Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.066
Filter
1.
Arch Toxicol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955864

ABSTRACT

Many fatal intoxications have been reported in connection with the consumption of newer, highly potent synthetic cannabinoids. Yet, a possible postmortem redistribution (PMR) might complicate reliable interpretation of analytical results. Thus, it is necessary to investigate the PMR-potential of new synthetic cannabinoids. The pig model has already proven to be suitable for this purpose. Hence, the aim of this study was to study the PMR of the synthetic cannabinoid 5F-MDMB-P7AICA and its main metabolite 5F-MDMB-P7AICA-dimethylbutanoic acid (DBA). 5F-MDMB-P7AICA (200 µg/kg body weight) was administered by inhalation to anesthetized and ventilated pigs. At the end of the experiment, the animals were euthanized and stored at room temperature for 3 days. Tissue and body fluid samples were taken daily. Specimens were analyzed after solid phase extraction using a standard addition method and LC-MS/MS, blood was quantified after protein precipitation using a validated method. In perimortem samples, 5F-MDMB-P7AICA was found mainly in adipose tissue, bile fluid, and duodenum contents. Small amounts of 5F-MDMB-P7AICA were found in blood, muscle, brain, liver, and lung. High concentrations of DBA were found primarily in bile fluid, duodenum contents, urine, and kidney/perirenal fat tissue. In the remaining tissues, rather low amounts could be found. In comparison to older synthetic cannabinoids, PMR of 5F-MDMB-P7AICA was less pronounced. Concentrations in blood also appear to remain relatively stable at a low level postmortem. Muscle, kidney, fat, and duodenum content are suitable alternative matrices for the detection of 5F-MDMB-P7AICA and DBA, if blood specimens are not available. In conclusion, concentrations of 5F-MDMB-P7AICA and its main metabolite DBA are not relevantly affected by PMR.

2.
J Cannabis Res ; 6(1): 28, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961506

ABSTRACT

BACKGROUND: The belief that cannabis has analgesic and anti-inflammatory properties continues to attract patients with chronic musculoskeletal (MSK) pain towards its use. However, the role that cannabis will play in the management of chronic MSK pain remains to be determined. This study examined 1) the rate, patterns of use, and self-reported efficacy of cannabis use among patients with chronic MSK pain and 2) the interest and potential barriers to cannabis use among patients with chronic MSK pain not currently using cannabis. METHODS: Self-reported cannabis use and perceived efficacy were prospectively collected from chronic MSK pain patients presenting to the Orthopaedic Clinic at the University Health Network, Toronto, Canada. The primary dependent variable was current or past use of cannabis to manage chronic MSK pain; bivariate and multivariable logistic regression were used to identify patient characteristics independently associated with this outcome. Secondary outcomes were summarized descriptively, including self-perceived efficacy among cannabis users, and interest as well as barriers to cannabis use among cannabis non-users. RESULTS: The sample included 629 patients presenting with chronic MSK pain (mean age: 56±15.7 years; 56% female). Overall, 144 (23%) reported past or present cannabis use to manage their MSK pain, with 63.7% perceiving cannabis as very or somewhat effective and 26.6% considering it as slightly effective. The strongest predictor of cannabis use in this study population was a history of recreational cannabis use (OR 12.7, p<0.001). Among cannabis non-users (N=489), 65% expressed interest in using cannabis to manage their chronic MSK pain, but common barriers to use included lack of knowledge regarding access, use and evidence, and stigma. CONCLUSIONS: One in five patients presenting to an orthopaedic surgeon with chronic MSK pain are using or have used cannabis with the specific intent to manage their pain, and most report it to be effective. Among non-users, two-thirds reported an interest in using cannabis to manage their MSK pain, but common barriers to use existed. Future double-blind placebo-controlled trials are required to understand if this reported efficacy is accurate, and what role, if any, cannabis may play in the management of chronic MSK pain.

3.
Front Endocrinol (Lausanne) ; 15: 1386230, 2024.
Article in English | MEDLINE | ID: mdl-38962676

ABSTRACT

Background: Despite the evidence that energy balance is regulated differently in females and that the endocannabinoid system is sexually dimorphic, previous studies on the endocannabinoid system and energy balance predominantly used male models. Here, we characterize the effects of cannabinoid receptor deletion on body weight gain and glucose metabolism in female C57BL mice. Methods: Female mice lacking the cannabinoid-1 receptor (CB1R-/-), cannabinoid-2 receptor (CB2R-/-), or both receptors (CB1R-/-/CB2R-/-) and wild-type (WT) mice were fed with a low (LFD; 10% of calories from fat) or high-fat diet (HFD; 45% of calories from fat) for six weeks. Results: Female WT mice fed with HFD gained significantly more weight than WT mice fed with LFD (p < 0.001). Similar pattern was observed for CB2/- mice fed with HFD compared to CB2R-/- mice fed with LFD (p < 0.001), but not for CB1R-/- fed with HFD vs. LFD (p = 0.22) or CB1R-/-/CB2R-/- fed with HFD vs. LFD (p = 0.96). Comparing the 4 groups on LFD, weight gain of CB1R-/- mice was greater than all other genotypes (p < 0.05). When fed with HFD, the deletion of CB1R alone in females did not attenuate weight gain compared to WT mice (p = 0.72). Female CB1R-/-/CB2R-/- mice gained less weight than WT mice when fed with HFD (p = 0.007) despite similar food intake and locomotor activity, potentially owing to enhanced thermogenesis in the white adipose tissue. No significant difference in weight gain was observed for female CB2R-/- and WT mice on LFD or HFD. Fasting glucose, however, was higher in CB2R-/- mice fed with LFD than all other groups (p < 0.05). Conclusion: The effects of cannabinoid receptor deletion on glucose metabolism in female mice were similar to previously published findings on male mice, yet the effects on body weight gain and thermogenesis were attenuated in CB1R-/- mice.


Subject(s)
Diet, High-Fat , Energy Metabolism , Mice, Inbred C57BL , Mice, Knockout , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Weight Gain , Animals , Female , Mice , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/deficiency , Diet, High-Fat/adverse effects , Weight Gain/genetics , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/deficiency , Body Weight
4.
Front Cardiovasc Med ; 11: 1343549, 2024.
Article in English | MEDLINE | ID: mdl-38978789

ABSTRACT

Background: Cannabis is one of the most widely used psychoactive substances. Its components act through several pathways, producing a myriad of side effects, of which cardiovascular events are the most life-threatening. However, only a limited number of studies address cannabis's perioperative impact on patients during noncardiac surgery. Methods: Studies were identified by searching the PubMed, Medline, EMBASE, and Google Scholar databases using relevant keyword combinations pertinent to the topic. Results: Current evidence shows that cannabis use may cause several cardiovascular events, including abnormalities in cardiac rhythm, myocardial infarction, heart failure, and cerebrovascular events. Additionally, cannabis interacts with anticoagulants and antiplatelet agents, decreasing their efficacy. Finally, the interplay of cannabis with inhalational and intravenous anesthetic agents may lead to adverse perioperative cardiovascular outcomes. Conclusions: The use of cannabis can trigger cardiovascular events that may depend on factors such as the duration of consumption, the route of administration of the drug, and the dose consumed, which places these patients at risk of drug-drug interactions with anesthetic agents. However, large prospective randomized clinical trials are needed to further elucidate gaps in the body of knowledge regarding which patient population has a greater risk of perioperative complications after cannabis consumption.

5.
J Forensic Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992862

ABSTRACT

Cannabis is one of the most consumed illicit drugs and the potency of cannabis products is of note due to health-related concerns. Hand-rubbed hashish is the ancient technique of extracting psychoactive resin from cannabis plants and is practiced in the Indian Himalayas. This study establishes the cannabinoid profile and potency of hand-rubbed hashish collected from 20 regions of the northwest Himalayas. Fifty-eight hashish samples were analyzed using a validated high-performance liquid chromatography-diode array detection (HPLC-DAD) method. Ten cannabinoids were quantified including acidic (THCA & CBDA), and neutral compounds (CBDA, THCV, CBD, CBG, CBN, Δ9-THC, Δ8-THC, and CBC). The mean concentration (w/w%) of Δ9-THC is 26%; THCA is 15% and THCTotal is 40% is observed in the studied hashish samples. The majority (70%) of the hashish samples were categorized in chemotype I with the THC:CBD:CBN ratio of 91:3:4, and the remaining 30% were categorized under chemotype II with the ratio of 76:15:8. Diverse qualities of hashish are produced in the studied regions as per the seed, plant selection, and skills of manual rubbing, which results in potency variations. The average difference between the least and highest potent hand-rubbed hashish of a region is 27 w/w% (THCTotal). The other studied non-psychoactive cannabinoids have a mean w/w% of <5%, followed by 6% of CBDA. It is concluded that the cultivated and wild cannabis fields in the northwest Himalayas belong to the drug-type cannabis subspecies. Hand-rubbed hashish holds traditional significance and impacts the current policies of legislation.

6.
Cannabis ; 7(2): 123-134, 2024.
Article in English | MEDLINE | ID: mdl-38975597

ABSTRACT

Objective: Recent scientific attention has focused on the therapeutic effectiveness of cannabis use on a variety of physical and mental ailments. The present study uses smartphone technology to assess self-reported experiences of Florida cannabis users to understand how cannabis may impact anxiety and depression symptomatology. Method: Several hundred Releaf App™ users from the state of Florida provided anonymous, real-time reports of their symptoms of anxiety and/or depression immediately before and after cannabis use sessions. Linear mixed-effects modeling was used to analyze the data at the symptom and user level. Results: Results showed that for the majority of users, cannabis use was associated with a significant decrease in depression and anxiety symptomatology. While symptom type, doses per session, consumption method, and CBD levels were significant predictors of relief change, their effect sizes were small and should be interpreted with caution. At the user level, those who had positive relief outcomes in anxiety reported more doses and sessions, and those in the depression group reported more sessions. Conclusions: Our results generally support the therapeutic effectiveness of cannabis against depression/anxiety symptomatology. Future work should include standardized statistics and effect size estimates for a better understanding of each variable's practical contribution to this area of study.

7.
Cells ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38994954

ABSTRACT

Previous research highlighted the involvement of the cannabinoid CB1 receptor in regulating the physiology of hepatocytes and hepatic stellate cells. The inhibition of the CB1 receptor via peripherally restricted CB1 receptor inverse agonist JD5037 has shown promise in inhibiting liver fibrosis in mice treated with CCl4. However, its efficacy in phospholipid transporter-deficiency-induced liver fibrosis remains uncertain. In this study, we investigated the effectiveness of JD5037 in Mdr2-/- mice. Mdr2 (Abcb4) is a mouse ortholog of the human MDR3 (ABCB4) gene encoding for the canalicular phospholipid transporter. Genetic disruption of the Mdr2 gene in mice causes a complete absence of phosphatidylcholine from bile, leading to liver injury and fibrosis. Mdr2-/- mice develop spontaneous fibrosis during growth. JD5037 was orally administered to the mice for four weeks starting at eight weeks of age. Liver fibrosis, bile acid levels, inflammation, and injury were assessed. Additionally, JD5037 was administered to three-week-old mice to evaluate its preventive effects on fibrosis development. Our findings corroborate previous observations regarding global CB1 receptor inverse agonists. Four weeks of JD5037 treatment in eight-week-old Mdr2-/- mice with established fibrosis led to reduced body weight gains. However, contrary to expectations, JD5037 significantly exacerbated liver injury, evidenced by elevated serum ALT and ALP levels and exacerbated liver histology. Notably, JD5037-treated Mdr2-/- mice exhibited significantly heightened serum bile acid levels. Furthermore, JD5037 treatment intensified liver fibrosis, increased fibrogenic gene expression, stimulated ductular reaction, and upregulated hepatic proinflammatory cytokines. Importantly, JD5037 failed to prevent liver fibrosis formation in three-week-old Mdr2-/- mice. In summary, our study reveals the exacerbating effect of JD5037 on liver fibrosis in genetically MDR2-deficient mice. These findings underscore the need for caution in the use of peripherally restricted CB1R inverse agonists for liver fibrosis treatment, particularly in cases of dysfunctional hepatic phospholipid transporter.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP-Binding Cassette Sub-Family B Member 4 , Liver Cirrhosis , Receptor, Cannabinoid, CB1 , Animals , Mice , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/agonists , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/deficiency , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver/drug effects , Liver/pathology , Liver/metabolism , Male , Mice, Knockout , Bile Acids and Salts/metabolism , Drug Inverse Agonism , Mice, Inbred C57BL
8.
Nat Prod Res ; : 1-9, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989798

ABSTRACT

A new, canniprene B (4), along with five known (1-3 and 5-6) dihydrostilbenes were isolated from the leaves of Cannabis sativa collected at CSIR - IIIM, Jammu, India. Structures of all isolated compounds were elucidated by spectroscopic data analysis, including 1D and 2D NMR, and HR-ESI-MS. Canniprene B is a new prenylated dihydrostilbenes, a positional isomer of the known compound canniprene (5). The cytotoxic activities of these compounds (1-6) were evaluated using the SRB assay against a panel of five human cancer cell lines. Notably, canniprene B (4) exhibited varying levels of cytotoxicity with IC50 values ranging from 2.5 to 33.52 µM, demonstrating the most potent activity against pancreatic cancer cells.

9.
Int J Pharm ; 661: 124468, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39013533

ABSTRACT

Cannabidiol (CBD) is the main non-psychotropic cannabinoid. It has attracted a great deal of interest in the treatment of several diseases such as inflammatory disorders and cancer. Despite its promising clinical interest, its administration is very challenging. In situ forming implants (ISFIs) could be a simple and cheap strategy to administer CBD while obtaining a prolonged effect with a single administration. This work aims to design, develop, and characterize for the first time ISFIs for the parenteral administration of CBD with potential application in cancer disease. Formulations made of PLGA-502, PLGA-502H, and PLA-202 in NMP or DMSO and PLA-203 in DMSO at a polymer concentration of 0.25 mg/µL and loaded with CBD at a drug: polymer ratio of 2.5:100 and 5:100 (w/w) were developed. The formulations prepared with NMP exhibited a faster drug release. CBD implants elaborated with PLGA-502 and DMSO with the highest CBD: polymer ratio showed the most suitable drug release for one month. This formulation was successfully formed in ovo onto the chorioallantoic chick membrane without exhibiting signs of toxicity and exhibited a superior antiangiogenic activity than CBD in solution administered at the same doses. Consequently, implants made of PLGA-502 and DMSO represent a promising strategy to effectively administer CBD subcutaneously as combination therapy in cancer disease.

10.
Article in English | MEDLINE | ID: mdl-39044312

ABSTRACT

Tea is a recommended way of administration of prescribed cannabis plant products in Denmark. We aimed to investigate the cannabinoid and terpene doses contained in different teas. We analysed tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), cannabidiolic acid (CBDA), and terpene concentrations in three repeated preparations of each type of tea, and in plant material. In standard tea, concentrations of THC were [median (min-max)] 9.5 (2.3-15), 19 (13-34), and 36 (26-57) µg/mL for products with a labelled content of 6.3%, 14%, and 22% total THC (THC + THCA), respectively. The CBD concentration in tea from a product labelled with 8% total CBD (CBD + CBDA) was 7.5 (1.9-10) µg/mL. Based on this, the recommended starting amount of 0.2 L of the different teas would contain between 0.46 and 11.3 mg THC, and 0.38 to 2.0 mg CBD. Adding creamer before, but not after boiling, increased the THC and CBD concentration 2.3-4.4 and 2.1-fold, respectively. Terpenes were detected in plant material, but not in tea. The study elucidates THC and CBD doses in different teas, which may assist the clinician's choice of cannabis product. Moreover, it underscores the need for caution as administration as tea can result in exposure to different doses, even when the same cannabis product is used.

11.
Article in English | MEDLINE | ID: mdl-39034267

ABSTRACT

Cyclic vomiting syndrome (CVS) is a disorder characterized by recurrent and unpredictable episodes of intense vomiting, interspersed with periods of apparent wellbeing. This disorder, which primarily affects children and adolescents but can persist into adulthood, has recently been the subject of extensive study and analysis in the medical literature. The aim of the present review is to examine the most important aspects of the epidemiology, pathophysiology, subtypes, diagnostic criteria, and current management of CVS. Even though the exact etiology remains unknown, genetic factors (polymorphisms), nervous system alterations and autonomic dysregulation, and environmental factors (use and abuse of cannabinoids) are postulated as possible triggers. CVS has significant diagnostic challenges, given that there is no specific test for confirming its presence. Thorough evaluation of symptoms and the ruling out of other possible causes of recurrent vomiting are required. Management of CVS typically involves a multidisciplinary approach. Pharmacologic options are explored, such as antiemetics and preventive medications, as well as behavioral and psychologic support therapies. Treatment personalization is essential, adapting it to the individual needs of each patient. Despite advances in the understanding of CVS, it remains a significant clinical challenge. This disorder impacts the quality of life of those affected and their families, underscoring the ongoing need for research and the development of more effective treatment strategies.

12.
Med Cannabis Cannabinoids ; 7(1): 111-118, 2024.
Article in English | MEDLINE | ID: mdl-39015609

ABSTRACT

Introduction: Cannabis sativa L. inflorescences are widely used in the medicinal field as treatments for a variety of symptoms and illnesses due to their unique phytochemicals such as cannabinoids and terpenes. Common postharvest procedures for cannabis inflorescence include trimming, followed by drying, curing, and subsequent storage. The postharvest trimming step, particularly its timing (pre- or post-drying) and the extent of trimming, is not optimally refined in terms of its impact on the cannabinoid and terpene content. In this study, our objective was to identify the optimal trimming conditions for a commercially available medicinal cannabis hybrid chemovar, with the goal of maximizing its cannabinoid and terpene content. Methods: To achieve this, we investigated the effects of pre- versus post-drying trimming and evaluated the impact of mild versus aggressive trimming prior to drying on the cannabinoid and terpene profiles using liquid and gas chromatography. Results: Our results indicated that pre-drying mild trimming yielded the highest cannabinoid concentration, possibly due to optimal balance between stress signals and precursor influx from the sugar leaves to the inflorescence. On the other, post-drying trimming yielded the highest terpene content. Conclusion: Identifying the optimal trimming conditions that maximize both cannabinoid and terpene levels in cannabis is challenging. Therefore, growers face a decision in their trimming practices: to prioritize either enhanced cannabinoid content or increased aromatic terpene concentrations, as optimizing for both simultaneously appears to be difficult.

13.
Med Cannabis Cannabinoids ; 7(1): 91-98, 2024.
Article in English | MEDLINE | ID: mdl-39015608

ABSTRACT

Background: Of the seventy million people who suffer from epilepsy, 40 percent of them become resistant to more than one antiepileptic medication and have a higher chance of death. While the classical definition of epilepsy was due to the imbalance between excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA)-ergic signalling, substantial evidence implicates muscarinic receptors in the regulation of neural excitability. Summary: Cannabinoids have shown to reduce seizure activity and neuronal excitability in several epileptic models through the activation of muscarinic receptors with drugs which modulate their activity. Cannabinoids also have been effective in reducing antiepileptic activity in pharmaco-resistant individuals; however, the mechanism of its effects in temporal lobe epilepsy is not clear. Key Messages: This review seeks to elucidate the relationship between muscarinic and cannabinoid receptors in epilepsy and neural excitability.

14.
Sci Rep ; 14(1): 16411, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013926

ABSTRACT

Studies with secretory cavity contents and air-dried inflorescence extracts of the CBD-rich hemp strain, Cannabis sativa cv. 'Cherry Wine', were conducted to compare the decarboxylation rates of acidic cannabinoids between two groups. The secretory cavity contents acquired from the capitate-stalked glandular trichomes by glass microcapillaries, and inflorescence samples air-dried for 15 days of storage in darkness at room temperature were analysed by high-pressure liquid chromatography. The ratio of acidic cannabinoids to the total cannabinoids was ranging from 0.5% to 2.4% lower in the air-dried inflorescence samples compared to the secretory cavity samples as follows. In the secretory cavity content, the percentage of acidic cannabinoids to the total cannabinoids was measured as 86.4% cannabidiolic acid (CBDA), 6.5% tetrahydrocannabinolic acid (THCA), 4.3% cannabichromenic acid (CBCA), 1.4% cannabigerolic acid (CBGA), and 0.6% cannabidivarinic acid (CBDVA), respectively. In the air-dried inflorescence, however, the acidic cannabinoids were detected with 84% CBDA, 4.8% THCA, 3.3% CBCA, 0.8% CBGA, and 0.3% Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA), respectively. The ratio of cannabidiol (CBD) to cannabidiolic acid (CBDA) was close to 1:99 (w/w) in secretory cavity contents, however, it was roughly 1:20 (w/w) in the air-dried inflorescence. In addition, Δ9-tetrahydrocannabivarin (Δ9-THCV) and Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA) were only detected in the air-dried inflorescence sample, and the ratio of Δ9-THCV to Δ9-THCVA was about 1:20 (w/w). Besides, cannabidivarinic acid (CBDVA) was only observed in the secretory cavity content.


Subject(s)
Cannabinoids , Cannabis , Inflorescence , Cannabis/chemistry , Cannabinoids/analysis , Inflorescence/chemistry , Decarboxylation , Plant Extracts/chemistry , Plant Extracts/analysis , Chromatography, High Pressure Liquid
15.
Int Rev Neurobiol ; 177: 135-147, 2024.
Article in English | MEDLINE | ID: mdl-39029983

ABSTRACT

Cannabidiol (CBD) has been investigated as a pharmacological approach for treating a myriad of neurological and psychiatric disorders, the most successful of them being its use as an antiseizure drug (ASD). Indeed, CBD has reached the clinics for the treatment of certain epileptic syndromes. This chapter aims to overview the pharmacology of CBD and its potential mechanisms of action as an ASD. First, we give an outline of the concepts, mechanisms and pharmacology pertaining to the field of study of epilepsy and epileptic seizures. In the second section, we will summarize the effects of CBD as an ASD. Next, we will discuss its potential mechanisms of action to alleviate epileptic seizures, which seem to entail multiple neurotransmitters, receptors and intracellular pathways. Finally, we will conclude and present some limitations and perspectives for future studies.


Subject(s)
Anticonvulsants , Cannabidiol , Epilepsy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Humans , Epilepsy/drug therapy , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Animals
16.
Int Rev Neurobiol ; 177: 319-333, 2024.
Article in English | MEDLINE | ID: mdl-39029990

ABSTRACT

Cannabidiol (CBD) has been investigated for several therapeutic applications, having reached the clinics for the treatment of certain types of epilepsies. This chapter reviews the potential of CBD for the treatment of substance use disorders (SUD). We will present a brief introduction on SUD and current treatments. In the second part, preclinical and clinical studies with CBD are discussed, focusing on its potential therapeutic application for SUD. Next, we will consider the potential molecular mechanism of action of CBD in SUD. Finally, we will summarize the main findings and perspectives in this field. There is a lack of studies on CBD and SUD in comparison to the extensive literature investigating the use of this phytocannabinoid for other neurological and psychiatric disorders, such as epilepsy. However, the few studies available do suggest a promising role of CBD in the pharmacotherapy of SUD, particularly related to cocaine and other psychostimulant drugs.


Subject(s)
Cannabidiol , Substance-Related Disorders , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Humans , Substance-Related Disorders/drug therapy , Animals
17.
Nord J Psychiatry ; : 1-8, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037073

ABSTRACT

INTRODUCTION: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder affecting about 1% of children. The disorder is characterized by difficulties within three core symptoms: social interactions, communication, and restricted or repetitive behavior. There is currently no approved psychopharmacological treatment; however, it is hypothesized that ASD symptoms might be ameliorated by manipulating the endocannabinoid (eCB) system.This study aims to review the existing research on cannabinoids as a potential effective treatment for the core symptoms of ASD in children and adolescents. METHODS: A literature search was conducted on PubMed, Embase, APA PsychInfo, and Cochrane. The available literature was screened, and studies were included if: the study population consisted of children/adolescents, the treatment involved cannabinoids, and the outcome assessed was the impact on core ASD symptoms. RESULTS: The search yielded five studies, two RCTs and three cohort studies. All the included studies reported an effect of the cannabinoid treatment; however, most of these effects were non-significant and not related to core symptoms. Only one study found a significant improvement on all three core symptoms. The risk of bias was rated as "high" or "very high" in four studies and as "low" in one study. DISCUSSION: Although the included studies did not find substantial results regarding core ASD symptoms, they all reported that cannabinoid treatment had other positive effects. However, Long term outcome is unknown, and safety aspects are scarcely discussed. CONCLUSION: Based on this review, the effect of cannabinoid treatment on ASD core symptoms is not clear; therefore, further studies are required.

18.
J Pharmacol Exp Ther ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009468

ABSTRACT

Cannabis sativa L. has a long history of medicinal use, particularly for gastrointestinal diseases. Patients with inflammatory bowel disease (IBD) report using cannabis to manage their symptoms, despite little data to support the use of cannabis or cannabis products to treat the disease. In this study, we utilize the well-described dextran sodium sulfate (DSS) model of colitis in mice to assess the impact of commercially available, non-euphorigenic, high cannabigerol (CBG) hemp extract (20 mg/mL cannabigerol, 20.7 mg/mL cannabidiol, 1 mg/mL cannabichromene) on IBD activity and the colonic microbiome. Mice were given 2% DSS in drinking water for 5 days, followed by 2 days of regular drinking water. Over the 7 days, mice were dosed daily with either high CBG hemp extract or matched vehicle control. Daily treatment with high CBG hemp extract dramatically reduces the severity of disease at the histological and organismal levels as measured by decreased disease activity index, increased colon length, and decreases in percent colon tissue damage. 16S rRNA gene sequencing of the fecal microbiota reveals high CBG hemp extract treatment results in alterations in the microbiota, that may be beneficial for colitis. Finally, using metabolomic analysis of fecal pellets, we find that mice treated with high CBG hemp extract have a normalization of several metabolic pathways, including those involved in inflammation. Taken together these data suggest that high CBG hemp extracts may offer a novel treatment option for patients. Significance Statement Using the DSS model of colitis, we show that treatment with high CBG hemp extract reduces the severity of symptoms associated with colitis. Additionally, we show that treatment modulates both the fecal microbiota and metabolome with potential functional significance.

19.
Prog Neurobiol ; 240: 102652, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955325

ABSTRACT

Psychotic disorders entail intricate conditions marked by disruptions in cognition, perception, emotions, and social behavior. Notably, psychotic patients who use cannabis tend to show less severe deficits in social behaviors, such as the misinterpretation of social cues and the inability to interact with others. However, the biological underpinnings of this epidemiological interaction remain unclear. Here, we used the NMDA receptor blocker phencyclidine (PCP) to induce psychotic-like states and to study the impact of adolescent cannabinoid exposure on social behavior deficits and synaptic transmission changes in hippocampal area CA2, a region known to be active during social interactions. In particular, adolescent mice underwent 7 days of subchronic treatment with the synthetic cannabinoid, WIN 55, 212-2 (WIN) followed by one injection of PCP. Using behavioral, biochemical, and electrophysiological approaches, we showed that PCP persistently reduced sociability, decreased GAD67 expression in the hippocampus, and induced GABAergic deficits in proximal inputs from CA3 and distal inputs from the entorhinal cortex (EC) to CA2. Notably, WIN exposure during adolescence specifically restores adult sociability deficits, the expression changes in GAD67, and the GABAergic impairments in the EC-CA2 circuit, but not in the CA3-CA2 circuit. Using a chemogenetic approach to target EC-CA2 projections, we demonstrated the involvement of this specific circuit on sociability deficits. Indeed, enhancing EC-CA2 transmission was sufficient to induce sociability deficits in vehicle-treated mice, but not in animals treated with WIN during adolescence, suggesting a mechanism by which adolescent cannabinoid exposure rescues sociability deficits caused by enhanced EC-CA2 activity in adult mice.

20.
Exp Brain Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980339

ABSTRACT

The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.

SELECTION OF CITATIONS
SEARCH DETAIL