwide are upset by rapid, anthropogenic ecological changes.

SELECTION OF CITATIONS
SEARCH DETAIL