Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71.013
Filter
1.
J Dent ; 145: 104992, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599563

ABSTRACT

OBJECTIVES: The objective of this study was to synthesize arginine loaded mesoporous silica nanoparticles (Arg@MSNs), develop a novel orthodontic adhesive using Arg@MSNs as modifiers, and investigate the adhesive performance, antibacterial activity, and biocompatibility. METHODS: Arg@MSNs were synthesized by immobilizing arginine into MSNs and characterized using transmission electron microscope (TEM), dynamic light scattering (DLS), and Fourier Transform Infrared Spectrometer (FT-IR). Arg@MSNs were incorporated into Transbond XT adhesive with different mass fraction to form functional adhesives. The degree of conversion (DC), arginine release behavior, adhesive performance, antibacterial activity against Streptococcus mutans biofilm, and cytotoxicity were comprehensively evaluated. RESULTS: TEM, DLS, and FT-IR characterizations confirmed the successful preparation of Arg@MSNs. The incorporation of Arg@MSNs did not significantly affect DC and exhibited clinically acceptable bonding strength. Compared to the commercial control, the Arg@MSNs modified adhesives greatly suppressed the metabolic activity and polysaccharide production while increased the biofilm pH values. The cell counting kit (CCK)-8 test indicated no cytotoxicity. CONCLUSIONS: The novel orthodontic adhesive containing Arg@MSNs exhibited significantly enhanced antibacterial activities and inhibitory effects on acid production compared to the commercial adhesive without compromising their bonding strength or biocompatibility. CLINICAL SIGNIFICANCE: The novel orthodontic adhesive containing Arg@MSNs exhibits potential clinical benefits in preventing demineralization of enamel surfaces around or beneath orthodontic brackets due to its enhanced antibacterial activities and acid-producing inhibitory effects.

2.
Carbohydr Polym ; 335: 122107, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616081

ABSTRACT

In this study, the polyvinylpyrrolidone-alizarin nanoparticles (PVP-AZ NPs) with favorable water dispersion and the carbon quantum dots (RQDs) with aggregate induced emission effect were synthesized to construct an eco-friendly film for food freshness monitoring. The introduction of PVP-AZ NPs and RQDs enhanced the network structure and thermal stability of the cassava starch/polyvinyl alcohol film, and reduced its crystallinity and light transmittance via non-covalent binding with the film-forming matrix. The developed film exhibited visually recognizable colorimetric and fluorescent responses to ammonia at 0.025-25 mg/mL, and it can be reused at least 6 times. Practical application experiment proved that the film, as an indicator label, can achieve accurate, real-time, and visual dynamic monitoring of the freshness of shrimp stored at 25 °C, 4 °C, and - 20 °C under daylight (orange yellow to purple) and UV light (red to blue). The integration of multivariate detection technology can eliminate the interference of external factors by self-correction to improve sensitivity and reliability, which provides a reference for the development of other food quality and safety monitoring platforms.


Subject(s)
Anthraquinones , Manihot , Animals , Polyvinyl Alcohol , Reproducibility of Results , Seafood , Crustacea , Povidone , Starch
3.
Int J Nanomedicine ; 19: 3405-3421, 2024.
Article in English | MEDLINE | ID: mdl-38617795

ABSTRACT

Background: Natural nanoparticles have been found to exist in traditional Chinese medicine (TCM) decoctions. However, whether natural nanoparticles can influence the oral bioavailability of active compounds has not been elucidated. Using Xie-Bai-San decoction (XBSD) as an example, the purpose of this study was to isolate, characterize and elucidate the mechanism of the nanoparticles (N-XBSD) in XBSD, and further to explore whether the bioavailability of the main active compounds could be enhanced by N-XBSD. Methods: N-XBSD were isolated from XBSD, and investigated its characterization and study of its formation mechanism, and evaluation of its ability to enhance bioavailability of active compounds. Results: The N-XBSD was successfully isolated with the average particle size of 104.53 nm, PDI of 0.27 and zeta potential of -5.14 mV. Meanwhile, all the eight active compounds were most presented in N-XBSD. Kukoamine B could self-assemble with mulberroside A or liquiritin to form nanoparticles, respectively. And the FT-IR and HRMS results indicated the possible binding of the ammonium group of kukoamine B with the phenolic hydroxyl group of mulberroside A or liquiritin, respectively. The established UPLC-MS/MS method was accurate and reliable and met the quantitative requirements. The pharmacokinetic behaviors of the N-XBSD and decoction were similar in rats. Most notably, compared to that of free drugs, the Cmax, AUC0-∞, AUC0-t, T1/2 and MRT0-∞ values of index compounds were the higher in N-XBSD, with a slower plasma clearance rate in rats. Conclusion: The major active compounds of XBSD were mainly distributed in N-XBSD, and N-XBSD was formed through self-assembly among active compounds. N-XBSD could obviously promote the bioavailability of active compounds, indicating natural nanoparticles of decoctions play an important role in therapeutic effects.


Subject(s)
Caffeic Acids , Disaccharides , Nanoparticles , Spermine/analogs & derivatives , Stilbenes , Tandem Mass Spectrometry , Animals , Rats , Biological Availability , Chromatography, Liquid , Spectroscopy, Fourier Transform Infrared
4.
Int J Nanomedicine ; 19: 3333-3365, 2024.
Article in English | MEDLINE | ID: mdl-38617796

ABSTRACT

Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer treatment.


Subject(s)
Cancer-Associated Fibroblasts , Nanoparticles , Neoplasms , Immunotherapy , Nanomedicine , Nanotechnology , Neoplasms/drug therapy
5.
Cureus ; 16(3): e56078, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618398

ABSTRACT

Background and objective Glass ionomer cement (GIC), also known as polyalkenoate cement, has been extensively used in dentistry for both luting and restorative purposes. Despite being the first choice for aesthetic restorations due to their chemical bonding ability to teeth, GICs have faced challenges such as low mechanical properties, abrasion resistance, and sensitivity to moisture, leading to the search for improved materials.  This study aims to assess the effects of thermocycling on the compressive, flexural strength, and microhardness of green-mediated nanocomposite-modified GIC in comparison to traditional GIC. Methodology Green-mediated nanoparticles, consisting of chitosan, titanium, zirconia, and hydroxyapatite (Ch-Ti-Zr-HA), were synthesized using a one-pot synthesis technique to form nanocomposites. These nanocomposites were then incorporated into GIC specimens in varying concentrations (3%, 5%, and 10%), denoted as Group I, Group II, and Group III, respectively. Group IV served as the control, consisting of conventional GIC. To assess the performance of the novel restorative materials over an extended period, compressive strength, flexural strength, and microhardness were measured before and after thermocycling using a universal material testing machine. Furthermore, scanning electron microscopy (SEM) analysis was carried out following the thermocycling process. The collected data were subjected to statistical analysis through one-way analysis of variance (ANOVA) and paired t-tests. Results  The findings demonstrated that, in comparison to the control group, both the mean compressive strength and flexural strength, as well as hardness, were notably higher for the 10% and 5% nanocomposite-modified GIC specimens before and after thermocycling (P < 0.05). Notably, there was no notable difference observed between the 5% and 10% concentrations (P > 0.05). These results suggest that incorporating green-mediated nanocomposites (Ch-Ti-Zr-HA) modified GIC at either 5% or 10% concentration levels leads to improved mechanical properties, indicating their potential as promising alternatives in dental restorative materials. Conclusions Based on our findings, it can be inferred that the 10% and 5% concentrations of green-mediated (Ch-Ti-Zr-HA) modified GIC exhibit superior compressive and flexural strength compared to conventional GIC. Additionally, analysis of the scanning electron microscope (SEM) morphology revealed that green-mediated GIC displays smoother surface characteristics in contrast to conventional GIC. These results underscore the potential advantages of utilizing green-mediated nanocomposite-modified GIC in dental applications, suggesting enhanced mechanical properties and surface quality over conventional.

6.
Environ Technol ; : 1-11, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619987

ABSTRACT

Coupling chemical oxidation and biodegradation to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated sediment has recently gained significant attention. In this study, calcium peroxide nanoparticles (nCaO2) were utilized as an innovative oxygen-releasing compound for in-situ chemical oxidation. The study investigates the bioremediation of phenanthrene (PHE)-contaminated sediment inoculated with Sphingomonas sp. DSM 7526 bacteria and treated with either aeration or nCaO2. Using three different culture media, the biodegradation efficiencies of PHE-contaminated anoxic sediment, aerobic sediment, and sediment treated with 0.2% w/w nCaO2 ranged from 57.45% to 63.52%, 69.87% to 71.00%, and 92.80% to 94.67%, respectively. These values were significantly higher compared to those observed in non-inoculated sediments. Additionally, the type of culture medium had a prominent effect on the amount of PHE removal. The presence of minerals in the culture medium increased the percentage of PHE removal compared to distilled water by about 2-10%. On the other hand, although the application of CaO2 nanoparticles negatively impacted the abundance of sediment bacteria, resulting in a 30-42% decrease in colony-forming units after 30 days of treatment, the highest PHE removal was obtained when coupling biodegradation and chemical oxidation. These findings demonstrate the successful application of bioaugmentation and chemical oxidation processes for treating PAH-contaminated sediment.

7.
Nano Lett ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38620021

ABSTRACT

Dual heterostructures integrating noble-metal and copper chalcogenide nanoparticles have attracted a great deal of attention in nonlinear optics, because coupling of their localized surface plasmon resonances (LSPRs) substantially enhances light-matter interactions through local-field effects. Previously, enhanced cascaded third-harmonic generation was demonstrated in Au/CuS heterostructures mediated by harmonically coupled surface plasmon resonances. This suggests a promising approach for extending nonlinear enhancement to higher harmonics by adding an additional nanoparticulate material with higher-frequency harmonic resonances to the hybrid films. Here we report the first observation of enhanced cascaded fourth- and fifth-harmonic generation in Al/Au/CuS driven by coupled LSPRs at the fundamental (1050 nm), second harmonic (525 nm), and third harmonic (350 nm) of the pump frequency. An analytical model based on incoherent dipole-dipole interactions among plasmonic nanoparticles accounts for the observed enhancements. The results suggest a novel design for efficiently generating higher harmonics in resonant plasmonic structures by means of multiple sum-frequency cascades.

8.
Food Chem ; 450: 139331, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38621310

ABSTRACT

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.

9.
Nanotechnology ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621367

ABSTRACT

The fundamentals, performance, and applications of piezoresistive strain sensors based on polymer nanocomposites are summarized herein. The addition of conductive nanoparticles to a flexible polymer matrix has emerged as a possible alternative to conventional strain gauges, which have limitations in detecting small strain levels and adapting to different surfaces. The evaluation of the properties or performance parameters of strain sensors such as the elongation at break, sensitivity, linearity, hysteresis, transient response, stability, and durability are explained in this review. Moreover, these nanocomposites can be exposed to different environmental conditions throughout their lifetime, including different temperature, humidity or acidity/alkalinity levels, that can affect performance parameters. The development of flexible piezoresistive sensors based on nanocomposites has emerged in recent years for applications related to the biomedical field, smart robotics, and structural health monitoring. However, there are still challenges to overcome in designing high-performance flexible sensors for practical implementation. Overall, this paper provides a comprehensive overview of the current state of research on flexible piezoresistive strain sensors based on polymer nanocomposites, which can be a viable option to address some of the major technological challenges that the future holds. .

10.
Acta Biomater ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38621599

ABSTRACT

The treatment of osteoporotic bone defect remains a big clinical challenge because osteoporosis (OP) is associated with oxidative stress and high levels of reactive oxygen species (ROS), a condition detrimental for bone formation. Anti-oxidative nanomaterials such as selenium nanoparticles (SeNPs) have positive effect on osteogenesis owing to their pleiotropic pharmacological activity which can exert anti-oxidative stress functions to prevent bone loss and facilitate bone regeneration in OP. In the current study a strategy of one-pot method by introducing Poly (lactic acid-carbonate) (PDT) and ß-Tricalcium Phosphate (ß-TCP) with SeNPs, is developed to prepare an injectable, anti-collapse, shape-adaptive and adhesive bone graft substitute material (PDT-TCP-SE). The PDT-TCP-SE bone graft substitute exhibits sufficient adhesion in biological microenvironments and osteoinductive activity, angiogenic effect and anti-inflammatory as well as anti-oxidative effect in vitro and in vivo. Moreover, the PDT-TCP-SE can protect BMSCs from erastin-induced ferroptosis through the Sirt1/Nrf2/GPX4 antioxidant pathway, which, in together, demonstrated the bone graft substitute material as an emerging biomaterial with potential clinical application for the future treatment of osteoporotic bone defects. STATEMENT OF SIGNIFICANCE: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute was successfully synthesized. Incorporation of SeNPs with PDT into ß-TCP regenerated new bone in-situ by moderating oxidative stress in osteoporotic bone defects area. The PDT-TCP-SE bone graft substitute reduced high ROS levels in osteoporotic bone defect microenvironment. The bone graft substitute could also moderate oxidative stress and inhibit ferroptosis via Sirt1/Nrf2/GPX4 pathway in vitro. Moreover, the PDT-TCP-SE bone graft substitute could alleviate the inflammatory environment and promote bone regeneration in osteoporotic bone defect in vivo. This biomaterial has the advantages of simple synthesis, biocompatibility, anti-collapse, injectable, and regulation of oxidative stress level, which has potential application value in bone tissue engineering.

11.
Int J Pharm ; : 124098, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38621614

ABSTRACT

Glaucoma, the second most common cause of blindness worldwide, requires the development of new and effective treatments. This study introduces a novel controlled-release system utilizing elastin-like recombinamers (ELR) and the Supercritical Antisolvent (SAS) technique with supercritical CO2. Acetazolamide (AZM), a class IV drug with limited solubility and permeability, is successfully encapsulated in an amphiphilic ELR at three different ELR:AZM ratios, yielding up to 62 %. Scanning electron microscopy (SEM) reveals spherical microparticles that disintegrate into monodisperse nanoparticles measuring approximately 42 nm under physiological conditions. The nanoparticles, as observed via Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), do not exhibit aggregates, a fact confirmed by the zeta potential displaying a value of -33 mV over a period of 30 days. Transcorneal permeation tests demonstrate a 10 % higher permeation level compared to the control solution, which increases to 30 % after 2 h. Ocular irritation tests demonstrate no adverse effects or damage. Intraocular pressure (IOP) tests conducted on hypertensive rabbits indicate greater effectiveness for all three analyzed formulations, suggesting enhanced drug bioavailability during treatment. Consequently, the combination of recombinant biopolymers and high-pressure techniques represents a promising approach for advancing glaucoma therapy, emphasizing its potential clinical significance.

12.
Eur J Neurosci ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622050

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aß) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.

13.
Angew Chem Int Ed Engl ; : e202404885, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622059

ABSTRACT

There is an urgent need to improve conventional cancer-treatments by preventing detrimental side effects, cancer recurrence and metastases. Recent studies have shown that presence of senescent cells in tissues treated with chemo- or radiotherapy can be used to predict the effectiveness of cancer treatment. However, although the accumulation of senescent cells is one of the hallmarks of cancer, surprisingly little progress has been made in development of strategies for their detection in vivo. To address a lack of detection tools, we developed a biocompatible, injectable organic nanoprobe (NanoJagg), which is selectively taken up by senescent cells and accumulates in the lysosomes. The NanoJagg probe is obtained by self-assembly of indocyanine green (ICG) dimers using a scalable manufacturing process and characterized by a unique spectral signature suitable for both photoacoustic tomography (PAT) and fluorescence imaging. In vitro, ex vivo and in vivo studies all indicate that NanoJaggs are a clinically translatable probe for detection of senescence and their PAT signal makes them suitable for longitudinal monitoring of the senescence burden in solid tumors after chemotherapy or radiotherapy.

14.
Mol Pharm ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622497

ABSTRACT

Tuberculosis (TB) is a chronic disease caused byMycobacterium tuberculosis (Mtb), which shows a long treatment cycle often leads to drug resistance, making treatment more difficult. Immunogens present in the pathogen's cell membrane can stimulate endogenous immune responses. Therefore, an effective lipid-based vaccine or drug delivery vehicle formulated from the pathogen's cell membrane can improve treatment outcomes. Herein, we extracted and characterized lipids fromMycobacterium smegmatis, and the extracts contained lipids belonging to numerous lipid classes and compounds typically found associated with mycobacteria. The extracted lipids were used to formulate biomimetic lipid reconstituted nanoparticles (LrNs) and LrNs-coated poly(lactic-co-glycolic acid) nanoparticles (PLGA-LrNs). Physiochemical characterization and results of morphology suggested that PLGA-LrNs exhibited enhanced stability compared with LrNs. And both of these two types of nanoparticles inhibited the growth of M. smegmatis. After loading different drugs, PLGA-LrNs containing berberine or coptisine strongly and synergistically prevented the growth of M. smegmatis. Altogether, the bacterial membrane lipids we extracted with antibacterial activity can be used as nanocarrier coating for synergistic antibacterial treatment of M. smegmatis─an alternative model of Mtb, which is expected as a novel therapeutic system for TB treatment.

15.
ACS Nano ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622996

ABSTRACT

Receptor-mediated polyester drug delivery systems have tremendous potential for improving the clinical performance of existing pharmaceutical drugs. Despite significant progress made in this area, it remains unclear how and to what extent the polyester nanoparticle surface topography would affect the in vitro, ex vivo and in vivo performance of a drug, and if there exists a correlation between in vitro and in vivo, as well as healthy versus pathophysiological states. Herein, we report a systematic investigation of the interactions between ligands and receptors as a function of the linker length, two-carbon (2C) versus four-carbon (4C). The in vitro, ex vivo and in vivo in healthy models validate the hypothesis that 4C has better reach and binding to the receptors. The results indicate that 4C offered better performance over 2C in vivo in improving the oral bioavailability of insulin (INS) by 1.1-fold (3.5-fold compared to unfunctionalized nanoparticles) in a healthy rat model. Similar observations were made in pathophysiological models; however, the effects were less prominent compared to those in healthy models. Throughout, ligand decorated nanoparticles outperformed unfunctionalized nanoparticles. Finally, a semimechanistic pharmacokinetic and pharmacodynamic (PKPD) model was developed using the experimental data sets to quantitatively evaluate the effect of P2Ns-GA on oral bioavailability and efficacy of insulin. The study presents a sophisticated oral delivery system for INS or hydrophilic therapeutic cargo, highlighting the significant impact on bioavailability that minor adjustments to the surface chemistry can have.

16.
Phytochem Anal ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623624

ABSTRACT

INTRODUCTION: Skin cancer poses a significant health risk globally, necessitating effective and safe therapeutic interventions. Epigallocatechin-3-gallate (EGCG) from green tea and rosmarinic acid (RA) from herbs like rosemary offer promising anticancer properties. Combining these compounds may enhance their effectiveness, prompting the need for a reliable analytical method to quantify them. OBJECTIVE: Herein, we present the development and validation of a high-performance thin-layer chromatography (HPTLC) method for concurrent quantification of EGCG and RA in lipid-based nanoparticles and biological samples. METHODOLOGY: The method underwent optimisation through design of experiments (DoE), resulting in the establishment of robust chromatographic conditions. The separation process utilised aluminium HPTLC plates coated with silica gel 60 F254 as the stationary phase, with the mobile phase comprising ethyl acetate, toluene, formic acid, and methanol in a ratio of 4:4:1:1 v/v. RESULTS: The retention factor (Rf) values obtained were 0.38 for EGCG and 0.61 for RA. The method demonstrated linearity over a range of 100-500 ng/band for both compounds with excellent correlation coefficients. Limits of detection and quantification were determined, indicating high sensitivity. Precision evaluations revealed relative standard deviation below 2%, ensuring method reproducibility. Recovery assays in lipid-based nanoparticles, plasma, and urine samples demonstrated excellent recoveries (96.2%-102.1%). Forced degradation studies revealed minimal degradation under various stress conditions, with photolytic degradation showing the least impact. CONCLUSION: The developed HPTLC method offers a rapid, sensitive, and reliable approach for quantifying EGCG and RA, laying the groundwork for their further investigation as anticancer agents alone and in combination therapies.

17.
Chembiochem ; : e202400239, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623847

ABSTRACT

Glucose transporter protein-1 (Glut1), is highly expressed in many cancer types and plays a crucial role in cancer progression through enhanced glucose transport. Its overexpression is associated with aggressive tumor behavior and poor prognosis. Herein, the nucleic acids modified gold nanoparticles (AuNPs) was synthesized to deliver small interfering RNA (siRNA) against Glut1 by microRNA 21 (miR-21) triggers toehold-mediated strand displacement reaction for lung cancer starvation therapy. Overexpression of miR-21 triggers toehold-mediated strand displacement, releasing the siRNA to knockdown of Glut1 in cancer cell instead of normal cell. Furthermore, the glucose oxidase-like activity of the AuNPs accelerates intracellular glucose consumption, promoting cancer cell starvation. The engineered AuNPs@anti-miR-21/siGlut1 complex inhibits cancer cell proliferation, xenograft tumor growth and promotes apoptosis through glucose starvation and ROS cascade signaling, underscoring its potential as an effective therapeutic strategy for lung cancer.

18.
Angew Chem Int Ed Engl ; : e202402628, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623865

ABSTRACT

Production of thermoelectric materials from solution-processed particles involves the synthesis of particles, their purification and densification into pelletized material. Chemical changes that occur during each one of these steps render them performance determining. Particularly the purification steps, bypassed in conventional solid-state synthesis, are the cause for large discrepancies among similar solution-processed materials. In present work, the investigation focuses on a water-based surfactant free solution synthesis of SnSe, a highly relevant thermoelectric material. We show and rationalize that the number of leaching steps, purification solvent, annealing, and annealing atmosphere have significant influence on the Sn:Se ratio and impurity content in the powder. Such compositional changes that are undetectable by conventional characterization techniques lead to distinct consolidated materials with different types and concentration of defects. Additionally, the profound effect on their transport properties is demonstrated. We emphasize that understanding the chemistry and identifying key chemical species and their role throughout the process is paramount for optimizing material performance. Furthermore, we aim to demonstrate the necessity of comprehensive reporting of these steps as a standard practice to ensure material reproducibility.

19.
Article in English | MEDLINE | ID: mdl-38625471

ABSTRACT

This study investigates nanoparticle emission during 3D printing processes, assessing various filament materials' impact on air quality. Commonly used 3D printers, including both filament and resin-based types, were examined. The study's scope encompasses diverse filament materials like ABS (acrylonitrile butadiene styrene), PLA (polylactic acid), PETG (polyethylene terephthalate glycol), ASA (acrylonitrile styrene acrylate), TPU (thermoplastic polyurethane), PP (polypropylene), nylon, and wood-based variants, alongside three types of resins. The research delves into the relationship between the type of material and nanoparticle emissions, emphasizing temperature's pivotal role. Measurement instruments were employed for nanoparticle quantification, including an engine exhaust particle sizer spectrometer, condensation particle counter, and nanozen dust counters. Notably, results reveal substantial variations in nanoparticle emissions among different filament materials, with ASA, TPU, PP, and ABS showing considerably elevated emission levels and characteristic particle size distribution patterns. The findings prompt practical recommendations for reducing nanoparticle exposure, emphasizing printer confinement, material selection, and adequate ventilation. This study offers insights into potential health risks associated with 3D printing emissions and provides a basis for adopting preventive measures.

20.
Article in English | MEDLINE | ID: mdl-38625474

ABSTRACT

Salinity stress significantly constrains agricultural productivity and vegetation decline worldwide, particularly in Iran. Potassium, the second most prevalent nutrient in plants, is well known to be essential for cell metabolism. Here, the effects of potassium fertilizer in two biogenic nanoparticles (K-NPs) and conventional (potassium sulfate) forms (0.1 mg/ml) on Melissa officinalis L. under salinity (0, 50, 100, and 150 mM) were investigated. The results demonstrated that stress markers (electrolyte leakage, malondialdehyde, and hydrogen peroxide) increased as salinity levels increased. Plant growth parameters (shoot and root length, fresh and dry weight of shoot and root) and physiological and photosynthetic parameters (stomatal conductance, relative water content, chlorophyll fluorescence, and photosynthetic pigments) were reduced in salinized plants. The highest reduction in fresh weight root, dry weight root, fresh weight shoot, dry weight shoot, root length, and shoot length was recorded under 150 mM NaCl by 30.2%, 51.6%, 30.5%, 24.7%, 26.4%, and 21%, respectively. In contrast, bulk potassium sulfate and K-NPs increased these parameters. Furthermore, K-NPs improved M. officinalis tolerance to NaCl toxicity by enhancing the content of osmolytes such as proline, soluble sugars, and antioxidant enzymes, improving antioxidant contents such as phenols, tannins, anthocyanins, and flavonoids; increasing total protein; and lowering stress markers in plant tissues. Given the results of the physiological, biochemical, and phytochemical parameters obtained from this study, it can be stated that K-NPs, in comparison to the conventional form of potassium fertilizer, exhibit a greater potential to mitigate damages caused by salinity stress in M. officinalis plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...