Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Magn Reson Med ; 81(2): 765-772, 2019 02.
Article in English | MEDLINE | ID: mdl-30216528

ABSTRACT

PURPOSE: Absolute MR temperature measurements are currently difficult because they require precalibration procedures specific for tissue types and conditions. Reference of the lipid-dissolved 129 Xe resonance frequency to temperature-insensitive methylene protons (rLDX) has been proposed to remove the effect of macro- and microscopic susceptibility gradients to obtain absolute temperature information. The scope of this work is to evaluate the rLDX chemical shift (CS) dependence on lipid composition to estimate the precision of absolute temperature measurements in lipids. METHODS: Neat triglycerides, vegetable oils, and samples of freshly excised human and rodent adipose tissue (AT) are prepared under 129 Xe atmosphere and studied using high-resolution NMR. The rLDX CS is measured as a function of temperature. 1 H spectra are also acquired and the consistency of methylene-referenced water proton and rLDX CS values are compared in human AT. RESULTS: Although rLDX CS shows a dependence on lipid composition, in human and rodent AT samples the rLDX shows consistent CS values with a similar temperature dependence (-0.2058 ± 0.0010) ppm/°C × T (°C) + (200.15 ± 0.03) ppm, enabling absolute temperature measurements with an accuracy of 0.3°C. Methylene-referenced water CS values present variations of up to 4°C, even under well-controlled conditions. CONCLUSIONS: The rLDX can be used to obtain accurate absolute temperature measurements in AT, opening new opportunities for hyperpolarized 129 Xe MR to measure tissue absolute temperature.


Subject(s)
Lipids/chemistry , Magnetic Resonance Imaging , Xenon , Adipose Tissue/metabolism , Animals , Calibration , Humans , Plant Oils/chemistry , Protons , Rats , Reference Values , Reproducibility of Results , Temperature , Triglycerides/chemistry , Water/chemistry
2.
Magn Reson Med ; 80(2): 431-441, 2018 08.
Article in English | MEDLINE | ID: mdl-29266425

ABSTRACT

PURPOSE: To assess the effect of macroscopic susceptibility gradients on the gas-phase referenced dissolved-phase 129 Xe (DPXe) chemical shift (CS) and to establish the robustness of a water-based referencing system for in vivo DPXe spectra. METHODS: Frequency shifts induced by spatially varying magnetic susceptibility are calculated by finite-element analysis for the human head and chest. Their effect on traditional gas-phase referenced DPXe CS is then assessed theoretically and experimentally. A water-based referencing system for the DPXe resonances that uses the local water protons as reference is proposed and demonstrated in vivo in rats. RESULTS: Across the human brain, macroscopic susceptibility gradients can induce an apparent variation in the DPXe CS of up to 2.5 ppm. An additional frequency shift as large as 6.5 ppm can exist between DPXe and gas-phase resonances. By using nearby water protons as reference for the DPXe CS, the effect of macroscopic susceptibility gradients is eliminated and consistent CS values are obtained in vivo, regardless of shimming conditions, region of interest analyzed, animal orientation, or lung inflation. Combining in vitro and in vivo spectroscopic measurements finally enables confident assignment of some of the DPXe peaks observed in vivo. CONCLUSION: To use hyperpolarized xenon as a biological probe in tissues, the DPXe CS in specific organs/tissues must be reliably measured. When the gas-phase is used as reference, variable CS values are obtained for DPXe resonances. Reliable peak assignments in DPXe spectra can be obtained by using local water protons as reference. Magn Reson Med 80:431-441, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Animals , Brain/diagnostic imaging , Head/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Male , Rats , Rats, Inbred F344 , Signal Processing, Computer-Assisted , Thorax/diagnostic imaging
3.
Magn Reson Med ; 75(6): 2227-34, 2016 06.
Article in English | MEDLINE | ID: mdl-27080441

ABSTRACT

PURPOSE: Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in (129) Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of (129) Xe dissolved in the human head at 1.5 Tesla. METHODS: A (129) Xe radiofrequency coil was built in-house and (129) Xe gas was polarized using spin-exchange optical pumping. Following the inhalation of (129) Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two-dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. RESULTS: Spectra of hyperpolarized (129) Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. CONCLUSION: High resolution spectroscopy and CSI of hyperpolarized (129) Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in (129) Xe spectra from the human head in vivo. Magn Reson Med 75:2227-2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Xenon Isotopes/therapeutic use , Adult , Equipment Design , Humans , Magnetic Resonance Imaging/instrumentation , Male , Xenon Isotopes/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL