Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Infect Chemother ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233121

ABSTRACT

Erysipelothrix rhusiopathiae is a common zoonotic pathogen that rarely causes diseases in humans. It has three main disease manifestations: a localized cutaneous, a disseminated cutaneous, and a systemic form of infection, typically characterized as bacteremia with or without endocarditis. Human infections are often associated with occupational exposure to animals, animal products, or their excreta. We present a case of a 60-year-old woman found to have E. rhusiopathiae bacteremia associated with a leg laceration sustained after she fell into a sewer drain. Germane animal exposures were not identified; thus, the source of bacterium was attributed to sewage or sewage-contaminated water. She was initially treated with intravenous penicillin with clinical improvement. However, given the patient's social factors, prolonged oral antimicrobial therapy was considered. E. rhusiopathiae is routinely susceptible to penicillin, cephalosporins, and fluoroquinolones but resistant to vancomycin. The data on alternatives to beta-lactam therapy are limited. We report a case of E. rhusiopathiae bacteremia successfully treated with oral linezolid.

2.
Sci Total Environ ; 952: 175866, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39222816

ABSTRACT

Monitoring zoonoses in urban environments is of great relevance, where the incidence of certain pathogens may be higher and where population density makes the spread of any contagious disease more likely. In this study we applied a metabarcoding approach to study potentially zoonotic pathogens in faecal samples of 9 urban vertebrate species. We applied this methodology with two objectives. Firstly, to obtain information on potential pathogens present in the urban fauna of a large European city (Madrid, Spain) and to determine which are their main reservoirs. In addition, we tested for differences in the prevalence of these potential pathogens between urban and rural European rabbits, used as ubiquitous species. Additionally, based on the results obtained, we evaluated the effectiveness of metabarcoding as a tool for monitoring potential pathogen. Our results revealed the presence of potentially zoonotic bacterial genera in all studied host species, 10 of these genera with zoonotic species of mandatory monitoring in the European Union. Based on these results, urban birds (especially house sparrows and pigeons) and bats are the species posing the greatest potential risk, with Campylobacter and Listeria genera in birds and of Chlamydia and Vibrio cholerae in bats as most relevant pathogens. This information highlights the risk associated with fresh faeces from urban wildlife. In addition, we detected Campylobacter in >50 % of the urban rabbit samples, while we only detected it in 11 % of the rural rabbit samples. We found that urban rabbits have a higher prevalence of some pathogens relative to rural rabbits, which could indicate increased risk of pathogen transmission to humans. Finally, our results showed that metabarcoding can be an useful tool to quickly obtain a first screening of potentially zoonotic organisms, necessary information to target the monitoring efforts on the most relevant pathogens and host species.


Subject(s)
Cities , Feces , Zoonoses , Animals , Feces/microbiology , Spain , Zoonoses/microbiology , Zoonoses/transmission , Zoonoses/epidemiology , Animals, Wild/microbiology , DNA Barcoding, Taxonomic , Environmental Monitoring/methods , Rabbits
3.
Vet Res Commun ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954256

ABSTRACT

Campylobacter is a major foodborne and zoonotic pathogen, causing severe human infections and imposing a substantial economic burden on global public health. The ongoing spread and emergence of multidrug-resistant (MDR) strains across various fields exacerbate therapeutic challenges, raising the incidence of diseases and fatalities. Medicinal plants, renowned for their abundance in secondary metabolites, exhibit proven efficacy in inhibiting various foodborne and zoonotic pathogens, presenting sustainable alternatives to ensure food safety. This review aims to synthesize recent insights from peer-reviewed journals on the epidemiology and antimicrobial resistance of Campylobacter species, elucidate the in vitro antibacterial activity of medicinal plant compounds against Campylobacter by delineating underlying mechanisms, and explore the application of these compounds in controlling Campylobacter in food. Additionally, we discuss recent advancements and future prospects of employing medicinal plant compounds in food products to mitigate foodborne pathogens, particularly Campylobacter. In conclusion, we argue that medicinal plant compounds can be used as effective and sustainable sources for developing new antimicrobial alternatives to counteract the dissemination of MDR Campylobacter strains.

4.
Animals (Basel) ; 14(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998066

ABSTRACT

Considering that certain catabolic products of anaerobic chlorophyll degradation inhibit efflux pump activity, this study was conducted to test if feeding pigs a water-soluble chlorophyllin product could affect the antibiotic resistance profiles of select wild-type populations of fecal bacteria. Trial 1 evaluated the effects of chlorophyllin supplementation (300 mg/meal) on fecal E. coli and enterococcal populations in pigs fed twice daily diets supplemented without or with ASP 250 (containing chlortetracycline, sulfamethazine and penicillin at 100, 100 and 50 g/ton, respectively). Trial 2, conducted similarly, evaluated chlorophyllin supplementation in pigs fed diets supplemented with or without 100 g tylosin/ton. Each trial lasted 12 days, and fecal samples were collected and selectively cultured at 4-day intervals to enumerate the total numbers of E. coli and enterococci as well as populations of these bacteria phenotypically capable of growing in the presence of the fed antibiotics. Performance results from both studies revealed no adverse effect (p > 0.05) of chlorophyllin, antibiotic or their combined supplementation on average daily feed intake or average daily gain, although the daily fed intake tended to be lower (p = 0.053) for pigs fed diets supplemented with tylosin than those fed diets without tylosin. The results from trial 1 showed that the ASP 250-medicated diets, whether without or with chlorophyllin supplementation, supported higher (p < 0.05) fecal E. coli populations than the non-medicated diets. Enterococcal populations, however, were lower, albeit marginally and not necessarily significantly, in feces from pigs fed the ASP 250-medicated diet than those fed the non-medicated diet. Results from trial 2 likewise revealed an increase (p < 0.05) in E. coli and, to a lesser extent, enterococcal populations in feces collected from pigs fed the tylosin-medicated diet compared with those fed the non-medicated diet. Evidence indicated that the E. coli and enterococcal populations in trial 1 were generally insensitive to penicillin or chlortetracycline, as there were no differences between populations recovered without or with antibiotic selection. Conversely, a treatment x day of treatment interaction observed in trial 2 (p < 0.05) provided evidence, albeit slight, of an enrichment of tylosin-insensitive enterococci in feces from the pigs fed the tylosin-medicated but not the non-medicated diet. Under the conditions of the present study, it is unlikely that chlorophyllin-derived efflux pump inhibitors potentially present in the chlorophyllin-fed pigs were able to enhance the efficacy of the available antibiotics. However, further research specifically designed to optimize chlorophyll administration could potentially lead to practical applications for the swine industry.

5.
Foods ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38890872

ABSTRACT

Brazilian artisanal cheeses have recently gained significant commercial prominence and consumer favor, primarily due to their distinctive sensory attributes and cultural and historical appeal. Many of these cheeses are made with raw milk and undergo a relatively short ripening period, sometimes ranging from 4 to 8 days, though it is usually shorter than the period stated by law. Moreover, there is insufficient evidence regarding the efficacy of a short ripening period in reducing certain zoonotic foodborne pathogens, such as Brucella spp., Coxiella burnetiid, and Mycobacterium bovis (as part of the Mycobacterium tuberculosis complex). Additionally, a literature analysis revealed that the usual ripening conditions of Brazilian artisanal cheeses made with raw milk may be inefficient in reducing the levels of some hazardous bacterial, including Brucella spp., Listeria monocytogenes, coagulase-positive Staphylococcus, Salmonella, and Coxiella burnetti, to the acceptable limits established by law, thus failing to ensure product safety for all cheese types. Moreover, the assessment of the microbiological safety for this type of cheese should be broader and should also consider zoonotic pathogens commonly found in bovine herds. Finally, a standardized protocol for evaluating the effectiveness of cheese ripening must be established by considering its peculiarities.

6.
Microorganisms ; 12(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930567

ABSTRACT

Antibiotics are routinely added to ornamental fish tanks for treating bacterial infection or as a prophylactic measure. However, the overuse or subtherapeutical application of antibiotics could potentially facilitate the selection of antibiotic resistance in bacteria, yet no studies have investigated antibiotic use in the retail ornamental fish sector and its impact on microbial communities. The present study analyzed the concentrations of twenty antibiotics in the carriage water (which also originates from fish tanks in retail shops) collected monthly from ten local ornamental fish shops over a duration of three months. The antibiotic concentrations were correlated with the sequenced microbial community composition, and the risk of resistance selection in bacteria was assessed. Results revealed that the detected concentrations of tetracyclines were the highest among samples, followed by fluoroquinolones and macrolides. The concentrations of oxytetracycline (44.3 to 2,262,064.2 ng L-1) detected across three months demonstrated a high risk for resistance selection at most of the sampled shops. Zoonotic pathogens (species of Rhodococcus, Legionella, and Citrobacter) were positively correlated with the concentrations of oxytetracycline, tetracycline, chlortetracycline, and enrofloxacin. This suggests that antibiotic use in retail shops may increase the likelihood of selecting for zoonotic pathogens. These findings shed light on the potential for ornamental fish retail shops to create a favorable environment for the selection of pathogens with antibiotics, thereby highlighting the urgent need for enhanced antibiotic stewardship within the industry.

7.
Trans R Soc Trop Med Hyg ; 118(9): 616-624, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38768316

ABSTRACT

BACKGROUND: Globally, India has a high zoonotic disease burden and lacks surveillance data in humans and animals. Rodents are known reservoirs for many zoonotic diseases and their synanthropic behavior poses a great public health threat. METHODS: In this study, trapped rodents/shrews from randomly selected villages within Puducherry, India, and their ectoparasites were screened for zoonotic pathogens, namely, Orientia tsutsugamushi, other pathogenic rickettsiae, Leptospira spp., Cryptosporidium spp., Coxiella burnetii and methicillin-resistant Staphylococcus aureus (MRSA) using conventional PCR. A total of 58 rodents/shrews were trapped from 11 villages. The species trapped were Suncus murinus (49/58, 84.48%), Rattus rattus (8/58, 13.79%) and Rattus norvegicus (1/58, 1.72%). All ectoparasites collected were identified as mites and its infestation rate was 46.55% (27/58). RESULTS: Real-time PCR targeting the 47 kDa gene of O. tsutsugamushi revealed positivity in one rodent and one shrew (3.45%) and two mite pools (7.41%). Conventional PCR targeting the 56 kDa gene revealed positivity in one shrew and two mite pools and the phylogenetic analysis of all three amplicons indicated the circulation of the Gilliam-related serotype. MRSA was detected in the alimentary tract of a shrew (1/32, 3.13%). Leptospira spp., Rickettsia, Cryptosporidium spp. and Co. burnetii tested negative. CONCLUSIONS: The detection of zoonotic pathogens within reservoir hosts and vectors poses a risk of transmission to humans. This study signifies the need for zoonotic pathogen surveillance in synanthropic rodents/shrews.


Subject(s)
Coxiella burnetii , Disease Reservoirs , Methicillin-Resistant Staphylococcus aureus , Public Health , Rodentia , Zoonoses , Animals , India/epidemiology , Zoonoses/transmission , Zoonoses/epidemiology , Humans , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Disease Reservoirs/microbiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Rodentia/parasitology , Rodentia/microbiology , Rickettsia/isolation & purification , Rickettsia/genetics , Shrews/parasitology , Shrews/microbiology , Rats , Orientia tsutsugamushi/isolation & purification , Orientia tsutsugamushi/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Leptospira/isolation & purification , Leptospira/genetics , Mites/microbiology , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , Rodent Diseases/transmission
8.
BioTechnologia (Pozn) ; 105(1): 5-17, 2024.
Article in English | MEDLINE | ID: mdl-38633890

ABSTRACT

The ever-increasing demand for wildlife-derived raw or processed meat commonly known as bushmeat, has been identified as one of the critical factors driving the emergence of infectious diseases. This study focused on examining the bacterial community composition of smoked and fermented bushmeats, specifically grasscutter, rat, rabbit, and mona monkey. The analysis involved exploring 16Sr RNA amplicon sequences isolated from bushmeat using QIIME2. Microbiome profiles and their correlation with proximate components (PLS regression) were computed in STAMP and XLSTAT, respectively. Results indicate the predominance of Firmicutes (70.9%), Actinobacteria (18.58%), and Proteobacteria (9.12%) in bushmeat samples at the phylum level. Staphylococcus, Arthrobacter, Macrococcus, and Proteus constituted the core microbiomes in bushmeat samples, ranked in descending order. Notably, significant differences were observed between the bacterial communities of bushmeat obtained from omnivores and herbivores (rat and mona monkey, and grasscutter and mona monkey), as well as those with similar feeding habits (rat and monkey, and grasscutter and rabbit) at the family and genus levels. Each type of bushmeat possessed unique microbial diversity, with some proximate components such as fat in rat samples correlating with Staphylococcus, while proteins in Mona monkey correlated with Arthrobacter and Brevibacterium, respectively. The study underscores public health concerns and highlights probiotic benefits, as bushmeat samples contained both pathogenic and beneficial bacteria. Therefore, future research efforts could focus on improving bushmeat quality.

9.
Sci Total Environ ; 931: 172593, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38642765

ABSTRACT

Wastewater surveillance has evolved into a powerful tool for monitoring public health-relevant analytes. Recent applications in tracking severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection highlight its potential. Beyond humans, it can be extended to livestock settings where there is increasing demand for livestock products, posing risks of disease emergence. Wastewater surveillance may offer non-invasive, cost-effective means to detect potential outbreaks among animals. This approach aligns with the "One Health" paradigm, emphasizing the interconnectedness of animal, human, and ecosystem health. By monitoring viruses in livestock wastewater, early detection, prevention, and control strategies can be employed, safeguarding both animal and human health, economic stability, and international trade. This integrated "One Health" approach enhances collaboration and a comprehensive understanding of disease dynamics, supporting proactive measures in the Anthropocene era where animal and human diseases are on the rise.


Subject(s)
Livestock , Wastewater , Animals , Wastewater/virology , COVID-19/prevention & control , Virus Diseases/veterinary , Virus Diseases/diagnosis , SARS-CoV-2 , Humans , Environmental Monitoring/methods , One Health
10.
One Health ; 18: 100701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468609

ABSTRACT

One Health Systems Science. The three subsystems of One Health (ecosystem, human and animal health) are integrated in the Systems Science concept, where objects or adaptive agents (circles) interact with a dynamic environment, and Systems Thinking can lead it intervations (Systems Design) generating a change in One Health outcomes. Real-time genomic data retrieved from the three subsystems porvide information fo Systems Thinking and Systems Design.Unlabelled Image.

11.
Animals (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396530

ABSTRACT

Wildlife can represent a reservoir of zoonotic pathogens and a public health problem. In the present study, we investigated the spread of zoonotic pathogens (Salmonella spp., Yersinia enterocolitica, Listeria monocytogenes, Shiga-toxin-producing Escherichia coli (STEC), and hepatitis E virus (HEV)) considering the presence of virulence and antibiotic resistance genes in game meat from animals hunted in northwest Italy. During two hunting seasons (2020 to 2022), samples of liver and/or muscle tissue were collected from chamois (n = 48), roe deer (n = 26), deer (n = 39), and wild boar (n = 35). Conventional microbiology and biomolecular methods were used for the detection, isolation, and characterization of the investigated pathogens. Two L. monocytogenes serotype IIa strains were isolated from wild boar liver; both presented fosfomycin resistance gene and a total of 22 virulence genes were detected and specified in the text. Eight Y. enterocolitica biotype 1A strains were isolated from chamois (2), wild boar (5), and deer (1) liver samples; all showed streptogramin and beta-lactam resistance genes; the virulence genes found were myfA (8/8 strains), ymoA (8/8), invA (8/8), ystB (8/8), and ail (4/8). Our data underscore the potential role of wildlife as a carrier of zoonotic and antibiotic-resistant pathogens in northwest Italy and a food safety risk for game meat consumers.

13.
Vector Borne Zoonotic Dis ; 24(1): 46-54, 2024 01.
Article in English | MEDLINE | ID: mdl-38193886

ABSTRACT

Background: Rattus norvegicus can carry and transmit various zoonotic pathogens. Some studies were conducted to investigate a few zoonotic pathogens in Guangzhou, China, but no coinfections were investigated or specifically mentioned. Studies on the infections and the influencing factors of various zoonotic pathogens in R. norvegicus along the Zengjiang River in Guangzhou have not been carried out. Materials and Methods: In this study, R. norvegicus was captured in November 2020 and September 2021 along the Zengjiang River, and was tested for Bartonella spp., Leptospira spp., Orientia tsutsugamushi, Borrelia burgdorferi, Hantavirus (HV), Ehrlichia spp., and severe fever with thrombocytopenia syndrome virus (SFTSV) by the RT-PCR. Logistic regression analysis was used to determine the impact of habitat and demographic factors on the infections and coinfections of the surveyed pathogens. Results: In 119 R. norvegicus, the detection rates of Bartonella spp., Leptospira spp., O. tsutsugamushi, B. burgdorferi, and HV were 46.2%, 31.9%, 5%, 0.8%, and 18.5%, respectively. Ehrlichia spp. and SFTSV were negative. The triple coinfection rate of Bartonella spp., Leptospira spp., and HV was 11.8%. In addition, the coinfection of Bartonella spp., Leptospira spp., and B. burgdorferi was 0.8%. Dual coinfection of Bartonella spp. and Leptospira spp., Leptospira spp. and HV, Bartonella spp. and O. tsutsugamushi, Leptospira spp. and O. tsutsugamushi, and HV and O. tsutsugamushi was 9.2%, 3.4%, 1.7%, 1.7%, and 0.8%, respectively. Infections of these pathogens in R. norvegicus were found in habitats of banana plantation, grassland, and bush. Weight affected the infection of Bartonella spp., Leptospira spp., or HV in R. norvegicus. Conclusions: R. norvegicus along the Zengjiang River not only carried various potentially zoonotic pathogens but also had a variety of coinfections. Surveillance of the density and pathogens in R. norvegicus should be strengthened to reduce the incidence of relevant zoonotic diseases.


Subject(s)
Bartonella , Coinfection , Leptospira , Orthohantavirus , Rodent Diseases , Scrub Typhus , Animals , Rats , Coinfection/epidemiology , Coinfection/veterinary , Rivers , China/epidemiology , Zoonoses , Bartonella/genetics , Ehrlichia , Scrub Typhus/veterinary
14.
New Solut ; 33(4): 209-219, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062664

ABSTRACT

Industrial hog operation (IHO) workers face a range of occupational hazards, including exposure to zoonotic pathogens such as livestock-associated antimicrobial-resistant Staphylococcus aureus and swine-origin influenza viruses with epidemic or pandemic potential. To better understand this population's occupational exposure to zoonotic pathogens, we conducted a community-driven qualitative research study in eastern North Carolina. We completed in-depth interviews with ten IHO workers and used thematic analysis to identify and analyze patterns of responses. Workers described direct and indirect occupational contact with hogs, with accompanying potential for dermal, ingestion, and inhalation exposures to zoonotic pathogens. Workers also described potential take-home pathways, wherein they could transfer livestock-associated pathogens and other contaminants from IHOs to their families and communities. Findings warrant future research, and suggest that more restrictive policies on antimicrobials, stronger health and safety regulations, and better policies and practices across all IHOs could afford greater protection against worker and take-home zoonotic pathogen exposures.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Occupational Exposure , Animals , Humans , Pilot Projects , North Carolina/epidemiology , Staphylococcus aureus , Livestock
15.
Front Immunol ; 14: 1281384, 2023.
Article in English | MEDLINE | ID: mdl-38035092

ABSTRACT

Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Cercopithecine , Vaccines , Humans , Animals , Macaca
16.
R I Med J (2013) ; 106(11): 42-43, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38015784

ABSTRACT

The complications of wound infections caused by animal related trauma are well known and explored. Of the numerous polymicrobial etiologies, Neisseria animaloris and Pasteurella canis oralis have been reported only in a limited number of cases. This manuscript explores the rare finding of these species in the case of an 83-year-old male with a diabetic foot wound complicated by infection from the saliva of his pet dog. The case highlights the first instance of P. canis oralis without the setting of a penetrating animal bite, emphasizing the vulnerability of open lesions in patients whose comorbidities impair proper wound healing. These bacteria are susceptible to beta-lactams with beta-lactamase inhibitors and can be treated once identified. It is crucial to recognize rare pathogens and initiate appropriate treatment early, and to emphasize proper wound care, especially in the context of pet interactions.


Subject(s)
Osteomyelitis , Saliva , Male , Animals , Humans , Dogs , Aged, 80 and over , Pasteurella , Osteomyelitis/diagnosis , Osteomyelitis/drug therapy , Osteomyelitis/microbiology
18.
Epidemiol Infect ; 151: e174, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37675640

ABSTRACT

Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.


Subject(s)
Bartonella , Coinfection , Leptospira , Animals , Bartonella/genetics , China/epidemiology , Phylogeny , Rodentia/microbiology , Shrews/microbiology
19.
BMC Vet Res ; 19(1): 155, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37710273

ABSTRACT

BACKGROUND: Vector-borne zoonotic diseases are a concerning issue in Europe. Lyme disease and tick-borne encephalitis virus (TBEV) have been reported in several countries with a large impact on public health; other emerging pathogens, such as Rickettsiales, and mosquito-borne flaviviruses have been increasingly reported. All these pathogens are linked to wild ungulates playing roles as tick feeders, spreaders, and sentinels for pathogen circulation. This study evaluated the prevalence of TBEV, Borrelia burgdorferi sensu lato, Rickettsia spp., Ehrlichia spp., and Coxiella spp. by biomolecular screening of blood samples and ticks collected from wild ungulates. Ungulates were also screened by ELISA and virus neutralization tests for flaviviral antibody detection. RESULTS: A total of 274 blood samples were collected from several wild ungulate species, as well as 406 Ixodes ricinus, which were feeding on them. Blood samples tested positive for B. burgdorferi s.l. (1.1%; 0-2.3%) and Rickettsia spp. (1.1%; 0-2.3%) and showed an overall flaviviral seroprevalence of 30.6% (22.1-39.2%): 26.1% (17.9-34.3%) for TBEV, 3.6% (0.1-7.1%) for Usutu virus and 0.9% (0-2.7%) for West Nile virus. Ticks were pooled when possible and yielded 331 tick samples that tested positive for B. burgdorferi s.l. (8.8%; 5.8-11.8%), Rickettsia spp. (26.6%; 21.8-31.2%) and Neoehrlichia mikurensis (1.2%; 0-2.4%). TBEV and Coxiella spp. were not detected in either blood or tick samples. CONCLUSIONS: This research highlighted a high prevalence of several tick-borne zoonotic pathogens and high seroprevalence for flaviviruses in both hilly and alpine areas. For the first time, an alpine chamois tested positive for anti-TBEV antibodies. Ungulate species are of particular interest due to their sentinel role in flavivirus circulation and their indirect role in tick-borne diseases and maintenance as Ixodes feeders and spreaders.


Subject(s)
Encephalitis Viruses, Tick-Borne , Ixodes , Rickettsia , Animals , Seroepidemiologic Studies , Mosquito Vectors , Europe , Coxiella , Mammals
20.
Microorganisms ; 11(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37630456

ABSTRACT

Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.

SELECTION OF CITATIONS
SEARCH DETAIL