Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.095
Filter
1.
Environ Sci Pollut Res Int ; 31(32): 45414-45424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963630

ABSTRACT

Solid waste resulting from bauxite ore (red mud) was converted into useful products consisting in hydrogarnet together with zeolite. Red mud (RM) transformation from disposal material into new source was carried out using potassium hydroxide as an activator and hydrothermal process (HY) or vapor phase crystallization (VPC) approach. HY process was performed at 60, 90, and 130 °C whereas during the VPC method, red mud was contacted only with vapor from the distilled water heated at 60 and 90 °C. The results indicate the formation of katoite and zeolite L (LTL topology) with both approaches. All the synthetic products display magnetic properties. In addition, a preliminary investigation on arsenic removal from drinking water (from 59 to 86%), makes the synthetic materials appealing for environmental applications. Finally, the synthesis of a large amount of very useful newly-formed phases using vapor molecules confirms the efficiency of the innovative and green VPC process in waste material transformation.


Subject(s)
Hydroxides , Potassium Compounds , Water Purification , Zeolites , Hydroxides/chemistry , Potassium Compounds/chemistry , Water Purification/methods , Zeolites/chemistry , Aluminum Oxide/chemistry , Solid Waste
2.
Materials (Basel) ; 17(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998171

ABSTRACT

This publication presents the results of combined theoretical and experimental research for the potential use of natural clinoptilolite zeolite (CLI) as an odor-adsorbing material. In this study of adsorption capacity, CLI of various granulation was used and its modifications were made by ion exchange using Sn and Fe metals to check whether the presence of metals as potential active centers does not lead to catalytic processes and may lead to enhanced absorption of odorous substances through their adsorption on the created metallic forms. Additionally, in order to increase the specific surface area, modifications were made in the form of hierarchization in an acidic environment using hydrochloric acid to also create the hydrogen form of zeolite and thus also check how the material behaves as an adsorbent. To compare the effect of CLI as a sorption material, synthetic zeolite MFI was also used-as a sodium form and after the introduction of metals (Sn, Fe). The above materials were subjected to adsorption measurements using odorous substances (including acetaldehyde, dimethylamine, pentanoic acid and octanoic acid). Based on the measurements performed, the most advantageous material that traps odorants is a natural material-clinoptilolite. Depending on the faction, its ability varies for different compounds. In the case of acetaldehyde, an effective material is clinoptilolite with a grain size of up to 2 mm. In the case of carboxylic acids, it is material after hierarchization with a fraction of 3-4 mm. In the case of theoretical calculations, information was obtained to show that metallic centers are more stable above oxygen, which is associated with the skeletal aluminum in clinoptilolite.

3.
Materials (Basel) ; 17(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998266

ABSTRACT

Without the addition of silicon and aluminum sources, a pure-phase KNaLSX zeolite was successfully synthesized from the residue (lithium slag), which was produced from spodumene in the production process of lithium carbonate. The KNaLSX samples were characterized by an X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM), X-ray Fluorescence Spectrometer (XRF), Thermogravimetric Differential Thermal Analysis (TG-DTA), Fourier Transform Infrared Spectrometer (FT-IR), and N2 adsorption measurement. The ion exchange capacity and the ion exchange rate of calcium and magnesium ions were measured as used for a detergent builder, and the results were compared with the standard zeolites (KNaLSX and 4A). The experimental results show that the pure-phase KNaLSX synthSynthesis and characterization of co-crystalline zeolite composite of LSX/esized from lithium slag has a SiO2/Al2O3 ratio of 2.01 with a grain size of 3~4 µm, which is close to the commercial KNaLSX sample of a SiO2/Al2O3 ratio of 2.0. The BET-specific surface area of KNaLSX is 715 m2/g, which is larger than the low-silicon X-type zeolite (LSX) synthesized from waste residue reported in the literature. The ion exchange rate constant of calcium and magnesium ions in KNaLSX is 5 times and 3 times that of 4A zeolite, respectively. KNaLSX also has a high ion exchange capacity for magnesium ion of 191 mgMgCO3/g, which is 2 times than that of 4A zeolite, and a high ion exchange capacity for calcium ion of 302 mgCaCO3/g, which meets the first-grade standard of zeolite for detergent builders in China. The work provides the basis for high-value resource utilization of lithium slag and the development of a detergent builder for rapid washing.

4.
Nanomaterials (Basel) ; 14(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998748

ABSTRACT

In aquatic environments, the presence of iodine species, including radioactive isotopes like 129I and I2, poses significant environmental and health concerns. Iodine can enter water resources from various sources, including nuclear accidents, medical procedures, and natural occurrences. To address this issue, the use of natural occurring nanoporous minerals, such as zeolitic materials, for iodine removal will be explored. This study focuses on the adsorption of iodine by silver-modified zeolites (13X-Ag, 5A-Ag, Chabazite-Ag, and Clinoptilolite-Ag) and evaluates their performance under different conditions. All materials were characterized using scanning electron microscopey (SEM), energy-dispersive X-ray spectroscopy (EDS), powdered X-ray diffraction (P-XRD), Fourier-transform infrared spectrometry (FTIR), and nitrogen adsorption studies. The results indicate that Chabazite-Ag exhibited the highest iodine adsorption capacity, with an impressive 769 mg/g, making it a viable option for iodine removal applications. 13X-Ag and 5A-Ag also demonstrated substantial adsorption capacities of 714 mg/g and 556 mg/g, respectively, though their behavior varied according to different models. In contrast, Clinoptilolite-Ag exhibited strong pH-dependent behavior, rendering it less suitable for neutral to slightly acidic conditions. Furthermore, this study explored the impact of ionic strength on iodine adsorption, revealing that Chabazite-Ag is efficient in low-salinity environments with an iodine adsorption capacity of 51.80 mg/g but less effective in saline conditions. 5A-Ag proved to be a versatile option for various water treatments, maintaining its iodine adsorption capacity across different salinity levels. In contrast, Clinoptilolite-Ag exhibited high sensitivity to ionic competition, virtually losing its iodine adsorption ability at a NaCl concentration of 0.1 M. Kinetic studies indicated that the pseudo-second-order model best describes the adsorption process, suggesting chemisorption mechanisms dominate iodine removal. Chabazite-Ag exhibited the highest initial adsorption rate with a k2 value of 0.002 mg g-1 h-1, emphasizing its superior adsorption capabilities. Chabazite and Clinoptilolite, naturally occurring minerals, provide eco-friendly solutions for iodine adsorption. Chabazite superior iodine removal highlights its value in critical applications and its potential for addressing pressing environmental challenges.

5.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999037

ABSTRACT

The performance of catalysts prepared from hierarchical Y zeolites has been studied during the conversion of vacuum gas oil (VGO) into higher-value products. Two different catalysts have been studied: CatY.0.00 was obtained from the standard zeolite (Y-0.00-M: without alkaline treatment) and CatY.0.20 was prepared from the desilicated zeolite (Y-0-20-M: treated with 0.20 M NaOH). The cracking tests were carried out in a microactivity test (MAT) unit with a fixed-bed reactor at 550 °C in the 20-50 s reaction time range, with a catalyst mass of 3 g and a mass flow rate of VGO of 2.0 g/min. The products obtained were grouped according to their boiling point range in dry gas (DG), liquefied petroleum gas (LPG), naphtha, and coke. The results showed a greater conversion and selectivity to gasoline with the CatY.0.20 catalyst, along with improved quality (RON) of the C5-C12 cut. Conversely, the CatY.0.00 catalyst (obtained from the Y-0.00-M zeolite) showed greater selectivity to gases (DG and LPG), attributable to the electronic confinement effect within the microporous channels of the zeolite. The nature of coke has been studied using different analysis techniques and the impact on the catalysts by comparing the properties of the fresh and deactivated catalysts. The coke deposited on the catalyst surfaces was responsible for the loss of activity; however, the CatY.0.20 catalyst showed greater resistance to deactivation by coke, despite showing the highest selectivity. Given that the reaction occurs in the acid sites of the zeolite and not in the matrix, the increased degree of mesoporosity of the zeolite in the CatY.0.20 catalyst facilitated the outward diffusion of products from the zeolitic channels to the matrix, thereby preserving greater activity.

6.
Polymers (Basel) ; 16(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000767

ABSTRACT

Catalytic biomass pyrolysis is one of the most promising routes for obtaining bio-sustainable products that replace petroleum derivatives. This study evaluates the production of aromatic compounds (benzene, toluene, and xylene (BTX)) from the catalytic pyrolysis of lignocellulosic biomass (Pinus radiata (PR) and Eucalyptus globulus (EG)). Chilean natural zeolite (NZ) was used as a catalyst for pyrolysis reactions, which was modified by double ion exchange (H2NZ) and transition metals impregnation (Cu5H2NZ and Ni5H2NZ). The catalysts were characterized by nitrogen adsorption, X-ray diffraction (XRD), ammonium programmed desorption (TPD-NH3), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) allowed us to study the influence of natural and modified zeolite catalysts on BTX production. XRD analysis confirmed the presence of metal oxides (CuO and NiO) in the zeolite framework, and SEM-EDS confirmed successful metal impregnation (6.20% for Cu5H2NZ and 6.97% for Ni5H2NZ). Py-GC/MS revealed a reduction in oxygenated compounds such as esters, ketones, and phenols, along with an increase in aromatic compounds in PR from 2.92% w/w (without catalyst) to 20.89% w/w with Ni5H2NZ at a biomass/catalyst ratio of 1/5, and in EG from 2.69% w/w (without catalyst) to 30.53% w/w with Ni5H2NZ at a biomass/catalyst ratio of 1/2.5. These increases can be attributed to acidic sites within the catalyst pores or on their surface, facilitating deoxygenation reactions such as dehydration, decarboxylation, decarbonylation, aldol condensation, and aromatization. Overall, this study demonstrated that the catalytic biomass pyrolysis process using Chilean natural zeolite modified with double ion exchange and impregnated with transition metals (Cu and Ni) could be highly advantageous for achieving significant conversion of oxygenated compounds into hydrocarbons and, consequently, improving the quality of the condensed pyrolysis vapors.

7.
Mikrochim Acta ; 191(8): 447, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38963544

ABSTRACT

An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).


Subject(s)
Copper , Doxorubicin , Glucose Oxidase , Hyaluronic Acid , Metal-Organic Frameworks , Tumor Microenvironment , Zeolites , Copper/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Tumor Microenvironment/drug effects , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Humans , Zeolites/chemistry , Animals , Metal-Organic Frameworks/chemistry , Hyaluronic Acid/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Cell Line, Tumor , Mice , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Neoplasms/drug therapy , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Imidazoles
8.
Angew Chem Int Ed Engl ; : e202409001, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990826

ABSTRACT

Formic acid (FA) dehydrogenation and CO2 hydrogenation to FA/formate represent promising methodologies for the efficient and clean storage and release of hydrogen, forming a CO2-neutral energy cycle. Here, we report the synthesis of highly dispersed and stable bimetallic Pd-based nanoparticles, immobilized on self-pillared silicalite-1 (SP-S-1) zeolite nanosheets using an incipient wetness co-impregnation technique. Owing to the highly accessible active sites, effective mass transfer, exceptional hydrophilicity, and the synergistic effect of the bimetallic species, the optimized PdCe0.2/SP-S-1 catalyst demonstrated unparalleled catalytic performance in both FA dehydrogenation and CO2 hydrogenation to formate. Remarkably, it achieved a hydrogen generation rate of 5974 molH2 molPd-1 h-1 and a formate production rate of 536 molformate molPd-1 h-1 at 50 °C, surpassing most previously reported heterogeneous catalysts under similar conditions. Density functional theory calculations reveal that the interfacial effect between Pd and cerium oxide clusters substantially reduces the activation barriers for both reactions, thereby increasing the catalytic performance. Our research not only showcases a compelling application of zeolite nanosheet-supported bimetallic nanocatalysts in CO2-mediated hydrogen storage and release but also contributes valuable insights towards the development of safe, efficient, and sustainable hydrogen technologies.

9.
Adv Sci (Weinh) ; : e2404426, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976554

ABSTRACT

Waste plastics bring about increasingly serious environmental challenges, which can be partly addressed by their interconversion into valuable compounds. It is hypothesized that the porosity and acidity of a zeolite-based catalyst will affect the selectivity and effectiveness, enabling a controllable and selective conversion of polyethylene (PE) into gas-diesel or lubricating base oil. A series of embryonic, partial- and well-crystalline zeolites beta with adjustable porosity and acidity are prepared from mesoporous SBA-15. The catalysts and catalytic systems are studied with nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and adsorption kinetics and catalytic reactions. The adjustable porosity and acidity of zeolite-beta-based catalysts achieve a controllable selectivity toward gas-diesel or lubricating base oil for PE cracking. With a catalyst with mesopores and appropriate acid sites, a fast escape and reduced production of cracking of intermediates are observed, leading to a significant fraction (88.7%) of lubricating base oil. With more micropores, a high acid density, and strong acid strength, PE is multiply cracked into low carbon number hydrocarbons. The strong acid center of the zeolite is confirmed to facilitate significantly the activation of hydrogen (H2), and, an in situ ammonia poisoning strategy can significantly inhibit hydrogen transfer and effectively regulate the product distribution.

10.
Poult Sci ; 103(9): 103981, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38981360

ABSTRACT

This work was designed to assess the impact of varying zeolite concentrations in diet and litter to enhance broiler's growth performance, immunity, and litter quality. A complete random arrangement was used for distributing 525 unsexed "Cobb 500" broiler chicks into seven treatments (75 chick / treatment), each treatment divided into 3 replicates (25 chicks / replicate). The 1st group (control one) received the recommended basal diet. Zeolite has been introduced to the basal diet (ZD) of the second, third, and fourth groups at concentrations of 5, 10, and 15 g/kg, respectively. The 5th, 6th and 7th groups used zeolite mixed with litter (ZL) at 0.5, 1, and 1.5 kg/m2 of litter, respectively. Due to the obtained results, adding zeolite with levels 15 g/kg of diet and 1.5 kg/1 m2 of litter, a significant improvement occurred in live body weight (LBW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR) and European production efficiency factor (EPEF). Also, transaminase enzymes (ALT and AST), creatinine, white blood cells (WBCs) and different Immunoglobulins were significantly increased with different zeolite levels, except urea concentrations which showed reduced due to different zeolite treatments. In addition, spleen relative weight hasn't been affected by zeolite treatments, even though thymus and bursa relative weights had been affected significantly. Moreover, the antibodies' production to Newcastle disease virus (NDV) and Avian influenza virus (AIV) had increased significantly with adding zeolite with levels 10 g/kg of diet and 1.5 kg/1m2 of litter. Litter quality traits (NH3 concentration, pH values, and Moisture content) were improved with zeolite addition. So, zeolite could be employed in both feed and litter of broilers to maximize their production, immunity and improve farm's climate.

11.
Heliyon ; 10(13): e33563, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040245

ABSTRACT

Malang quartzite contains a highly silica content. The silica changes the structural composition of Zeolite Y. Currently, a heterogeneous catalyst is developed to optimize transesterification of Off Grade CPO (Crude Palm Oil). The aims of this study are: (1) synthesize K2O/Zeolite Y using silica from Malang quartzite, (2) synthesize methyl esters from Off Grade CPO using K2O/Zeolite Y catalyst, and (3) to evaluate quartzite based-silica contribution in Zeolite Y for the reaction activity via GC-MS analysis. The experimental stages were: the oil preparation, esterification of the prepared oil, preparation of K2O/zeolite Y catalyst, and the transesterification. This study applied variations of [KOH] in Zeolite Y (10, 20, and 30 % w/w) and the concentration of the transesterification catalyst (2, 3, and 4 % w/w). The K2O/Zeolite Y catalyst was successfully synthesized by impregnation method. Methyl esters of Off Grade CPO resulted the highest yield of 95.05 % with 4 wt% of 30-K2O/Zeolite Y (30 % KOH impregnation). The synthesized methyl esters have a density of 0.877 g/mL, a viscosity of 4.6 cSt, a refractive index of 1.445 and an acid number of 0.384 mg/g according to the standard (SNI 7182:2015). The main components of the methyl ester based on GC-MS results were methyl octanoate, methyl decanoate, methyl dodecanoate, methyl 9-octadecanoate, methyl octadecanoate and methyl tetracosanoate. Using quartzite-based silica, a co-activity of the reaction has occurred.

12.
J Biomater Sci Polym Ed ; : 1-21, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953298

ABSTRACT

Glioma cancer is the primary cause of cancer-related fatalities globally for both men and women. Traditional chemotherapy treatments for this condition frequently result in reduced efficacy and significant adverse effects. This investigation developed a new drug delivery system for the chemotherapeutic drug temozolomide (TMZ) using pH-sensitive drug delivery zeolitic imidazolate frameworks (ZIF-8). These nanoplatforms demonstrate excellent biocompatibility and hold potential for cancer therapy. Utilizing the favorable reaction milieu offered by ZIFs, a 'one-pot method' was employed for the fabrication and loading of drugs, leading to a good capacity for loading. TMZ@TA@ZIF-8 NPs exhibit a notable response to an acidic milieu, resulting in an enhanced drug release pattern characterized by a controlled release outcome. The effectiveness of TMZ@TA@ZIF-8 NPs in inhibiting the migration and invasion of U251 glioma cancer cells, as well as promoting apoptosis, was confirmed through various tests, including MTT (3-(4,5)-dimethylthiahiazo(-z-y1)) assay, DAPI/PI dual staining, and cell scratch assay. The biochemical fluorescent staining assays showed that TMZ@TA@ZIF-8 NPs potentially improved ROS, reduced MMP, and triggered apoptosis in U251 cells. In U251 cells treated with NPs, the p53, Bax, Cyt-C, caspase-3, -8, and -9 expressions were significantly enhanced, while Bcl-2 expression was diminished. These outcomes show the potential of TMZ@TA@ZIF-8 NPs as a therapeutic agent with anti-glioma properties. Overall, the pH-responsive drug delivery systems we fabricated using TMZ@TA@ZIF-8 NPs show great potential for cancer treatment. This approach has the potential to make significant contributions to the improvement of cancer therapy by overcoming the problems associated with TMZ-based treatments.

13.
J Biomater Sci Polym Ed ; : 1-25, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953859

ABSTRACT

Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.

14.
Article in English | MEDLINE | ID: mdl-38980482

ABSTRACT

Water softening is a treatment process required to remove calcium (Ca(II)) and magnesium (Mg(II)) cations from water streams. Nanocomposites can provide solutions for such multiple challenges and have high performance and low application costs. In this work, a multimetallic cobalt, nickel, and copper 2-aminoterephthalic acid metal-organic framework ((Co/Ni/Cu-NH2BDC) MOF) was synthesized by a simple solvothermal technique. This MOF was supported on an Egyptian natural zeolite ore and was used for the adsorption of Ca(II) ions for water-softening applications. The adsorbent was characterized using Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), N2 adsorption-desorption isotherms, and zeta potential measurements. The adsorption isotherm data for the prepared adsorbent toward Ca(II) were best fit using the Redlich-Peterson model and showed a maximum adsorption capacity of 88.1 mg/g. The adsorption kinetics revealed an equilibrium time of 10 min, which was best fit using the Avrami model. The intermolecular interactions of Ca(II) ions with zeolite and MOF were investigated by Monte Carlo simulations, molecular dynamics simulations, and FTIR and XRD analyses. The adsorption sites in the zeolite structure were oxygen atoms, while those in the MOF structure were amine nitrogen atoms. The Ca(II) ions are coordinated with the solvent molecules in both structures. Finally, the in vitro cytotoxicity of this nanocomposite was assessed, revealing viability levels of 74.57 ± 2.1% and 21 ± 2.79% for Vero and African green monkey kidney and human liver (HepG2) cells, respectively. Cytotoxicity assays help assess the environmental impact of these materials, ensuring that they do not harm aquatic organisms or disrupt ecosystems. Thus, this study demonstrated the valorization of MOF/zeolite as a valuable and industry-ready adsorbent that can appropriate Ca(II) contaminants from aqueous streams.

15.
Nano Lett ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837959

ABSTRACT

Propane dehydrogenation (PDH) serves as a pivotal intentional technique to produce propylene. The stability of PDH catalysts is generally restricted by the readsorption of propylene which can subsequently undergo side reactions for coke formation. Herein, we demonstrate an ultrastable PDH catalyst by encapsulating PtIn clusters within silicalite-1 which serves as an efficient promoter for olefin desorption. The mean lifetime of PtIn@S-1 (S-1, silicalite-1) was calculated as 37317 h with high propylene selectivity of >97% at 580 °C with a weight hourly space velocity (WHSV) of 4.7 h-1. With an ultrahigh WHSV of 1128 h-1, which pushed the catalyst away from the equilibrium conversion to 13.3%, PtIn@S-1 substantially outperformed other reported PDH catalysts in terms of mean lifetime (32058 h), reaction rates (3.42 molpropylene gcat-1 h-1 and 341.90 molpropylene gPt-1 h-1), and total turnover number (14387.30 kgpropylene gcat-1). The developed catalyst is likely to lead the way to scalable PDH applications.

16.
Environ Monit Assess ; 196(7): 611, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862850

ABSTRACT

The wastewater effluent is responsible for the major ecological impact of the dairy sectors. To avoid the negative consequences of heavy metal pollution on the ecosystem, creative, affordable, and efficient treatment methods are now required before the effluent flows into the surrounding area. This study was aimed at assessing the effectiveness of three different adsorbents for Cd+2 and Cr+6 ions from wastewater effluents of dairy farms, including chitosan (CS), clinoptilolite zeolite (CZ), and chitosan/clinoptilolite zeolite (CS/CZ) composite. The adsorption kinetics of the CS/CZ composite were established using the effects of the key variables (pH, agitation speed, adsorbent concentrations, and contact durations). The removal (%) and adsorption capacities, qe (mg/g), were calculated using the data from the adsorption kinetics. Wastewater samples (n = 60) were collected from the wastewater effluents of five farms. Cd+2 and Cr+6 ion concentrations in all collected samples were determined. Following the CS/CZ composite creation, it was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (X-RD), and Fourier-transform infrared spectrum (FT-IR). The CS/CZ composite had an adsorption capacity of 92.4 and 96.5 mg/g for both Cd+2 and Cr+6 ions at a concentration of 2.0 g/100 ml, respectively, while the CZ adsorption capacities for the two ions were 87.5 mg/g and 61.0 mg/g, respectively, at 4.0 g/100 ml concentration. The CS was achieved at 55.56 mg/g and 33.3 mg/g, respectively, at the same concentration. The efficiency of heavy metal removal was enhanced by increasing adsorbent concentration, agitation speed, and contact duration. Using CS/CZ composite at 2.0 g/100 ml concentration, 180 min of contact time, and 300 rpm agitation speed, the greatest removal efficiencies for Cd+2 and Cr+6 ions (96.43 and 98.75%, respectively) were demonstrated.


Subject(s)
Cadmium , Chitosan , Dairying , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Zeolites , Zeolites/chemistry , Chitosan/chemistry , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Adsorption , Cadmium/analysis , Animals , Waste Disposal, Fluid/methods , Cattle , Chromium/analysis , Chromium/chemistry , Farms , Water Purification/methods
17.
Biomimetics (Basel) ; 9(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38921245

ABSTRACT

BACKGROUND: Zeolite can release antimicrobial silver ions in a targeted and controlled manner for an extended time, selectively inhibiting the growth of pathogenic oral bacteria when added to dental materials. The objective of this study was to investigate the effect of the addition of zeolite to silver-reinforced glass ionomer cement on the release of silver ions over time. METHODS: Five concentrations of silver-zeolite (0%, 0.5%, 1%, 2%, 4% wt) were incorporated into silver-reinforced GIC in the form of 10 mm × 2 mm circular disks (n = 5). The disks were incubated in deionized water at 37 °C and ion release from the samples was measured at 1, 2, 7, and 30 days after immersion by inductively coupled atomic emission spectroscopy. RESULTS: Incorporating silver-zeolite increased silver ion release from silver-reinforced GIC disks compared to the control disks (p < 0.05), while incorporating zeolite alone had no effect. Higher concentrations of added silver-zeolite resulted in increased silver ion release. Sustained silver ion release was observed for up to 30 days. CONCLUSION: Adding silver-zeolite to silver-reinforced GIC may enhance its extended antibacterial effect in the oral cavity.

18.
ACS Appl Mater Interfaces ; 16(26): 33590-33600, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38899403

ABSTRACT

Metal single-site catalysts have recently played an essential role in catalysis due to their enhanced activity, selectivity, and precise reaction control compared to those of conventional metal cluster catalysts. However, the rational design and catalytic application of metal single-site catalysts are still in the early stages of development. In this contribution, we report the rational design of Fe single sites incorporated in a hierarchical ZSM-5 via atomic layer deposition (ALD). The designer catalysts demonstrated highly dispersed Fe species, predominantly stabilized by oxygen atoms in the zeolite framework at terminal, isolated, and vicinal silanol groups within the micropores and external surfaces of the zeolite. The successful incorporation of highly thermally stable and uniform Fe single sites into hierarchical zeolite through ALD represents a significant advancement in few-walled carbon nanotube production. The inner and outer diameters of produced CNTs are approximately 4.4 ± 2.4 and 8.6 ± 1.8 nm, respectively, notably smaller than those produced via traditional impregnated catalysts. This example emphasizes the concept of rational design of a single Fe site dispersed on a hierarchical ZSM-5 surface, which is anticipated to be a promising catalyst for advancing catalytic applications.

19.
ACS Appl Mater Interfaces ; 16(26): 33578-33589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38905020

ABSTRACT

Under the background of "carbon neutral", lithium-ion batteries (LIB) have been widely used in portable electronic devices and large-scale energy storage systems, but the current commercial electrolyte is mainly liquid organic compounds, which have serious safety risks. In this paper, a bilayer heterogeneous composite solid-state electrolyte (PLPE) was constructed with the 3D LiX zeolite nanofiber (LiX-NF) layer and in-situ interfacial layer, which greatly extends the life span of lithium metal batteries (LMB). LiX-NF not only offers a continuous fast path for Li+, but also zeolite's Lewis acid-base interaction can immobilize large anions, which significantly improves the electrochemical performance of the electrolyte. In addition, the in-situ interfacial layer at the electrode-electrolyte interface can effectively facilitate the uniform deposition of Li+ and inhibit the growth of lithium dendrites. As a result, the Li/Li battery assembled with PLPE can be stably cycled for more than 2500 h at 0.1 mA cm-2. Meanwhile, the initial discharge capacity of the LiFePO4/PLPE/Li battery can be 162.43 mAh g-1 at 0.5 C, and the capacity retention rate is 82.74% after 500 cycles. These results emphasize that this bilayer heterogeneous composite solid-state electrolyte has distinct properties and shows excellent potential for application in LMB.

20.
Heliyon ; 10(11): e31854, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867978

ABSTRACT

In this study, TiO2 supported over embryonic Beta zeolite (BEA) was prepared for the photocatalytic degradation of Tetracycline (TC) antibiotic under visible light. The immobilization of sol-gel TiO2 over the zeolite increased its surface area from 33 (m2/g) to 226 (m2/g) and enhanced its adsorption efficiency from 8 % to 18 %. In order to expand the photocatalytic activity of TiO2 towards the visible light region (i.e. λ > 380 nm), two different metal sensitization techniques with Iron ions from aqueous solution of FeCl3 were explored. In the ion-exchange method, the substitutional cations within the TiO2/BEA structure were exchanged with Fe3+. Whereas, in the doping technique, solgel TiO2 was doped with Fe3+ during its synthesis and before its immobilization over Zeolite. Four different samples with 20, 40, 60, and 100 % w/w of TiO2/BEA ratio were prepared. After testing the various ion-exchanged photocatalysts under blue and white lights, only Fe-60%TiO2/BEA showed better activity compared to pure TiO2 under white light at TC initial concentration, C o = 20 ppm. For the doped immobilized Titania with 60 wt% TiO2/BEA, three different doped photocatalysts were prepared with 3 %, 7 %, and 10 % per mole Fe/TiO2. All the Fe-doped TiO2/BEA photocatalysts showed better activity compared to pure TiO2 under white light. Under solar irradiations, the 3 % Fe-doped TiO2/BEA was able to degrade all TC within 120 min, while Fe-60%TiO2/BEA needed 200 min, and TiO2 needed more than 300 min. This enhanced performance was a result of both increased surface area due to immobilization over BEA as well as iron doping by Fe3+ that simultaneously increased the visible light absorption of TiO2 and minimized the charge carrier recombination effect.

SELECTION OF CITATIONS
SEARCH DETAIL