Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Neurol (Paris) ; 180(1-2): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-37460331

ABSTRACT

BACKGROUND: Studies have shown that A Disintegrin and Metalloproteinase 10 (ADAM10) is the main α-secretase in the non-amyloidogenic cleavage of the amyloid precursor protein (APP), avoiding the production of amyloid-ß peptide (Aß), one of the pathological hallmarks of Alzheimer's disease (AD). OBJECTIVE: To investigate ADAM10 from cerebrospinal fluid (CSF) and plasma/serum as a potential biomarker for AD. METHODS: A systematic review was carried out in the MEDLINE/PubMed, Web of Science, Embase, and Scopus databases using the terms and Boolean operators: "Alzheimer" AND "ADAM10" AND "biomarker". Citation searching was also adopted. The inclusion criteria were original studies of ADAM10 in blood or CSF in patients with AD. The risk of bias was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. The analysis methods were registered in the PROSPERO database (#CRD42021274239). RESULTS: Of the 97 records screened, 17 were included. There is strong evidence for lower levels of ADAM10 in platelets of persons with AD compared to cognitively healthy participants. On the other hand, higher levels of ADAM10 were found in plasma. Regarding CSF, controversial results were found with lower and higher levels of ADAM10 in persons with AD compared to healthy older adults. The differences may be due to diverse reasons, including different sample collection and processing and different antibodies, highlighting the importance of standardizing the experiments and choosing the appropriate antibodies for ADAM10 detection. CONCLUSION: Evidence shows that ADAM10 levels are altered in platelets, plasma, serum, and CSF of individuals with AD. The alteration was evident in all stages of the disease, and therefore, the protein may represent a complementary biomarker for the disease. However, more studies must be performed to establish cut-off values for ADAM10 levels to discriminate AD participants from cognitively unimpaired older adults.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnosis , Cross-Sectional Studies , ADAM10 Protein/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers , Amyloid Precursor Protein Secretases/metabolism , Membrane Proteins/cerebrospinal fluid
2.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670873

ABSTRACT

ADAM10 is the main α-secretase that participates in the non-amyloidogenic cleavage of amyloid precursor protein (APP) in neurons, inhibiting the production of ß-amyloid peptide (Aß) in Alzheimer's disease (AD). Strong recent evidence indicates the importance of the localization of ADAM10 for its activity as a protease. In this study, we investigated ADAM10 activity in plasma and CSF samples of patients with amnestic mild cognitive impairment (aMCI) and mild AD compared with cognitively healthy controls. Our results indicated that plasma levels of soluble ADAM10 were significantly increased in the mild AD group, and that in these samples the protease was inactive, as determined by activity assays. The same results were observed in CSF samples, indicating that the increased plasma ADAM10 levels reflect the levels found in the central nervous system. In SH-SY5Y neuroblastoma cells, ADAM10 achieves its major protease activity in the fraction obtained from plasma membrane lysis, where the mature form of the enzyme is detected, confirming the importance of ADAM10 localization for its activity. Taken together, our results demonstrate the potential of plasma ADAM10 to act as a biomarker for AD, highlighting its advantages as a less invasive, easier, faster, and lower-cost processing procedure, compared to existing biomarkers.


Subject(s)
ADAM10 Protein/blood , Alzheimer Disease/blood , Amyloid Precursor Protein Secretases/blood , Cognitive Dysfunction/blood , Membrane Proteins/blood , ADAM10 Protein/cerebrospinal fluid , ADAM10 Protein/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cell Line, Tumor , Cognitive Dysfunction/cerebrospinal fluid , Female , Humans , Male , Membrane Proteins/cerebrospinal fluid , Membrane Proteins/metabolism , Middle Aged , Plasma , Proteolysis
3.
J Cell Biochem ; 119(10): 8204-8219, 2018 11.
Article in English | MEDLINE | ID: mdl-29923217

ABSTRACT

Osteoblast differentiation is controlled by transcription factor RUNX2 which temporally activates or represses several bone-related genes, including those encoding extracellular matrix proteins or factors that control cell-cell, and cell-matrix interactions. Cell-cell communication in the many skeletal pericellular micro-niches is critical for bone development and involves paracrine secretion of growth factors and morphogens. This paracrine signaling is in part regulated by "A Disintegrin And Metalloproteinase" (ADAM) proteins. These cell membrane-associated metalloproteinases support proteolytic release ("shedding") of protein ectodomains residing at the cell surface. We analyzed microarray and RNA-sequencing data for Adam genes and show that Adam17, Adam10, and Adam9 are stimulated during BMP2 mediated induction of osteogenic differentiation and are robustly expressed in human osteoblastic cells. ADAM17, which was initially identified as a tumor necrosis factor alpha (TNFα) converting enzyme also called (TACE), regulates TNFα-signaling pathway, which inhibits osteoblast differentiation. We demonstrate that Adam17 expression is suppressed by RUNX2 during osteoblast differentiation through the proximal Adam17 promoter region (-0.4 kb) containing two functional RUNX2 binding motifs. Adam17 downregulation during osteoblast differentiation is paralleled by increased RUNX2 expression, cytoplasmic-nuclear translocation and enhanced binding to the Adam17 proximal promoter. Forced expression of Adam17 reduces Runx2 and Alpl expression, indicating that Adam17 may negatively modulate osteoblast differentiation. These findings suggest a novel regulatory mechanism involving a reciprocal Runx2-Adam17 negative feedback loop to regulate progression through osteoblast differentiation. Our results suggest that RUNX2 may control paracrine signaling through regulation of ectodomain shedding at the cell surface of osteoblasts by directly suppressing Adam17 expression.


Subject(s)
ADAM17 Protein/genetics , Bone Morphogenetic Protein 2/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Feedback, Physiological , Osteoblasts/metabolism , Osteogenesis/genetics , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Binding Sites , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Cell Line , Cell Line, Tumor , Core Binding Factor Alpha 1 Subunit/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Osteoblasts/cytology , Paracrine Communication/genetics , Promoter Regions, Genetic , Protein Binding , Rats , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
4.
J Cell Physiol ; 233(3): 2247-2256, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28703301

ABSTRACT

The xenoestrogens bisphenol-A (BPA) and nonylphenol (NP) are endocrine disruptors used in the plastic polymer industry to manufacture different products for human use. Previous studies have suggested a role of these compounds in the shedding of signaling molecules, such as tumor necrosis factor α (TNF-α). The aim of this work was to evaluate the effect of BPA and NP on the sheddase ADAM17 and its newly discovered regulators iRhom1 and iRhom2 in the release of EGFR-ligands. We report that BPA and NP can stimulate the release of the ADAM17-substrates HB-EGF and TGF-α. In cells lacking ADAM17 (Adam17-/- mEFs) BPA-stimulated release of HB-EGF, but not TGF-α, was strongly reduced, whereas NP-stimulated shedding of HB-EGF and TGF-α was completely abolished. Inactivation of both ADAM17 and the related ADAM10 (Adam10/17-/- mEFs) completely prevented the release of these substrates. In the absence of iRhom1, BPA- or NP-stimulated release of HB-EGF or TGF-α was comparable to wild-type control mEFs, conversely the BPA-induced release of HB-EGF was abolished in iRhom2-/- mEFs. The defect in shedding of HB-EGF in iRhom2-/- mEF cells could be rescued by overexpressing iRhom2. Interestingly, the NP-stimulated release of HB-EGF was not affected by the absence of iRhom2, suggesting that NP could potentially activate both ADAM10 and ADAM17. We tested this hypothesis using betacellulin (BTC), an EGFR-ligand that is a substrate for ADAM10. We found that NP, but not BPA stimulated the release of BTC in Adam17-/- , iRhom2-/- , or iRhom1/2-/- , but not in Adam10/17-/- cells. Taken together, our results suggest that BPA and NP stimulate the release of EGFR-ligands by differentially activating ADAM17 or ADAM10. The identification of specific effects of these endocrine disruptors on ADAM10 and ADAM17 will help to provide a better understanding of their roles in cell signaling and proinflammatory processes, and provide new potential targets for treatment of reproductive or inflammatory diseases such as asthma or breast cancer that are promoted by xenoestrogens.


Subject(s)
ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Benzhydryl Compounds/pharmacology , Endocrine Disruptors/pharmacology , ErbB Receptors/metabolism , Estrogens/pharmacology , Fibroblasts/drug effects , Membrane Proteins/metabolism , Phenols/pharmacology , ADAM10 Protein/genetics , ADAM17 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Dose-Response Relationship, Drug , Enzyme Activation , Fibroblasts/enzymology , Heparin-binding EGF-like Growth Factor/metabolism , Ligands , Membrane Proteins/genetics , Mice, Knockout , Transfection , Tumor Necrosis Factor-alpha/metabolism
5.
J Alzheimers Dis ; 61(1): 113-123, 2018.
Article in English | MEDLINE | ID: mdl-29036829

ABSTRACT

ADAM10 is the α-secretase that cleaves amyloid-ß protein precursor in the non-amyloidogenic pathway in Alzheimer's disease (AD) and is known to be regulated by different microRNAs (miRNAs), which are post-transcriptional regulators related to several biological and pathological processes, including AD. Here we proposed to explore and validate miRNAs that have direct or indirect relations to the AD pathophysiology and ADAM10 gene. Approximately 700 miRNAs were analyzed and 21 differentially expressed miRNAs were validated in a sample of 21 AD subjects and 17 cognitively healthy matched controls. SH-SY5Y cells were transfected with miR-144-5p, miR-221, and miR-374 mimics and inhibitors, and ADAM10 protein levels were evaluated. miR-144-5p, miR-221, and miR-374 were downregulated in AD. The overexpression of miR-221 in SH-SY5Y cells resulted in ADAM10 reduction and its inhibition in ADAM10 increased. These findings show that miR-221 can be a new potential therapeutic target for increasing ADAM10 levels in AD. In addition, these results can contribute to the better understanding of ADAM10 post-transcriptional regulation.


Subject(s)
ADAM10 Protein/genetics , Alzheimer Disease/genetics , Down-Regulation/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , ADAM10 Protein/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Cell Line, Tumor , Cohort Studies , Female , Humans , Male , MicroRNAs/genetics , Middle Aged , Neuroblastoma/pathology , Psychiatric Status Rating Scales , ROC Curve , Transfection
6.
Int Psychogeriatr ; 28(6): 939-44, 2016 06.
Article in English | MEDLINE | ID: mdl-26555131

ABSTRACT

BACKGROUND: Studies have demonstrated a decreased platelet ADAM10 expression in patients with Alzheimer's Disease (AD), classifying this protein as a blood-based AD biomarker. About 50% of the patients with AD are diagnosed with depression, which is commonly treated with tricyclic and tetracyclic antidepressants, monoaminoxidade (MAO) inhibitors and, more preferably, with selective serotonin reuptake inhibitors (SSRIs). Considering that a large proportion of patients with AD takes antidepressant medications during the course of the disease we investigated the influence of this medication on the expression of platelet ADAM10, which is considered the main α-secretase preventing beta-amyloid (ßA) formation. METHODS: Blood was collected for protein extraction from platelets. ADAM10 was analyzed by using western blotting and reactive bands were measured using ß-actin as endogenous control. RESULTS: Platelet ADAM10 protein expression in patients with AD was positively influenced by serotoninergic medication. CONCLUSION: More studies on the positive effects of serotonergic antidepressants on ADAM10 platelet expression should be performed in order to understand its biological mechanisms and to verify whether these effects are reflected in the central nervous system. This work represents an important advance for the study of AD biomarkers, as well as for more effective pharmacological treatment of patients with AD and associated depression.


Subject(s)
ADAM10 Protein/metabolism , Alzheimer Disease/drug therapy , Antidepressive Agents/therapeutic use , Blood Platelets/drug effects , Selective Serotonin Reuptake Inhibitors/therapeutic use , ADAM10 Protein/drug effects , Alzheimer Disease/blood , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/blood , Amyloid Precursor Protein Secretases/metabolism , Antidepressive Agents/adverse effects , Biomarkers/blood , Blood Platelets/metabolism , Brazil , Depressive Disorder/drug therapy , Female , Humans , Selective Serotonin Reuptake Inhibitors/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL