Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
EMBO J ; 39(20): e105693, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32954517

ABSTRACT

To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the "high-performance secretome protein enrichment with click sugars" (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS-induced neuroinflammation and to establish the cell type-resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer-linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type-specific biomarkers for CNS diseases.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Astrocytes/metabolism , Brain/metabolism , Microglia/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Proteomics/methods , Software , ADAM Proteins/cerebrospinal fluid , ADAM Proteins/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/cerebrospinal fluid , Animals , Antigens, CD/cerebrospinal fluid , Antigens, CD/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/cerebrospinal fluid , Brain/cytology , Cells, Cultured , Cerebrospinal Fluid Proteins , Chromatography, Liquid , Gene Ontology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/cerebrospinal fluid , Nerve Tissue Proteins/metabolism , Principal Component Analysis , Proteome/metabolism , Tandem Mass Spectrometry
2.
Fluids Barriers CNS ; 14(1): 22, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28806983

ABSTRACT

BACKGROUND: Neoplastic invasion into leptomeninges and subarachnoid space, resulting in neoplastic meningitis (NM) is a fatal complication of advanced solid and hematological neoplasms. Identification of malignant involvement of the cerebrospinal fluid (CSF) early in the disease course has crucial prognostic and therapeutic implications, but remains challenging. As indicators of extracellular matrix (ECM) degradation and breakdown of the blood-brain-barrier, Matrix Metalloproteases (MMPs) and A Disintegrin and Metalloproteases (ADAMs) are potential analytes for cerebral pathophysiology and metastatic dissemination of tumor cells into the CSF. METHODS: We compared protease activities in CSF samples from patients with NM and control individuals using FRET-based metalloprotease substrates with distinct enzyme selectivity profiles in a real-time, multiplex approach termed "proteolytic activity matrix assay" (PrAMA). Protease activity dynamics can be tracked by fluorescence changes over time. By simultaneously monitoring a panel of 5 FRET-substrate cleavages, a proteolytic signature can be identified and analyzed to infer the activities of multiple specific proteases. Distinct patterns of substrate cleavage comparing disease vs. control samples allow rapid, reproducible and sensitive discrimination even in small volumes of CSF. RESULTS: Individual substrate cleavage rates were linked to distinct proteases, and PrAMA computational inference implied increased activities of MMP-9, ADAM8 and ADAM17 (4-5-fold on average) in CSF samples from NM patients that were inhibitable by the metalloprotease inhibitor batimastat (BB-94). The activities of these proteases correlated with blood-brain barrier impairment. Notably, CSF cell counts were not found to directly reflect the protease activities observed in CSF samples from NM patients; this may explain the frequent clinical observation of negative cytology in NM patients. CONCLUSION: PrAMA analysis of CSF samples is a potential diagnostic method for sensitive detection of NM and may be suitable for the clinical routine.


Subject(s)
Brain Neoplasms/cerebrospinal fluid , Meningeal Carcinomatosis/cerebrospinal fluid , Metalloproteases/cerebrospinal fluid , ADAM Proteins/cerebrospinal fluid , Adult , Aged , Analysis of Variance , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Brain Neoplasms/pathology , Cohort Studies , Female , Humans , Male , Membrane Proteins/cerebrospinal fluid , Meningeal Carcinomatosis/pathology , Middle Aged , Pilot Projects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL