Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Bioessays ; 46(6): e2400008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697917

ABSTRACT

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Subject(s)
Neuronal Plasticity , Purkinje Cells , Purkinje Cells/metabolism , Purkinje Cells/physiology , Animals , Neuronal Plasticity/genetics , Humans , Action Potentials/physiology , Synapses/physiology , Synapses/metabolism , Synapses/genetics , Cerebellar Cortex/cytology , Cerebellar Cortex/metabolism , Cerebellar Cortex/physiology
2.
J Comp Neurol ; 531(16): 1633-1650, 2023 11.
Article in English | MEDLINE | ID: mdl-37585320

ABSTRACT

The parallel closed-loop topographic connections between subareas of the inferior olive (IO), cerebellar cortex, and cerebellar nuclei (CN) define the fundamental modular organization of the cerebellum. The cortical modules or zones are organized into longitudinal zebrin stripes which are extended across transverse cerebellar lobules. However, how cerebellar lobules, which are related to the cerebellar functional localization, are incorporated into the olivo-cortico-nuclear topographic organization has not been fully clarified. In the present study, we analyzed the lobular topography in the CN and IO by making 57 small bidirectional tracer injections in the lateral zebrin-positive stripes equivalent with C2, D1, and D2 zones in every hemispheric lobule in zebrin stripe-visualized mice. C2, D1, and D2 zones were connected to the lateral part of the posterior interpositus nucleus (lPIN), and caudal and rostral parts of the lateral nucleus (cLN, rLN), respectively, and from the rostral part of the medial accessory olive (rMAO), and ventral and dorsal lamellas of the PO (vPO, dPO), respectively, as reported. Within these areas, crus I was specifically connected to the ventral parts of the lPIN, cLN, and rLN, and from the rostrolateral part of the rMAO and the lateral parts of the vPO and dPO. The results indicated that the cerebellar modules have lobule-related subdivisions and that crus I is topographically distinct from other lobules. We speculate that crus I and crus I-connected subdivisions in the CN and IO are involved more in nonmotor functions than other neighboring areas in the mouse.


Subject(s)
Cerebellar Nuclei , Olivary Nucleus , Mice , Animals , Neural Pathways , Cerebellar Cortex , Cerebellum
3.
Cell Tissue Res ; 381(2): 273-284, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32418131

ABSTRACT

The anterior pituitary gland is composed of five types of hormone-producing cells and folliculo-stellate cells. Folliculo-stellate cells do not produce anterior pituitary hormones but they are thought to play important roles as stem cells, phagocytes, or supporting cells of hormone-producing cells in the anterior pituitary. S100ß protein has been used as a folliculo-stellate cell marker in some animals, including rats. However, since no reliable molecular marker for folliculo-stellate cells has been reported in mice, genetic approaches for the investigation of folliculo-stellate cells in mice are not yet available. Aldolase C/Zebrin II is a brain-type isozyme and is a fructose-1,6-bisphosphate aldolase. In the present study, we first used immunohistochemistry to verify that aldolase C was produced in the anterior pituitary of rats. Moreover, using transgenic rats expressing green fluorescent protein under the control of the S100ß gene promoter, we identified aldolase C-immunoreactive signals in folliculo-stellate cells and marginal cells located in the parenchyma of the anterior pituitary and around Rathke's cleft, respectively. We also identified aldolase C-expressing cells in the mouse pituitary using immunohistochemistry and in situ hybridization. Aldolase C was not produced in any pituitary hormone-producing cells, while aldolase C-immunopositive signal co-localized with E-cadherin- and SOX2-positive cells. Using post-embedding immunoelectron microscopy, aldolase C-immunoreactive products were observed in the cytoplasm of marginal cells and folliculo-stellate cells of the mouse pituitary. Taken together, aldolase C is a common folliculo-stellate cell marker in the anterior pituitary gland of rodents.


Subject(s)
Fructose-Bisphosphate Aldolase/physiology , Nerve Tissue Proteins/metabolism , Pituitary Gland, Anterior , Animals , Biomarkers/metabolism , Male , Mice , Mice, Inbred C57BL , Pituitary Gland, Anterior/cytology , Pituitary Gland, Anterior/metabolism , Rats , Rats, Transgenic
4.
Cerebellum ; 18(1): 56-66, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29909450

ABSTRACT

Zebrin II/aldolase C expression in the normal cerebellum is restricted to a Purkinje cell subset and is the canonical marker for stripes and zones. This spatial restriction has been confirmed in over 30 species of mammals, birds, fish, etc. In a transgenic mouse model in which the Neurogenin 2 gene has been disrupted (Neurog2-/-), the cerebellum is smaller than normal and Purkinje cell dendrites are disordered, but the basic zone and stripe architecture is preserved. Here, we show that in the Neurog2-/- mouse, in addition to the normal Purkinje cell expression, zebrin II is also expressed in a population of cells with a morphology characteristic of microglia. This identity was confirmed by double immunohistochemistry for zebrin II and the microglial marker, Iba1. The expression of zebrin II in cerebellar microglia is not restricted by zone or stripe or lamina. A second zone and stripe marker, PLCß4, does not show the same ectopic expression. When microglia are compared in control vs. Neurog2-/- mice, no difference is seen in apparent number or distribution, suggesting that the ectopic zebrin II immunoreactivity in Neurog2-/- cerebellum reflects an ectopic expression rather than the invasion of a new population of microglia from the periphery. This ectopic expression of zebrin II in microglia is unique as it is not seen in numerous other models of cerebellar disruption, such as in Acp2-/- mice and in human pontocerebellar hypoplasia. The upregulation of zebrin II in microglia is thus specific to the disruption of Neurog2 downstream pathways, rather than a generic response to a cerebellar disruption.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/deficiency , Cerebellum/metabolism , Microglia/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Acid Phosphatase/deficiency , Acid Phosphatase/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Calcium-Binding Proteins/metabolism , Cerebellum/pathology , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Microglia/pathology , Nerve Tissue Proteins/genetics , Phospholipase C beta/metabolism
5.
J Comp Neurol ; 526(15): 2406-2427, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30004589

ABSTRACT

Topographic connection between corresponding compartments of the cerebellar cortex, cerebellar nuclei, and inferior olive form parallel modules, which are essential for the cerebellar function. Compared to the striped cortical compartmentalization which are labeled by molecular markers, such as aldolase C (Aldoc) or zebrin II, the presumed corresponding organization of the cerebellar nuclei and inferior olivary nucleus has not been much clarified. We focused on the expression pattern of pcdh10 gene coding cell adhesion molecule protocadherin 10 (Pcdh10) in adult mice. In the cortex, pcdh10 was strongly expressed in (a) Aldoc-positive vermal stripes a+//2+ in lobules VI-VII, (b) paravermal narrow stripes c+, d+, 4b+, 5a+ in crus I and neighboring lobules, and (c) paravermal stripes 4+//5+ across all lobules from lobule III to paraflocculus. In the cerebellar nuclei, pcdh10 was expressed strongly in the caudal part of the medial nucleus and the lateral part of the posterior interposed nucleus which project less to the medulla or to the red nucleus than to other metencephalic, mesencephalic, and diencephalic areas. In the inferior olive, pcdh10 was expressed strongly in the rostral and medioventrocaudal parts of the medial accessory olive which has connection with the mesencephalic areas rather than the spinal cord. Olivocerebellar and corticonuclear axonal labeling confirmed that the three cortical pcdh10-positive areas were topographically connected to the nuclear and olivary pcdh10-positive areas, demonstrating their coincidence with modular structures in the olivo-cortico-nuclear loop. We speculate that some of these modules are functionally involved in various nonsomatosensorimotor tasks via their afferent and efferent connections.


Subject(s)
Cadherins/metabolism , Cerebellar Nuclei/metabolism , Cerebral Cortex/metabolism , Olivary Nucleus/metabolism , Animals , Cadherins/genetics , Cerebellar Cortex/anatomy & histology , Cerebellar Cortex/metabolism , Cerebellar Nuclei/anatomy & histology , Cerebral Cortex/anatomy & histology , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Neural Pathways/anatomy & histology , Neural Pathways/metabolism , Olivary Nucleus/anatomy & histology , Phenotype , Protocadherins , Purkinje Cells/physiology
6.
Front Neuroanat ; 12: 18, 2018.
Article in English | MEDLINE | ID: mdl-29599710

ABSTRACT

This study was aimed at mapping the organization of the projections from the inferior olive (IO) to the ventral uvula in pigeons. The uvula is part of the vestibulocerebellum (VbC), which is involved in the processing of optic flow resulting from self-motion. As in other areas of the cerebellum, the uvula is organized into sagittal zones, which is apparent with respect to afferent inputs, the projection patterns of Purkinje cell (PC) efferents, the response properties of PCs and the expression of molecular markers such as zebrin II (ZII). ZII is heterogeneously expressed such that there are sagittal stripes of PCs with high ZII expression (ZII+), alternating with sagittal stripes of PCs with little to no ZII expression (ZII-). We have previously demonstrated that a ZII+/- stripe pair in the uvula constitutes a functional unit, insofar as the complex spike activity (CSA) of all PCs within a ZII+/- stripe pair respond to the same type of optic flow stimuli. In the present study we sought to map the climbing fiber (CF) inputs from the IO to the ZII+ and ZII- stripes in the uvula. We injected fluorescent Cholera Toxin B (CTB) of different colors (red and green) into ZII+ and ZII- bands of functional stripe pair. Injections in the ZII+ and ZII- bands resulted in retrograde labeling of spatially separate, but adjacent regions in the IO. Thus, although a ZII+/- stripe pair represents a functional unit in the pigeon uvula, CF inputs to the ZII+ and ZII- stripes of a unit arise from separate regions of the IO.

7.
Front Cell Neurosci ; 12: 513, 2018.
Article in English | MEDLINE | ID: mdl-30670950

ABSTRACT

Heterogeneous populations of cerebellar Purkinje cells (PCs) are arranged into separate longitudinal stripes, which have different topographic afferent and efferent axonal connections presumably involved in different functions, and also show different electrophysiological properties in firing pattern and synaptic plasticity. However, whether the differences in molecular expression that define heterogeneous PC populations affect their electrophysiological properties has not been much clarified. Since the expression pattern of many of such molecules, including glutamate transporter EAAT4, replicates that of aldolase C or zebrin II, we recorded from PCs of different "zebrin types" (zebrin-positive = aldolase C-positive = Z+; and Z-) in identified neighboring stripes in vermal lobule VIII, in which Z+ and Z- stripes occupy similar widths, in the Aldoc-Venus mouse cerebellar slice preparation. Regarding basic cellular electrophysiological properties, no significant differences were observed in input resistance or in occurrence probability of types of firing patterns between Z+ and Z- PCs. However, the firing frequency of the tonic firing type was higher in Z- PCs than in Z+ PCs. In the case of parallel fiber (PF)-PC synaptic transmission, no significant differences were observed between Z+ and Z- PCs in interval dependency of paired pulse facilitation or in time course of synaptic current measured without or with the blocker of glutamate receptor desensitization. These results indicate that different expression levels of the molecules that are associated with the zebrin type may affect the intrinsic firing property of PCs but not directly affect the basic electrophysiological properties of PF-PC synaptic transmission significantly in lobule VIII. The results suggest that the zebrin types of PCs in lobule VIII is linked with some intrinsic electrophysiological neuronal characteristics which affect the firing frequency of PCs. However, the results also suggest that the molecular expression differences linked with zebrin types of PCs does not much affect basic electrophysiological properties of PF-PC synaptic transmission in a physiological condition in lobule VIII.

8.
Cerebellum ; 16(3): 746-750, 2017 06.
Article in English | MEDLINE | ID: mdl-27966098

ABSTRACT

The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B+1 (UBB+1), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB+1-expressing transgenic mice display widespread labeling for UBB+1 in brain and exhibit behavioral deficits. Here, we show that UBB+1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB+1-expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.


Subject(s)
Cerebellum/metabolism , Mutation/genetics , Purkinje Cells/metabolism , Ubiquitin/genetics , Animals , Cerebellar Cortex/metabolism , Gene Expression/genetics , Mice, Inbred C57BL , Mice, Transgenic
9.
Front Neuroanat ; 10: 49, 2016.
Article in English | MEDLINE | ID: mdl-27199681

ABSTRACT

The secreted signaling factor Sonic Hedgehog (Shh) acts in the floor plate of the developing vertebrate CNS to promote motoneuron development. In addition, shh has dorsal expression domains in the amniote alar plate (i.e., in isocortex, superior colliculus, and cerebellum). For example, shh expressing Purkinje cells act in transit amplification of external granular layer (EGL) cells of the developing cerebellum. Our previous studies had indicated the presence of an EGL in anamniote zebrafish, but a possible role of shh in the zebrafish cerebellar plate remained elusive. Therefore, we used an existing zebrafish transgenic line Tg(2.4shha-ABC-GFP)sb15; Shkumatava et al., 2004) to show this gene activity and its cellular localization in the larval zebrafish brain. Clearly, GFP expressing cells occur in larval alar zebrafish brain domains, i.e., optic tectum and cerebellum. Analysis of critical cerebellar cell markers on this transgenic background and a PH3 assay for mitotic cells reveals that Purkinje cells and eurydendroid cells are completely non-overlapping postmitotic cell populations. Furthermore, shh-GFP cells never express Zebrin II or parvalbumin, nor calretinin. They are thus neither Purkinje cells nor calretinin positive migrating rhombic lip derived cells. The shh-GFP cells also never correspond to PH3 positive cells of the ventral cerebellar proliferative zone or the upper rhombic lip-derived EGL. From this marker analysis and the location of shh-GFP cells sandwiched between calretinin positive rhombic lip derived cells and parvalbumin positive Purkinje cells, we conclude that shh-GFP expressing cells qualify as previously reported olig2 positive eurydendroid cells, which are homologous to the amniote deep cerebellar nuclei. We confirm this using double transgenic progeny of shh-GFP and olig2-dsRed zebrafish. Thus, these zebrafish eurydendroid cells may have the same role in transit amplification as Purkinje cells do in amniotes.

10.
Elife ; 3: e03285, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24916160

ABSTRACT

Although the wiring of the cerebellar cortex appears to be uniform, the neurons in this region of the brain behave more differently from each other than previously thought.


Subject(s)
Action Potentials/physiology , Cerebellar Cortex/physiology , Animals , Male
11.
Elife ; 3: e02536, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24843004

ABSTRACT

Due to the uniform cyto-architecture of the cerebellar cortex, its overall physiological characteristics have traditionally been considered to be homogeneous. In this study, we show in awake mice at rest that spiking activity of Purkinje cells, the sole output cells of the cerebellar cortex, differs between cerebellar modules and correlates with their expression of the glycolytic enzyme aldolase C or zebrin. Simple spike and complex spike frequencies were significantly higher in Purkinje cells located in zebrin-negative than zebrin-positive modules. The difference in simple spike frequency persisted when the synaptic input to, but not intrinsic activity of, Purkinje cells was manipulated. Blocking TRPC3, the effector channel of a cascade of proteins that have zebrin-like distribution patterns, attenuated the simple spike frequency difference. Our results indicate that zebrin-discriminated cerebellar modules operate at different frequencies, which depend on activation of TRPC3, and that this property is relevant for all cerebellar functions.DOI: http://dx.doi.org/10.7554/eLife.02536.001.


Subject(s)
Action Potentials/physiology , Cerebellar Cortex/physiology , Animals , Cerebellar Cortex/cytology , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Purkinje Cells/physiology , Staining and Labeling , TRPC Cation Channels/metabolism
12.
Front Syst Neurosci ; 8: 41, 2014.
Article in English | MEDLINE | ID: mdl-24734006

ABSTRACT

The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal stripes, built around multiple Purkinje cell subtypes, which is highly conserved across birds and mammals. This architecture is revealed in the restricted expression patterns of numerous molecules, in the terminal fields of the afferent projections, in the distribution of interneurons, and in the functional organization. This review provides an overview of cerebellar architecture with an emphasis on attempts to relate molecular architecture to the expression of long-term depression (LTD) at the parallel fiber-Purkinje cell (pf-PC) synapse.

13.
Korean Journal of Anatomy ; : 457-462, 2003.
Article in English | WPRIM (Western Pacific) | ID: wpr-650743

ABSTRACT

The purpose of this study is to identify the differences of zebrin II expression between ataxic pogo and normal Balb/C mouse cerebellum. Zebrin II is expressed by subsets of Purkinje cells that form an array of parasagittal bands that extend rostrocaudally throughout the cerebellar cortex, separated by similar bands of Purkinje cells that do not express zebrin II. Zebrin II immunoreactivity was localized in the perikarya of Purkinje cells, and the dendrites. Distribution of zebrin II-immunoreactive Purkinje cells were very similar pattern in pogo and Balb/C mouse cerebellum. But, in the lobule III, distribution of zebrin II expression was different between pogo and Balb/C mouse cerebellum. In lobule III of Balb/c mouse cerebellum, 10~15 zebrin II-immunoreactive Purkinje cells were observed and clustered to form a parasagittal bands. On the other hand, zebrin II expressions of lobule III in pogo mouse cerebellum showed a little different patterns. In lobule III of pogo mouse cerebellum, three bilateral zebrin II immunoreactive parasagittal band were observed. P1 band was almost same with lobule III of Balb/C mouse cerebellum. But, P2 bands were composed of 50~60 Purkinje cells which were immunoreactive with zebrin II. These kind of thickening in zebrin II expression of pogo mouse cerebellum may be due to the genetical difference. Furthermore, these results may provide useful information with further ataxic pogo mice cerebellum studies.


Subject(s)
Animals , Mice , Cerebellar Cortex , Cerebellum , Dendrites , Hand , Immunohistochemistry , Purkinje Cells
SELECTION OF CITATIONS
SEARCH DETAIL