Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Front Cell Infect Microbiol ; 14: 1420389, 2024.
Article in English | MEDLINE | ID: mdl-38983117

ABSTRACT

The intestinal microbiota assumes a pivotal role in modulating host metabolism, immune responses, overall health, and additional physiological dimensions. The structural and functional characteristics of the intestinal microbiota may cause alterations within the host's body to a certain extent. The composition of the gut microbiota is associated with environmental factors, dietary habits, and other pertinent conditions. The investigation into the gut microbiota of yaks remained relatively underexplored. An examination of yak gut microbiota holds promise in elucidating the complex relationship between microbial communities and the adaptive responses of the host to its environment. In this study, yak were selected from two distinct environmental conditions: those raised in sheds (NS, n=6) and grazed in Nimu County (NF, n=6). Fecal samples were collected from the yaks and subsequently processed for analysis through 16S rDNA and ITS sequencing methodologies. The results revealed that different feeding styles result in significant differences in the Alpha diversity of fungi in the gut of yaks, while the gut microbiota of captive yaks was relatively conserved. In addition, significant differences appeared in the abundance of microorganisms in different taxa, phylum Verrucomicrobiota was significantly enriched in group NF while Firmicutes was higher in group NS. At the genus level, Akkermansia, Paenibacillus, Roseburia, Dorea, UCG_012, Anaerovorax and Marvinbryantia were enriched in group NF while Desemzia, Olsenella, Kocuria, Ornithinimicrobium and Parvibacter were higher in group NS (P<0.05 or P<0.01). There was a significant difference in the function of gut microbiota between the two groups. The observed variations are likely influenced by differences in feeding methods and environmental conditions both inside and outside the pen. The findings of this investigation offer prospective insights into enhancing the yak breeding and expansion of the yak industry.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Cattle , Gastrointestinal Microbiome/genetics , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , China , Phylogeny , DNA, Bacterial/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry , Sequence Analysis, DNA , Biodiversity
2.
Article in English | MEDLINE | ID: mdl-38995335

ABSTRACT

The Baihe River, a tributary of the Yellow River located in the Ngawa Tibetan and Qiang Autonomous Prefecture in Northern Sichuan, is surrounded by natural resources suitable for animal development. However, the impact of livestock activities water microbiome in this area remains unexplored. This study collected water samples from areas with captive yaks and sheep (NS and YS) and compared them with water samples from Hongyuan Baihe River. Through amplicon sequencing, we investigated the impact of livestock activities on aquatic microorganisms. Diversity analysis, significance analysis, and microbial phenotype prediction indicated a significant decrease in microbial community diversity and function in the NS and YS groups. Pathogenic microorganisms such as Bacteroidales and Thelebolaceae and antibiotic-resistant bacteria genes such as Flavobacteriales and Burkholderiaceae were significantly higher in livestock breeding areas. Additionally, bacteria adapted to acidification, hypoxia, and eutrophication (e.g., Acidobacteria, Flavobacteriales, Deltaproteobacteria, Rhodobacterales) were more abundant in these areas. Our results demonstrate that livestock activities significantly alter the structure and function of microbial communities in surrounding water bodies, deteriorating water quality.

3.
J Therm Biol ; 123: 103879, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38906049

ABSTRACT

Yaks adapt to extremely low temperatures, but they are more susceptible to heat stress (HS). The adaptive mechanisms with crucial plasma protein markers regulating the response to HS remain elusive. In this study, data-independent acquisition proteomics were used to evaluate the thermal adaptability under chronic HS and thermal-neutral conditions. As a result, yaks increased body temperatures and respiratory rates in response to HS. Eight differential proteins mainly related to vasodilatation were decreased by HS, but another four proteins associated with blood oxygen delivery were presented at higher levels. Complement and coagulation cascades pathway was activated by HS, and more proteins were upregulated to protect against inflammation and oxidative stress by higher levels of antioxidant proteins. It is likely that yaks react to HS with enhancement of immunomodulation, anti-oxidation, and blood oxygen delivery, which is conducive to taking appropriate environment and nutrition management strategies to get healthy and high-performing yaks in low-altitude regions during summer.

4.
Animals (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731369

ABSTRACT

Yaks are the main pillar of plateau animal husbandry and the material basis of local herdsmen's survival. The level of mineral elements in the body is closely related to the production performance of yaks. In this study, we performed a comprehensive analysis of rumen epithelial morphology, transcriptomics and metagenomics to explore the dynamics of rumen functions, microbial colonization and functional interactions in yaks from birth to adulthood. Bacteria, eukaryotes, archaea and viruses colonized the rumen of yaks from birth to adulthood, with bacteria being the majority. Bacteroidetes and Firmicutes were the dominant phyla in five developmental stages, and the abundance of genus Lactobacillus and Fusobacterium significantly decreased with age. Glycoside hydrolase (GH) genes were the most highly represented in five different developmental stages, followed by glycosyltransferases (GTs) and carbohydrate-binding modules (CBMs), where the proportion of genes coding for CBMs increased with age. Integrating host transcriptome and microbial metagenome revealed 30 gene modules related to age, muscle layer thickness, nipple length and width of yaks. Among these, the MEmagenta and MEturquoise were positively correlated with these phenotypic traits. Twenty-two host genes involved in transcriptional regulation related to metal ion binding (including potassium, sodium, calcium, zinc, iron) were positively correlated with a rumen bacterial cluster 1 composed of Alloprevotella, Paludibacter, Arcobacter, Lactobacillus, Bilophila, etc. Therefore, these studies help us to understand the interaction between rumen host and microorganisms in yaks at different ages, and further provide a reliable theoretical basis for the development of feed and mineral element supplementation for yaks at different ages.

5.
Front Vet Sci ; 11: 1383262, 2024.
Article in English | MEDLINE | ID: mdl-38737458

ABSTRACT

Intensive poultry farming faces challenges like gut inflammation in the absence of antibiotics, resulting in reduced productivity, heightened susceptibility to enteric diseases, and other complications. Alternative strategies are needed to manage inflammation and maintain sustainable poultry production. Yaks living in high-altitude hypoxic environments have specialized gut microbes. However, yak probiotics remain largely uncharacterized. We previously isolated a strain of Bacillus pumilus (named TS2) from yaks and demonstrated its potential as a probiotic in vitro. Therefore, in this study, we evaluated the in vivo growth-promoting, antioxidant, immune, and anti-inflammatory effects of Bacillus pumilus isolated from yaks in broilers. We demonstrated the safety of TS2 isolated from yaks in broilers. Furthermore, we found that TS2 increased the average daily weight gain (ADWG) and reduced the feed conversion ratio (FCR). Supplementation with TS2 also improved the mucosal morphology, the ratio of villi to crypt cells, and enzyme activity. High-throughput sequencing showed that the abundance of Lactobacillus was higher in the TS2 treated broilers. Importantly, the serum level of malondialdehyde (MDA) was reduced and the levels of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity were increased in the low-dose TS2 group, while the inflammatory factors interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were downregulated compared with the control group. We demonstrated that TS2 supplementation can increase the overall growth performance and ameliorate the blood parameters related to inflammation and immunity in broilers.

6.
Animals (Basel) ; 14(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38672329

ABSTRACT

Diarrhea-induced mortality among juvenile yaks is highly prevalent in the pastoral areas of the Qinghai-Tibet plateau. Although numerous diseases have been linked to the gut microbial community, little is known about how diarrhea affects the gut microbiota in yaks. In this work, we investigated and compared changes in the gut microbiota of juvenile yaks with diarrhea. The results demonstrated a considerable drop in the alpha diversity of the gut microbiota in diarrheic yaks, accompanied by Eysipelatoclostridium, Parabacteroides, and Escherichia-Shigella, which significantly increased during diarrhea. Furthermore, a PICRust analysis verified the elevation of the gut-microbial metabolic pathways in diarrhea groups, including glycine, serine, and threonine metabolism, alanine, aspartate, oxidative phosphorylation, glutamate metabolism, antibiotic biosynthesis, and secondary metabolite biosynthesis. Taken together, our study showed that the harmful bacteria increased, and beneficial bacteria decreased significantly in the gut microbiota of yaks with diarrhea. Moreover, these results also indicated that the dysbiosis of the gut microbiota may be a significant driving factor of diarrhea in yaks.

7.
Animals (Basel) ; 14(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672391

ABSTRACT

Growth-retarded yaks are of a high proportion on the Tibetan plateau and reduce the economic income of farmers. Our previous studies discovered a maldevelopment in the ruminal epithelium of growth-retarded yaks, but the molecular mechanisms are still unclear. This study aimed to reveal how the proteomic profile in the ruminal epithelium contributed to the growth retardation of yaks. The proteome of the ruminal epithelium was detected using a high-resolution mass spectrometer. There were 52 proteins significantly differently expressed between the ruminal epithelium of growth-retarded yaks and growth-normal yaks, with 32 downregulated and 20 upregulated in growth-retarded yaks. Functional analysis showed the differently expressed proteins involved in the synthesis and degradation of ketone bodies (p = 0.012), propanoate metabolism (p = 0.018), pyruvate metabolism (p = 0.020), and mineral absorption (p = 0.024). The protein expressions of SLC26A3 and FTH1, enriched in the mineral absorption, were significantly downregulated in growth-retarded yaks. The key enzymes ACAT2 and HMGCS2 enriched in ketone bodies synthesis and key enzyme PCCA enriched in propanoate metabolism had lower protein expressions in the ruminal epithelium of growth-retarded yaks. The ATP concentration and relative mitochondrial DNA copy number in the ruminal epithelium of growth-normal yaks were dramatically higher than those of growth-retarded yaks (p < 0.05). The activities of citrate synthase (CS), the α-ketoglutarate dehydrogenase complex (α-KGDHC), isocitrate dehydrogenase (ICD) in the tricarboxylic acid cycle (TCA), and the mitochondrial respiratory chain complex (MRCC) were significantly decreased in ruminal epithelium of growth-retarded yaks compared to growth-normal yaks (p < 0.05). The mRNA expressions of COQ9, COX4, and LDHA, which are the encoding genes in MRCC I, IV and anaerobic respiration, were also significantly decreased in the ruminal epithelium of growth-retarded yaks (p < 0.05). Correlation analysis revealed that the average daily gain (ADG) was significantly positively correlated to the relative mitochondrial DNA copy number (p < 0.01, r = 0.772) and ATP concentration (p < 0.01, r = 0.728) in the ruminal epithelium, respectively. The ruminal weight was positively correlated to the relative mitochondrial DNA copy number (p < 0.05, r = 0.631) and ATP concentration in ruminal epithelium (p < 0.01, r = 0.957), respectively. The ruminal papillae had a significant positive correlation with ATP concentration in ruminal epithelium (p < 0.01, r = 0.770). These results suggested that growth-retarded yaks had a lower VFA metabolism, ketone bodies synthesis, ion absorption, and ATP synthesis in the ruminal epithelium; it also indicated that the growth retardation of yaks is related to the obstruction of cellular ATP synthesis in rumen epithelial cells.

8.
Arch Microbiol ; 206(4): 149, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466437

ABSTRACT

Domestic yak (Bos grunniens) is an economically important feature of the mountainous region of Gilgit-Baltistan in Pakistan where agriculture is restricted and yaks play multiple roles which includes being a source of milk, meat, hides, fuel and power. However little is known about the parasitic infections in Pakistani yaks. Aim of this research was to report the prevalence and genetic diversity of protozoa parasite (Theileria ovis, 18 S rDNA gene was targeted) and an obligate bacterium (Anaplasma marginale, msp-1 gene was amplified) in the blood that was sampled from 202 yaks collected from four districts in Gilgit-Baltistan during January 2023 till January 2024. Results revealed that 6/202 (3%) yaks were of Theileria ovis while 8/202 (4%) were Anaplasma marginale infected. Positive PCR products of both parasites were confirmed by DNA sequencing and their similarity with previously available pathogen sequences was determined by BLAST analysis. Phylogenetic tree indicated that isolates of both parasites displayed genetic. Anaplasma marginale infection varied with the sampling districts and Shigar district had the highest rate of bacterial infection. Cows were significantly more prone to Theileria ovis infection than bulls. Calf and hybrid yaks were more prone to Anaplasma marginale infection. In conclusion, this is the first report that yaks residing the Gilgit-Baltistan region in Pakistan are infected with Theileria ovis and Anaplasma marginale. Similar larger scales studies are recommended in various regions of Gilgit-Baltistan to document the infection rates of these parasites to formulate strategies that will lead to the effective control of these pathogens.


Subject(s)
Anaplasma marginale , Anaplasmosis , Theileria , Ticks , Female , Cattle , Animals , Sheep , Anaplasma marginale/genetics , Theileria/genetics , Pakistan/epidemiology , Anaplasma/genetics , Prevalence , Ticks/microbiology , Ticks/parasitology , Phylogeny , Anaplasmosis/epidemiology , Anaplasmosis/microbiology
9.
Front Microbiol ; 15: 1275865, 2024.
Article in English | MEDLINE | ID: mdl-38419639

ABSTRACT

Introduction: The dietary protein level plays a crucial role in maintaining the equilibrium of rumen microbiota in yaks. To explore the association between dietary protein levels, rumen microbiota, and muscle metabolites, we examined the rumen microbiome and muscle metabolome characteristics in yaks subjected to varying dietary protein levels. Methods: In this study, 36 yaks were randomly assigned to three groups (n = 12 per group): low dietary protein group (LP, 12% protein concentration), medium dietary protein group (MP, 14% protein concentration), and high dietary protein group (HP, 16% protein concentration). Results: 16S rDNA sequencing revealed that the HP group exhibited the highest Chao1 and Observed_species indices, while the LP group demonstrated the lowest. Shannon and Simpson indices were significantly elevated in the MP group relative to the LP group (P < 0.05). At the genus level, the relative abundance of Christensenellaceae_R-7_group in the HP group was notably greater than that in the LP and MP groups (P < 0.05). Conversely, the relative abundance of Rikenellaceae_RC9_gut_group displayed an increasing tendency with escalating feed protein levels. Muscle metabolism analysis revealed that the content of the metabolite Uric acid was significantly higher in the LP group compared to the MP group (P < 0.05). The content of the metabolite L-(+)-Arabinose was significantly increased in the MP group compared to the HP group (P < 0.05), while the content of D-(-)-Glutamine and L-arginine was significantly reduced in the LP group (P < 0.05). The levels of metabolites 13-HPODE, Decanoylcarnitine, Lauric acid, L-(+)-Arabinose, and Uric acid were significantly elevated in the LP group relative to the HP group (P < 0.05). Furthermore, our observations disclosed correlations between rumen microbes and muscle metabolites. The relative abundance of NK4A214_group was negatively correlated with Orlistat concentration; the relative abundance of Christensenellaceae_R-7_group was positively correlated with D-(-)-Glutamine and L-arginine concentrations. Discussion: Our findings offer a foundation for comprehending the rumen microbiome of yaks subjected to different dietary protein levels and the intimately associated metabolic pathways of the yak muscle metabolome. Elucidating the rumen microbiome and muscle metabolome of yaks may facilitate the determination of dietary protein levels.

10.
BMC Genomics ; 25(1): 69, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233755

ABSTRACT

BACKGROUND: The yak is a symbol of the Qinghai-Tibet Plateau and provides important basic resources for human life on the plateau. Domestic yaks have been subjected to strong artificial selection and environmental pressures over the long-term. Understanding the molecular mechanisms of phenotypic differences in yak populations can reveal key functional genes involved in the domestication process and improve genetic breeding. MATERIAL AND METHOD: Here, we re-sequenced 80 yaks (Maiwa, Yushu, and Huanhu populations) to identify single-nucleotide polymorphisms (SNPs) as genetic variants. After filtering and quality control, remaining SNPs were kept to identify the genome-wide regions of selective sweeps associated with domestic traits. The four methods (π, XPEHH, iHS, and XP-nSL) were used to detect the population genetic separation. RESULTS: By comparing the differences in the population stratification, linkage disequilibrium decay rate, and characteristic selective sweep signals, we identified 203 putative selective regions of domestic traits, 45 of which were mapped to 27 known genes. They were clustered into 4 major GO biological process terms. All known genes were associated with seven major domestication traits, such as dwarfism (ANKRD28), milk (HECW1, HECW2, and OSBPL2), meat (SPATA5 and GRHL2), fertility (BTBD11 and ARFIP1), adaptation (NCKAP5, ANTXR1, LAMA5, OSBPL2, AOC2, and RYR2), growth (GRHL2, GRID2, SMARCAL1, and EPHB2), and the immune system (INPP5D and ADCYAP1R1). CONCLUSIONS: We provided there is an obvious genetic different among domestic progress in these three yak populations. Our findings improve the understanding of the major genetic switches and domestic processes among yak populations.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Domestication , Receptors, Steroid , Animals , Humans , Cattle/genetics , Genome , Sequence Analysis, DNA , Tibet , Genetics, Population , Microfilament Proteins , Receptors, Cell Surface , DNA Helicases , Nerve Tissue Proteins , Ubiquitin-Protein Ligases
11.
Appl Microbiol Biotechnol ; 108(1): 139, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229401

ABSTRACT

Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.


Subject(s)
Bacillus licheniformis , Intestinal Diseases , Probiotics , Animals , Mice , Cattle , Anti-Bacterial Agents/pharmacology , Dietary Supplements , Probiotics/pharmacology , Intestinal Diseases/microbiology , Firmicutes/genetics , Cephalexin
12.
Probiotics Antimicrob Proteins ; 16(2): 531-540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36995549

ABSTRACT

The yak has a unique physiological structure suited to life in anoxic and cold environments at high altitudes. The aim of this study was to isolate Bacillus species with good probiotic properties from yak feces. A series of tests were performed on the isolated Bacillus: 16S rRNA identification, antibacterial activity, tolerance to gastroenteric fluid, hydrophobicity, auto-aggregation, antibiotic sensitivity, growth performance, antioxidants, and immune indexes. A safe and harmless Bacillus pumilus DX24 strain with good survival rate, hydrophobicity, auto-aggregation, and antibacterial activity was identified in the yak feces. Feeding mice with Bacillus pumilus DX24 increased their daily weight gain, jejunal villus length, villi/Crypt ratio, blood IgG levels, and jejunum sIgA levels. This study confirmed the probiotic effects of Bacillus pumilus isolated from yak feces and provides the theoretical basis for the clinical application and development of new feed additives.


Subject(s)
Bacillus pumilus , Bacillus , Probiotics , Cattle , Animals , Mice , Bacillus pumilus/genetics , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology
13.
Animals (Basel) ; 13(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067071

ABSTRACT

Hormone-sensitive lipase (HSL) is involved in the breakdown of triacylglycerols in adipose tissue, which influences muscle tenderness and juiciness by affecting the intramuscular fat content (IMF). This study analyzed the association between different genotypes and haplotypes of the yak HSL gene and carcass and meat quality traits. We used hybridization pool sequencing to detect exon 2, exon 8, and intron 3 variants of the yak HSL gene and genotyped 525 Gannan yaks via KASP to analyze the effects of the HSL gene variants on the carcass and meat quality traits in yaks. According to the results, the HSL gene is highly expressed in yak adipose tissue. Three single nucleotide polymorphisms (SNPs) were identified, with 2 of them located in the coding region and one in the intron region. Variants in the 2 coding regions resulted in amino acid changes. The population had 3 genotypes of GG, AG, and AA, and individuals with the AA genotype had lower WBSF values (p < 0.05). The H3H3 haplotype combinations could improve meat tenderness by reducing the WBSF values and the cooking loss rate (CLR) (p < 0.05). H1H1 haplotype combinations were associated with the increased drip loss rate (DLR) (p < 0.05). The presence of the H1 haplotype was associated the increased CLR in yaks, while that of the H2 haplotype was associated with the decreased DLR in yaks (p < 0.05). These results demonstrated that the HSL gene may influence the meat quality traits in yaks by affecting the IMF content in muscle tissues. Consequently, the HSL gene can possibly be used as a biomarker for improving the meat quality traits in yaks in the future.

14.
Proteome Sci ; 21(1): 20, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875878

ABSTRACT

BACKGROUND: Proteins related to sperm motility and sperm morphology have an important impact on sperm function such as metabolism, motility and fertilisation etc. An understanding of the key proteins related to semen quality in Niangya yaks would help to provide support for breeding. However, the key proteins that affect semen quality in Niangya yaks remain unclear. METHODS: Herein, we applied tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyze the expression levels of sperm proteins in groups of high- and low-quality semen from Niangya yaks. And fifteen differentially expressed proteins (DEPs) were randomly selected for expression level validation by parallel reaction monitoring (PRM). RESULTS: Of the 2,092 quantified proteins, 280 were identified as DEPs in the high-quality group versus the low-quality group. Gene Ontology (GO) analysis revealed that in terms of biological pathways, the DEPs were mainly involved in metabolic processes, cell transformation processes, and single organism metabolic processes. In terms of cell composition, the DEPs were mainly located in the cell membrane, organelle, molecular complex. In terms of molecular functions, the most abundant functions of the DEPs were catalytic activity, binding activity, transport activity, and enzyme regulation activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs were mainly involved in the cytokine and cytokine receptor interaction, notch signaling pathway, lysine biosynthesis, renal function-related protein and proteasome pathway. From protein-protein interaction (PPI) analysis of DEPs involved in important pathways, 6 related proteins affecting the semen quality of Niangya yaks were identified. And the results of the PRM and TMT analysis were consistent. CONCLUSIONS: The differential sperm proteomic analysis of high- and low-quality semen from Niangya yaks, revealed 6 proteins (PSMC5, PSMD8, PSMB3, HSP90AA1, UGP2 and HSPB1), were mainly concentrated in energy production and metabolism, might play important roles in semen quality, which could serve as candidates for the selection and breeding of Niangya yaks.

15.
Article in English | MEDLINE | ID: mdl-37822067

ABSTRACT

The brain is an important part of the mammalian nervous system, is highly sensitive to hypoxia, and plays an important role in the adaptation of the body to hypoxic environments. This study was conducted to study the distribution and expression of hypoxia-related factors (hypoxia-inducible factor 1α, HIF-1α; erythropoietin, EPO; vascular endothelial growth factor, VEGF; vascular cell adhesion molecule, VCAM) in the cerebellum, cerebrum, medulla oblongata, and corpora quadrigemina in yaks of different ages (4d, 6-months-old and adult). Paraffin sections were obtained from the cerebellum, cerebrum, medulla oblongata, and corpora quadrigemina of healthy yak for 4-day-old, 6-months-old and adult yaks. Histological characteristics were assessed by haematoxylin staining. Immunohistochemical staining was performed to detect the distribution and expression of HIF-1α, EPO, VEGF and VCAM proteins. Immunohistochemical results showed that HIF-1α, EPO, VEGF, and VCAM were expressed in the pyramidal cell layer of the yak cerebrum, and distributed in the cerebellum granulose cell layer, Purkinje cell layer and medulla layer, and were mainly positive in Purkinje cells and medulla. It is expressed in the cell bodies of the medulla oblongata and the quadrimatous neurons. The expression level in the medulla oblongata was higher, indicating may play a crucial role in functional cohesion. The expression of HIF-1α in 4 d cerebellar tissues was higher than that in other age groups, and the expression of HIF-1α in the medulla oblongata increased with age. In addition, the expression levels of EPO and VEGF in the 6-month-old group were slightly higher than those in the other age groups. It is speculated that EPO and VEGF have obvious protective effects on brain tissue in the 6-month-old age group; VCAM showed no significant differences in the cerebrum, cerebellum, medulla oblongata, or corpora quadrigemina of the yaks. This study provides basic data for further exploration of the adaptive mechanism of plateau yak brain tissue.

16.
Microorganisms ; 11(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37894057

ABSTRACT

This study compared the growth performance, serum biochemical indicators, rumen fermentation parameters, rumen bacterial structure, and fecal bacterial structure of cattle and yaks fed for two months and given a feed containing concentrate of a roughage ratio of 7:3 on a dry matter basis. Compared with cattle, yak showed better growth performance. The serum biochemical results showed that the albumin/globulin ratio in yak serum was significantly higher than that in cattle. Aspartate aminotransferase, indirect bilirubin, creatine kinase, lactate dehydrogenase, and total cholesterol were significantly lower in yaks than in cattle. The rumen pH, acetate to propionate ratio, and acetate were lower in yaks than in cattle, whereas the lactate in yaks was higher than in cattle. There were significant differences in the structure of ruminal as well as fecal bacteria between cattle and yaks. The prediction of rumen bacterial function showed that there was a metabolic difference between cattle and yaks. In general, the metabolic pathway of cattle was mainly riched in a de novo synthesis of nucleotides, whereas that of yaks was mainly riched in the metabolic utilization of nutrients. This study provides a basis for understanding a rumen ecology under the condition of a high concentrate diet.

17.
BMC Vet Res ; 19(1): 149, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684611

ABSTRACT

BACKGROUND: The study aimed to investigate the effect of urea molasses mineral blocks (UMMB) on nutrient digestibility, productive performance and blood biochemical profile of indigenous yaks under various feeding systems. A total of sixteen yaks were randomly divided into four groups (n = 4 animal per group) and offered the, following feeding systems: (A) stall feeding, (B), urea molasses mineral block (UMMB) + stall feeding, (C) yard feeding and (D) UMMB + yard feeding. Trial lasted for 40 days. RESULTS: Results showed that nutrients intake (g) and nutrient digestibility (%) of dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE) and crude fiber (CF) were significantly higher (p < 0.05) in stall and yard feeding groups with UMMB licking. Blood zinc, cobalt, hemoglobin (Hb), red blood cell (RBC), glucose and serum glutamate private transaminase (SGPT) significantly (p < 0.05) increased in stall and yard feeding with UMMB licking. Milk yield, Ca and monounsaturated fatty acid except milk composition improved significantly (p < 0.05) in stall and yard feeding groups with UMMB licking. CONCLUSION: It was concluded that feeding of UMMB improved utilization of low-quality roughages and best results were obtained from stall and yard feedings with UMMB licking as compared to other groups.


Subject(s)
Molasses , Urea , Animals , Cattle , Minerals , Nutrients , Erythrocytes
18.
J Parasitol ; 109(5): 480-485, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37713533

ABSTRACT

Yak (Bos grunniens) farming is an important part of Mongolia's livestock industry. Yaks survive in harsh mountain environments; provide meat, milk, and wool; and serve as a mode of transportation. In Mongolia, yaks are frequently raised alongside other livestock animals such as cattle, Bactrian camels, sheep, goats, and horses. Recently, we demonstrated that Babesia bovis, Babesia bigemina, and Babesia naoakii-parasites with the potential to cause clinical bovine babesiosis-infect not only cattle but also Bactrian camels in Mongolia. However, yaks have never been surveyed for Babesia infections in this country. In the present study, we surveyed yaks in 8 Mongolian provinces: Bayankhongor, Bayan-Ulgii, Khovd, Khovsgol, Omnogovi, Ovorkhangai, Uvs, and Zavkhan. Blood samples were taken and deoxyribonucleic acid (DNA) was extracted from 375 yaks. Furthermore, Giemsa-stained thin smears were prepared from 315 of the 375 blood samples and then examined for the microscopic detection of Babesia parasites. Microscopy revealed that 34 (10.8%) of 315 blood smears were positive for Babesia parasites. All 375 DNA samples were then tested for B. bovis, B. bigemina, and B. naoakii infection using specific polymerase chain reaction assays. We observed that 238 (63.5%) yaks in all surveyed provinces and 8 (2.1%) yaks in 3 provinces (Bayankhongor, Bayan-Ulgii, and Omnogovi) were positive for B. bovis and B. bigemina, respectively. However, all yaks tested were negative for B. naoakii. This epidemiological survey, the first to report Babesia infection in Mongolian yaks, suggests that disease management strategies for yaks in this country should further address bovine babesiosis.


Subject(s)
Babesia , Babesiosis , Cattle , Animals , Horses , Sheep , Babesia/genetics , Babesiosis/epidemiology , Mongolia/epidemiology , Camelus , Gerbillinae , Goats , Livestock , DNA
19.
Microb Pathog ; 183: 106322, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633503

ABSTRACT

During the last decade, researchers had started to focus on the relationship between intestinal parasitic infection and variation of intestinal microflora. Cryptosporidium is a widely known opportunistic and zoonotic pathogen. Several studies have shown that Cryptosporidium infection has impact to alter the gut microflora. However, there are only few studies referring to the fungal microflora changes in response to Cryptosporidium infection in highland ruminants. Therefore, the present study was performed for exploring the alternations of intestinal fungal microbiota in yaks after exposure to Cryptosporidium infection. In present study, Amplicon sequencing of ITS regions was used to study the variations of fungal microflora in yaks. After filtering the raw data, over 45 000 and 62 000 clean data were obtained in uninfected and infected yaks, respectively. By using alpha diversity analysis, it was found that there is no significant difference in the richness and evenness when positive samples were compared with negative ones, whereas intestinal fungal communities in different taxa in yaks were changed. The results of present study depicted that 2-phyla and 21-genera in the infected animals had significantly (P < 0.05) changed. These genera were Septoria, Coniothyrium, Cleistothelebolus, Bensingtonia, Cystobasidium, Filobasidium, Coprotus, Carex, Blumeria, Coprinellus, Leucosporidium, Phialophora, Isolepis, Ascobolus, Thecaphora, Mortierella, Urocystis, Symmetrospora and Lasiobolus. In addition, we found variations in 28 enzymes suggesting that the function of microbiota was also affected. It is concluded that there are drastic changes in the fungal microflora and microbiota functions after exposure to Cryptosporidium infection in yak. Our results help to focus on the prompt way for the development of new therapies to control Cryptosporidiosis.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Gastrointestinal Microbiome , Mycobiome , Animals , Cattle , Cryptosporidium/genetics
20.
Front Cell Infect Microbiol ; 13: 1105126, 2023.
Article in English | MEDLINE | ID: mdl-36936759

ABSTRACT

Diarrhea is a severe bovine disease, globally prevalent in farm animals with a decrease in milk production and a low fertility rate. Cryptosporidium spp. are important zoonotic agents of bovine diarrhea. However, little is known about microbiota and short-chain fatty acids (SCFAs) changes in yaks infected with Cryptosporidium spp. Therefore, we performed 16S rRNA sequencing and detected the concentrations of SCFAs in Cryptosporidium-infected yaks. Results showed that over 80,000 raw and 70,000 filtered sequences were prevalent in yak samples. Shannon (p<0.01) and Simpson (p<0.01) were both significantly higher in Cryptosporidium-infected yaks. A total of 1072 amplicon sequence variants were shared in healthy and infected yaks. There were 11 phyla and 58 genera that differ significantly between the two yak groups. A total of 235 enzymes with a significant difference in abundance (p<0.001) were found between healthy and infected yaks. KEGG L3 analysis discovered that the abundance of 43 pathways was significantly higher, while 49 pathways were significantly lower in Cryptosporidium-infected yaks. The concentration of acetic acid (p<0.05), propionic acid (p<0.05), isobutyric acid (p<0.05), butyric acid (p<0.05), and isovaleric acid was noticeably lower in infected yaks, respectively. The findings of the study revealed that Cryptosporidium infection causes gut dysbiosis and results in a significant drop in the SCFAs concentrations in yaks with severe diarrhea, which may give new insights regarding the prevention and treatment of diarrhea in livestock.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Microbiota , Cattle , Animals , Cryptosporidium/genetics , RNA, Ribosomal, 16S/genetics , Fatty Acids, Volatile , Diarrhea/veterinary , Butyric Acid , Intestines
SELECTION OF CITATIONS
SEARCH DETAIL
...