Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
J Biol Chem ; 300(2): 105600, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38335573

ABSTRACT

The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by ß-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 ß-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Pseudomonas putida , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Acyl Carrier Protein/metabolism , Escherichia coli/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids , Glycogen Synthase , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
2.
Appl Environ Microbiol ; 90(3): e0225623, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38415624

ABSTRACT

The last step of the initiation phase of fatty acid biosynthesis in most bacteria is catalyzed by the 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Pseudomonas syringae pv. syringae strain B728a encodes two FabH homologs, Psyr_3467 and Psyr_3830, which we designated PssFabH1 and PssFabH2, respectively. Here, we explored the roles of these two 3-ketoacyl-ACP synthase (KAS) III proteins. We found that PssFabH1 is similar to the Escherichia coli FabH in using acetyl-acetyl-coenzyme A (CoA ) as a substrate in vitro, whereas PssFabH2 uses acyl-CoAs (C4-C10) or acyl-ACPs (C6-C10). Mutant analysis showed that neither KAS III protein is essential for the de novo fatty acid synthesis and cell growth. Loss of PssFabH1 reduced the production of an acyl homoserine lactone (AHL) quorum-sensing signal, and this production was partially restored by overexpressing FabH homologs from other bacteria. AHL production was also restored by inhibiting fatty acid elongation and providing exogenous butyric acid. Deletion of PssFabH1 supports the redirection of acyl-ACP toward biosurfactant synthesis, which in turn enhances swarming motility. Our study revealed that PssFabH1 is an atypical KAS III protein that represents a new KAS III clade that functions in providing a critical fatty acid precursor, butyryl-ACP, for AHL synthesis.IMPORTANCEAcyl homoserine lactones (AHLs) are important quorum-sensing compounds in Gram-negative bacteria. Although their formation requires acylated acyl carrier proteins (ACPs), how the acylated intermediate is shunted from cellular fatty acid synthesis to AHL synthesis is not known. Here, we provide in vivo evidence that Pseudomonas syringae strain B728a uses the enzyme PssFabH1 to provide the critical fatty acid precursor butyryl-ACP for AHL synthesis. Loss of PssFabH1 reduces the diversion of butyryl-ACP to AHL, enabling the accumulation of acyl-ACP for synthesis of biosurfactants that contribute to bacterial swarming motility. We report that PssFabH1 and PssFabH2 each encode a 3-ketoacyl-acyl carrier protein synthase (KAS) III in P. syringae B728a. Whereas PssFabH2 is able to function in redirecting intermediates from ß-oxidation to fatty acid synthesis, PssFabH1 is an atypical KAS III protein that represents a new KAS III clade based on its sequence, non-involvement in cell growth, and novel role in AHL synthesis.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Acyl-Butyrolactones , Pseudomonas syringae/genetics , Pseudomonas syringae/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Fatty Acids/metabolism , Bacteria/metabolism , Escherichia coli/metabolism , Acetyl Coenzyme A/metabolism
4.
Metab Eng ; 76: 193-203, 2023 03.
Article in English | MEDLINE | ID: mdl-36796578

ABSTRACT

Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional ß-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Mutagenesis , Fatty Acids
5.
Plant Sci ; 310: 110972, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34315590

ABSTRACT

Cuticular wax covers the surface of fleshy fruit and plays a protective role in fruit development and postharvest storage, including reducing fruit water loss, resisting biotic and abiotic stress and affecting fruit glossiness. The ß-ketoacyl-CoA synthase (KCS) is the rate-limiting enzyme of very long chain fatty acids (VLCFAs) synthesis, which provides precursors for the synthesis of cuticular wax. In this study, a total of 96 KCS genes were identified in six Citrinae species, including 13, 16, 21, 14, 16 and 16 KCS genes in the primitive species (Atalantia buxifolia), the wild species (Citrus ichangensis), and four cultivated species (Citrus medica, Citrus grandis, Citrus sinensis and Citrus clementina), respectively. Compared with primitive species, wild and cultivated species showed expansion of KCS gene family. Evolutionary analysis of KCS gene family indicated that uneven gain and loss of genes resulted in variable numbers of KCS genes in Citrinae, and KCS genes have undergone purifying selection. Expression profiles in C. sinensis revealed that the KCS genes had diverse expression patterns among various tissues. Furthermore, CsKCS2 and CsKCS11 were predominantly expressed in the flavedo and their expression increased sharply with ripening. Subcellular localization analysis indicated that CsKCS2 and CsKCS11 were located in the endoplasmic reticulum. Further, heterologous expression of CsKCS2 and CsKCS11 in Arabidopsis significantly increased the content of cuticular wax in leaves. Thus, CsKCS2 and CsKCS11 are involved in the accumulation of fruit cuticular wax at ripening. This work will facilitate further functional verification and understanding of the evolution of KCS genes in Citrinae.


Subject(s)
Fruit/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Citrus/genetics , Citrus/metabolism , Fruit/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Leaves/genetics , Plant Proteins/genetics , Waxes/metabolism
6.
Plant Physiol ; 186(3): 1606-1615, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33779764

ABSTRACT

Physical dormancy in seeds exists widely in seed plants and plays a vital role in maintaining natural seed banks. The outermost cuticle of the seed coat forms a water-impermeable layer, which is critical for establishing seed physical dormancy. We previously set up the legume plant Medicago truncatula as an excellent model for studying seed physical dormancy, and our studies revealed that a class II KNOTTED-like homeobox, KNOX4, is a transcription factor critical for controlling hardseededness. Here we report the function of a seed coat ß-ketoacyl-CoA synthase, KCS12. The expression level of KCS12 is significantly downregulated in the knox4 mutant. The KCS12 gene is predominantly expressed in the seed coat, and seed development in the M. truncatula kcs12 mutant is altered. Further investigation demonstrated that kcs12 mutant seeds lost physical dormancy and were able to absorb water without scarification treatment. Chemical analysis revealed that concentrations of C24:0 lipid polyester monomers are significantly decreased in mutant seeds, indicating that KCS12 is an enzyme that controls the production of very long chain lipid species in the seed coat. A chromatin immunoprecipitation assay demonstrated that the expression of KCS12 in the seed coat is directly regulated by the KNOX4 transcription factor. These findings define a molecular mechanism by which KNOX4 and KCS12 control formation of the seed coat and seed physical dormancy.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Germination/genetics , Medicago truncatula/growth & development , Medicago truncatula/genetics , Medicago truncatula/metabolism , Plant Dormancy/genetics , Seeds/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Gene Expression Regulation, Plant , Genes, Homeobox , Genes, Plant , Genetic Variation , Genotype , Germination/physiology , Plant Dormancy/physiology , Seeds/growth & development , Seeds/metabolism
7.
Plant Mol Biol ; 105(1-2): 193-204, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33037987

ABSTRACT

KEY MESSAGE: A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives. Defects in cuticular wax often result in organ fusion, but little is known about the role of cuticular wax in compound leaf and flower development in Medicago truncatula. In this study, through an extensive screen of a Tnt1 retrotransposon insertion population in M. truncatula, we identified four mutant lines, named wrinkled flower and leaf (wfl) for their phenotype. The phenotype of the wfl mutants is caused by a Tnt1 insertion in Medtr3g105550, encoding 3-ketoacyl-CoA synthase (KCS), which functions as a rate-limiting enzyme in very long chain fatty acid elongation. Reverse transcription-quantitative PCR showed that WFL was broadly expressed in aerial organs of the wild type, such as leaves, floral organs, and the shoot apical meristem, but was expressed at lower levels in roots. In situ hybridization showed a similar expression pattern, mainly detecting the WFL transcript in epidermal cells of the shoot apical meristem, leaf primordia, and floral organs. The wfl mutant leaves showed sparser epicuticular wax crystals on the surface and increased water permeability compared with wild type. Further analysis showed that in wfl leaves, the percentage of C20:0, C22:0, and C24:0 fatty acids was significantly increased, the amount of cuticular wax was markedly reduced, and wax constituents were altered compared to the wild type. The reduced formation of cuticular wax and wax composition changes on the leaf surface might lead to the developmental defects observed in the wfl mutants. These findings suggest that WFL plays a key role in cuticular wax formation and in the late stage of leaf and flower development in M. truncatula.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Medicago truncatula/metabolism , Plant Development/physiology , Plant Proteins/metabolism , Waxes/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Fatty Acids/metabolism , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Medicago truncatula/genetics , Meristem/metabolism , Molecular Conformation , Mutation , Phenotype , Plant Development/genetics , Plant Leaves/cytology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Shoots/cytology , Plant Shoots/growth & development , Plant Shoots/metabolism , Transcriptome
8.
Nat Commun ; 11(1): 5598, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154364

ABSTRACT

Pimelic acid, a seven carbon α,ω-dicarboxylic acid (heptanedioic acid), is known to provide seven of the ten biotin carbon atoms including all those of the valeryl side chain. Distinct pimelate synthesis pathways were recently elucidated in Escherichia coli and Bacillus subtilis where fatty acid synthesis plus dedicated biotin enzymes produce the pimelate moiety. In contrast, the α-proteobacteria which include important plant and mammalian pathogens plus plant symbionts, lack all of the known pimelate synthesis genes and instead encode bioZ genes. Here we report a pathway in which BioZ proteins catalyze a 3-ketoacyl-acyl carrier protein (ACP) synthase III-like reaction to produce pimeloyl-ACP with five of the seven pimelate carbon atoms being derived from glutaryl-CoA, an intermediate in lysine degradation. Agrobacterium tumefaciens strains either deleted for bioZ or which encode a BioZ active site mutant are biotin auxotrophs, as are strains defective in CaiB which catalyzes glutaryl-CoA synthesis from glutarate and succinyl-CoA.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Alphaproteobacteria/metabolism , Biotin/metabolism , Lysine/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Acyl Carrier Protein/metabolism , Acyl Coenzyme A/metabolism , Adipates/metabolism , Alphaproteobacteria/enzymology , Alphaproteobacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Coenzyme A-Transferases/genetics , Coenzyme A-Transferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial , Glutarates/metabolism , Mutation , Pimelic Acids/metabolism
9.
Gene Expr Patterns ; 38: 119146, 2020 12.
Article in English | MEDLINE | ID: mdl-32947048

ABSTRACT

Intra- and epicuticular-waxes primarily comprising of very long chain aliphatic lipid (VLCFA), terpenoids and secondary metabolites such as sterol and flavonoids played a major role in successful colonization of terrestrial ecosystem by aquatic plants and are thus considered as a key evolutionary innovation. The key rate limiting step of Fatty Acid (FA) biosynthesis of condensation/elongation are catalyzed by the enzyme, ß-ketoacyl coenzyme A synthase (KCS), part of FAE (Fatty Acid Elongase) complex. KCS6 has been shown to be responsible for elongation using C22 fatty acid as substrate and is considered essential for synthesis of VLCFA for cuticular waxes. Earlier studies have established KCS5 as a close paralog of KCS6 in Arabidopsis thaliana, albeit with non-redundant function. We subsequently established segmental duplication responsible for origin of KCS6-KCS5 paralogy which is exclusive to Brassicaceae. In the present study, we aim to understand impact of duplication on regulatory diversification and evolution, through sequence and functional analysis of cis-regulatory element of KCS5 and KCS6. High level of sequence variation leading to conservation of only the proximal end of the promoter corresponding to the core promoter was observed among Brassicaceae members; such high diversity was also revealed when sliding window analysis revealed only two to three phylogenetic footprints. Profiling of transcription factor binding sites (TFBS) across Brassicaceae shows presence of light, hormone and stress responsive motifs; a few motifs involved in tissue specific expression (Skn-1; endosperm) were also detected. Functional characterization using transcriptional fusion constructs revealed regulatory diversification when promoter activity of homologs from A. thaliana and Brassica juncea were compared. When subjected to 5-Azacytidine, altered promoter activity was observed, implying role of DNA methylation in transcriptional regulation. Finally, investigation of the role of an 87 bp fragment from first intron that is retained in a splice variant, revealed it to be a transcriptional repressor. This is a first report on comparative sequence and functional analysis of transcriptional regulation of KCS5 and KCS6; further studies are required before manipulation of cuticular waxes as a strategy for mitigating stress.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Brassica/genetics , Phylogeny , Plant Proteins/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Brassica/classification , Brassica/metabolism , Evolution, Molecular , Gene Expression Regulation, Plant , Introns , Plant Components, Aerial/genetics , Plant Components, Aerial/metabolism , Plant Proteins/metabolism , Polymorphism, Genetic , Promoter Regions, Genetic , Sequence Homology
10.
Plant Mol Biol ; 104(3): 283-296, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32740897

ABSTRACT

KEY MESSAGE: Differences in FAE1 enzyme affinity for the acyl-CoA substrates, as well as the balance between the different pathways involved in their incorporation to triacylglycerol might be determinant of the different composition of the seed oil in Brassicaceae. Brassicaceae present a great heterogeneity of seed oil and fatty acid composition, accumulating Very Long Chain Fatty Acids with industrial applications. However, the molecular determinants of these differences remain elusive. We have studied the ß-ketoacyl-CoA synthase from the high erucic feedstock Thlaspi arvense (Pennycress). Functional characterization of the Pennycress FAE1 enzyme was performed in two Arabidopsis backgrounds; Col-0, with less than 2.5% of erucic acid in its seed oil and the fae1-1 mutant, deficient in FAE1 activity, that did not accumulate erucic acid. Seed-specific expression of the Pennycress FAE1 gene in Col-0 resulted in a 3 to fourfold increase of erucic acid content in the seed oil. This increase was concomitant with a decrease of eicosenoic acid levels without changes in oleic ones. Interestingly, only small changes in eicosenoic and erucic acid levels occurred when the Pennycress FAE1 gene was expressed in the fae1-1 mutant, with high levels of oleic acid available for elongation, suggesting that the Pennycress FAE1 enzyme showed higher affinity for eicosenoic acid substrates, than for oleic ones in Arabidopsis. Erucic acid was incorporated to triacylglycerol in the transgenic lines without significant changes in their levels in the diacylglycerol fraction, suggesting that erucic acid was preferentially incorporated to triacylglycerol via DGAT1. Expression analysis of FAE1, AtDGAT1, AtLPCAT1 and AtPDAT1 genes in the transgenic lines further supported this conclusion. Differences in FAE1 affinity for the oleic and eicosenoic substrates among Brassicaceae, as well as their incorporation to triacylglycerol might explain the differences in composition of their seed oil.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Biofuels , Biosynthetic Pathways , Brassicaceae/metabolism , Thlaspi/enzymology , Thlaspi/metabolism , Triglycerides/biosynthesis , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Acyltransferases/metabolism , Amino Acid Sequence , Arabidopsis Proteins/metabolism , Biosynthetic Pathways/genetics , Diacylglycerol O-Acyltransferase/metabolism , Erucic Acids/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Phenotype , Plant Oils/metabolism , Plants, Genetically Modified , Seeds/genetics , Sequence Analysis , Thlaspi/genetics , Transcriptome
11.
Plant Physiol Biochem ; 151: 299-312, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32251955

ABSTRACT

Apple fruit is covered by cuticle wax, which plays important roles protecting fruits from adverse environmental conditions. ß-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. In this study, we identified 28 KCS gene family members from apple (Malus × domestica Borkh.) by homology analysis. Multi-sequence alignment and phylogenetic analyses revealed that the 28 MdKCS genes were divided into four subgroups, including KCS1-like, FAE1-like, FDH-like, and CER6. A chromosomal localization analysis revealed that 27 apple KCS genes were located on 11 chromosomes, while MdKCS28 was localized to the unassembled genomic scaffold. Most of the MdKCS proteins were hydrophilic proteins and they had similar secondary and tertiary structures. The prediction of cis-acting elements of the MdKCS gene promoters suggested that the MdKCS genes may be widely involved in hormone signaling and the stress response. Furthermore, the quantitative real-time polymerase chain reaction results showed that eight MdKCS genes were highly expressed in the apple pericarp, and were significantly induced by drought, abscisic acid (ABA), and NaCl treatments. We transformed the MdKCS21 gene into apple calli, and found the MdKCS21 overexpressing transgenic apple calli exhibited higher tolerance to ABA treatment. Finally, the MdKCS proteins were localized to the endoplasmic reticulum and vacuolar membrane by confocal laser microscopy. This study established a foundation to further analyze the function of KCS genes and provided candidate genes for molecular improvement of wax content in apple.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Genome, Plant , Malus , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Gene Expression Regulation, Plant , Genome-Wide Association Study , Malus/classification , Malus/enzymology , Malus/genetics , Phylogeny , Plant Proteins/genetics
12.
Proc Natl Acad Sci U S A ; 117(14): 8044-8054, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32193348

ABSTRACT

Hfq (host factor for phage Q beta) is key for posttranscriptional gene regulation in many bacteria. Hfq's function is to stabilize sRNAs and to facilitate base-pairing with trans-encoded target mRNAs. Loss of Hfq typically results in pleiotropic phenotypes, and, in the major human pathogen Vibrio cholerae, Hfq inactivation has been linked to reduced virulence, failure to produce biofilms, and impaired intercellular communication. However, the RNA ligands of Hfq in V. cholerae are currently unknown. Here, we used RIP-seq (RNA immunoprecipitation followed by high-throughput sequencing) analysis to identify Hfq-bound RNAs in V. cholerae Our work revealed 603 coding and 85 noncoding transcripts associated with Hfq, including 44 sRNAs originating from the 3' end of mRNAs. Detailed investigation of one of these latter transcripts, named FarS (fatty acid regulated sRNA), showed that this sRNA is produced by RNase E-mediated maturation of the fabB 3'UTR, and, together with Hfq, inhibits the expression of two paralogous fadE mRNAs. The fabB and fadE genes are antagonistically regulated by the major fatty acid transcription factor, FadR, and we show that, together, FadR, FarS, and FadE constitute a mixed feed-forward loop regulating the transition between fatty acid biosynthesis and degradation in V. cholerae Our results provide the molecular basis for studies on Hfq in V. cholerae and highlight the importance of a previously unrecognized sRNA for fatty acid metabolism in this major human pathogen.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial , RNA, Small Untranslated/metabolism , Vibrio cholerae/genetics , 3' Untranslated Regions/genetics , Acyl-CoA Dehydrogenase/metabolism , Bacterial Proteins/metabolism , Host Factor 1 Protein/metabolism , RNA Interference , RNA, Bacterial/isolation & purification , Repressor Proteins/metabolism , Vibrio cholerae/metabolism
13.
Nat Commun ; 11(1): 1496, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198415

ABSTRACT

The ability to grow at moderate acidic conditions (pH 4.0-5.0) is important to Escherichia coli colonization of the host's intestine. Several regulatory systems are known to control acid resistance in E. coli, enabling the bacteria to survive under acidic conditions without growth. Here, we characterize an acid-tolerance response (ATR) system and its regulatory circuit, required for E. coli exponential growth at pH 4.2. A two-component system CpxRA directly senses acidification through protonation of CpxA periplasmic histidine residues, and upregulates the fabA and fabB genes, leading to increased production of unsaturated fatty acids. Changes in lipid composition decrease membrane fluidity, F0F1-ATPase activity, and improve intracellular pH homeostasis. The ATR system is important for E. coli survival in the mouse intestine and for production of higher level of 3-hydroxypropionate during fermentation. Furthermore, this ATR system appears to be conserved in other Gram-negative bacteria.


Subject(s)
Drug Tolerance/physiology , Escherichia coli/growth & development , Escherichia coli/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Animals , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fatty Acid Synthase, Type II/genetics , Fatty Acid Synthase, Type II/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Fermentation , Gene Expression Regulation, Bacterial , Homeostasis , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Hydrogen-Ion Concentration , Intestines/microbiology , Lactic Acid/analogs & derivatives , Lactic Acid/metabolism , Membrane Fluidity , Membrane Lipids , Mice , Mice, Inbred BALB C , Protein Kinases/metabolism , Transcription, Genetic
14.
J Biotechnol ; 307: 69-76, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31689468

ABSTRACT

Branched chain fatty acids (BCFA) are an appealing biorefinery-driven target of fatty acid (FA) production. BCFAs typically have lower melting points compared to straight chain FAs, making them useful in lubricants and biofuels. Actinobacteria, especially Streptomyces species, have unique secondary metabolism that are capable of producing not only antibiotics, but also high percentage of BCFAs in their membrane lipids. Since biosynthesis of polyketide (PK) and FA partially share common pathways to generate acyl-CoA precursors, in theory, Streptomyces sp. with high levels of PK antibiotics production can be easily manipulated into strains producing high levels of BCFAs. To increase the percentage of the BCFA moieties in lipids, we redirected acyl-CoA precursor fluxes from PK into BCFAs using S. coelicolor M1146 (M1146) as a host strain. In addition, 3-ketoacyl acyl carrier protein synthase III and branched chain α-keto acid dehydrogenase were overexpressed to push fluxes of branched chain acyl-CoA precursors towards FA synthesis. The maximum titer of 354.1 mg/L BCFAs, 90.3% of the total FA moieties, was achieved using M1146dD-B, fadD deletion and bkdABC overexpression mutant of M1146 strain. Cell specific yield of 64.4 mg/L/gcell was also achieved. The production titer and specific yield are the highest ever reported in bacterial cells, which provides useful insights to develop an efficient host strain for BCFAs.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Fatty Acids/metabolism , Streptomyces coelicolor/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Acyl Coenzyme A/metabolism , Anti-Bacterial Agents/metabolism , Biofuels , Fatty Acids/analysis , Gene Expression , Leucine/metabolism , Mutation , Polyketides/metabolism , Secondary Metabolism , Streptomyces coelicolor/genetics
15.
Microb Cell Fact ; 18(1): 163, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31581944

ABSTRACT

BACKGROUND: Sustainable production of microbial fatty acids derivatives has the potential to replace petroleum based equivalents in the chemical, cosmetic and pharmaceutical industry. Most fatty acid sources for production oleochemicals are currently plant derived. However, utilization of these crops are associated with land use change and food competition. Microbial oils could be an alternative source of fatty acids, which circumvents the issue with agricultural competition. RESULTS: In this study, we generated a chimeric microbial production system that features aspects of both prokaryotic and eukaryotic fatty acid biosynthetic pathways targeted towards the generation of long chain fatty acids. We redirected the type-II fatty acid biosynthetic pathway of Escherichia coli BL21 (DE3) strain by incorporating two homologues of the beta-ketoacyl-[acyl carrier protein] synthase I and II from the chloroplastic fatty acid biosynthetic pathway of Arabidopsis thaliana. The microbial clones harboring the heterologous pathway yielded 292 mg/g and 220 mg/g DCW for KAS I and KAS II harboring plasmids respectively. Surprisingly, beta-ketoacyl synthases KASI/II isolated from A. thaliana showed compatibility with the FAB pathway in E. coli. CONCLUSION: The efficiency of the heterologous plant enzymes supersedes the overexpression of the native enzyme in the E. coli production system, which leads to cell death in fabF overexpression and fabB deletion mutants. The utilization of our plasmid based system would allow generation of plant like fatty acids in E. coli and their subsequent chemical or enzymatic conversion to high end oleochemical products.


Subject(s)
Arabidopsis/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fatty Acid Synthases/metabolism , Fatty Acids/biosynthesis , Metabolic Engineering , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemical synthesis , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/chemical synthesis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biosynthetic Pathways , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Fatty Acid Synthases/genetics , Fatty Acids/chemistry , Isoenzymes/chemical synthesis , Isoenzymes/genetics , Isoenzymes/metabolism , Plasmids/genetics , Plasmids/metabolism
16.
Gene ; 720: 144082, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31476406

ABSTRACT

The enzyme ß-Ketoacyl ACP synthase I (KasA) is a potent drug target in mycolic acid pathway of Mycobacterium tuberculosis (Mtb). In the present study, we investigated the structural dynamics of wild-type (WT) and mutants KasA (D66N, G269S, G312S, and F413L) in both monomer and dimer form to provide insight into protein structural stability. To gain better understanding of structural flexibility of KasA, combined molecular dynamics and essential dynamics were employed to analyze the conformational changes induced by non-active site mutations. The results confirm that non-active site mutations lower the structural stability in dimer KasA as compared to WT. The protein network topology and close residue interactions of WT and mutant residues of KasA have been predicted through residue interaction network analysis (RIN). Non-active site mutations distort RIN architecture and subsequently affect the drug binding landscape. T-pad associated with mode vector analysis comprehensively pronounces the structural impact caused by non-active site mutations. It also identified the critical fluctuating residues present in the gate segment (GS) region (115-147). The non-active site mutations altered the structural stability of the mutant protein structures, and these mutations may be a cause for the resistance mechanism of KasA against anti-tuberculosis drugs. Further, it is observed that dimer mutant KasA proteins display much more structural flexibility than WT at the ligand binding site which is evident from the binding site analysis and hydrogen bond interaction patterns. This study provides a better understanding of the structural dynamic behaviour of KasA mutants, thereby facilitating the need to find a novel and potent inhibitor against Mtb.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , Bacterial Proteins/chemistry , Isoenzymes/chemistry , Mutant Proteins/chemistry , Mutation , Mycobacterium tuberculosis/enzymology , Tuberculosis/microbiology , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Bacterial Proteins/genetics , Isoenzymes/genetics , Molecular Dynamics Simulation , Mutant Proteins/genetics , Protein Conformation , Tuberculosis/genetics , Tuberculosis/metabolism
17.
PLoS Biol ; 17(7): e3000347, 2019 07.
Article in English | MEDLINE | ID: mdl-31318855

ABSTRACT

Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians' diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli. This approach has been successful for type I modular polyketide synthases (PKSs); however, despite more than 3 decades of research, the large and important group of type II PKSs has until now been elusive in E. coli. Here, we report on a versatile polyketide biosynthesis pipeline, based on identification of E. coli-compatible type II PKSs. We successfully express 5 ketosynthase (KS) and chain length factor (CLF) pairs-e.g., from Photorhabdus luminescens TT01, Streptomyces resistomycificus, Streptoccocus sp. GMD2S, Pseudoalteromonas luteoviolacea, and Ktedonobacter racemifer-as soluble heterodimeric recombinant proteins in E. coli for the first time. We define the anthraquinone minimal PKS components and utilise this biosynthetic system to synthesise anthraquinones, dianthrones, and benzoisochromanequinones (BIQs). Furthermore, we demonstrate the tolerance and promiscuity of the anthraquinone heterologous biosynthetic pathway in E. coli to act as genetically applicable plug-and-play scaffold, showing it to function successfully when combined with enzymes from phylogenetically distant species, endophytic fungi and plants, which resulted in 2 new-to-nature compounds, neomedicamycin and neochaetomycin. This work enables plug-and-play combinatorial biosynthesis of aromatic polyketides using bacterial type II PKSs in E. coli, providing full access to its many advantages in terms of easy and fast genetic manipulation, accessibility for high-throughput robotics, and convenient biotechnological scale-up. Using the synthetic and systems biology toolbox, this plug-and-play biosynthetic platform can serve as an engine for the production of new and diversified bioactive polyketides in an automated, rapid, and versatile fashion.


Subject(s)
Anthraquinones/metabolism , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Polyketide Synthases/metabolism , Polyketides/metabolism , Recombinant Proteins/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/classification , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Anthraquinones/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biosynthetic Pathways , Escherichia coli/genetics , Models, Chemical , Molecular Structure , Phylogeny , Polycyclic Aromatic Hydrocarbons/chemistry , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketides/chemistry , Recombinant Proteins/chemistry
18.
J Bacteriol ; 201(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31331975

ABSTRACT

Type II fatty acid biosynthesis in bacteria can be broadly classified into the initiation and elongation phases. The biochemical functions defining each step in the two phases have been studied in vitro Among the ß-ketoacyl-acyl carrier protein (ACP) synthases, FabH catalyzes the initiation reaction, while FabB and FabF, which primarily catalyze the elongation reaction, can also drive initiation as side reactions. A role for FabB and FabF in the initiation of fatty acid biosynthesis would be supported by the viability of the ΔfabH mutant. In this study, we show that the ΔfabH and ΔyiiD mutations were synthetically lethal and that ΔfabH ΔrelA ΔspoT and ΔfabH ΔdksA synthetic lethality was rescued by the heterologous expression of yiiD In the ΔfabH mutant, the expression of yiiD was positively regulated by (p)ppGpp. The growth defect, reduced cell size, and altered fatty acid profile of the ΔfabH mutant and the growth defect of the ΔfabH ΔfabF fabB15(Ts) mutant in oleate- and palmitate-supplemented medium at 42°C were rescued by the expression of yiiD from a multicopy plasmid. Together, these results indicate that the yiiD-encoded function supported initiation of fatty acid biosynthesis in the absence of FabH. We have renamed yiiD as fabYIMPORTANCE Fatty acid biosynthesis is an essential process conserved across life forms. ß-Ketoacyl-ACP synthases are essential for fatty acid biosynthesis. FabH is a ß-ketoacyl-ACP synthase that contributes to the initiation of fatty acid biosynthesis in Escherichia coli In this study, we present genetic and biochemical evidence that the yiiD (renamed fabY)-encoded function contributes to the biosynthesis of fatty acid in the absence of FabH activity and that under these conditions, the expression of FabY was regulated by the stringent response factors (p)ppGpp and DksA. Combined inactivation of FabH and FabY resulted in growth arrest, possibly due to the loss of fatty acid biosynthesis. A molecule(s) that inhibits the two activities can be an effective microbicide.


Subject(s)
Acetyltransferases/genetics , Escherichia coli Proteins/genetics , Escherichia coli/growth & development , Fatty Acids/biosynthesis , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Fatty Acid Synthase, Type II/genetics , GTP Pyrophosphokinase/genetics , Gene Expression Regulation, Bacterial , Guanosine Pentaphosphate/metabolism , Mutation , Synthetic Lethal Mutations
19.
Mar Drugs ; 17(5)2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31035409

ABSTRACT

Short chain fatty acids (SCFAs) are valued as a functional material in cosmetics. Cyanobacteria can accumulate SCFAs under some conditions, the related mechanism is unclear. Two potential genes Synpcc7942_0537 (fabB/F) and Synpcc7942_1455 (fabH) in Synechococcus sp. PCC 7942 have homology with fabB/F and fabH encoding ß-ketoacyl ACP synthases (I/II/III) in plants. Therefore, effects of culture time and cerulenin on SCFAs accumulation, expression levels and functions of these two potential genes were studied. The results showed Synechococcus sp. PCC 7942 accumulated high SCFAs (C12 + C14) in early growth stage (day 4) and at 7.5g/L cerulenin concentration, reaching to 2.44% and 2.84% of the total fatty acids respectively, where fabB/F expression was down-regulated. Fatty acid composition analysis showed C14 increased by 65.19% and 130% respectively, when fabB/F and fabH were antisense expressed. C14 increased by 10.79% (fab(B/F)-) and 6.47% (fabH-) under mutation conditions, while C8 increased by six times in fab(B/F)- mutant strain. These results suggested fabB/F is involved in fatty acid elongation (C <18) and the elongation of cis-16:1 to cis-18:1 fatty acid in Synechococcus sp. PCC 7942, while fabH was involved in elongation of fatty acid synthesis, which were further confirmed in complementary experiments of E. coli. The research could provide the scientific basis for the breeding of SCFA-rich microalgae species.


Subject(s)
Fatty Acids, Volatile/biosynthesis , Microalgae/metabolism , Synechococcus/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cosmetics/chemistry , Metabolic Networks and Pathways/genetics , Microalgae/genetics , Sequence Homology, Amino Acid , Synechococcus/genetics
20.
Biochem Biophys Res Commun ; 512(1): 106-111, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30871779

ABSTRACT

LA (alpha-Lipoic acid) deficiency represents a risk factor in the pathogenesis of diabetic complications as synthetic LA is routinely used in the treatment of the complications in patients. The mechanism underlying LA deficiency remains elusive in the diabetic conditions. In the present study, we investigated the synthetic pathway of LA in both type 1 and 2 diabetic mice. LA deficiency was observed with a reduction in lipoylation of pyruvate dehydrogenase in the kidney of streptozocin-induced diabetic mice. Proteins of three enzymes (MCAT, OXSM and LIAS) in the LA synthetic pathway were examined in the kidney. A reduction was observed in OXSM, but not in the other two. In a 24h study in the cell culture, mRNA and protein of OXSM were transiently reduced by a high concentration of glucose (35 mM), and persistently decreased by TNF-α (20 nM). The high glucose effect was observed with the OXSM reduction in the kidney of db/db mice (type 2 diabetes model). The TNF-α effect was observed with OXSM reduction in the fat tissue of diet-induced obese mice. The result suggest that inhibition of OXSM by hyperglycemia and inflammation may contribute to the LA deficiency in the diabetic complications. The OXSM reduction suggests a new mechanism for the mitochondrial dysfunction in the pathogenesis of diabetic complications.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Diabetes Mellitus, Experimental/metabolism , Thioctic Acid/deficiency , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3T3-L1 Cells , Animals , Biosynthetic Pathways , Diabetes Mellitus, Experimental/genetics , Glucose/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Kidney/metabolism , Lipoylation , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Pyruvate Dehydrogenase Complex/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thioctic Acid/biosynthesis , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...