Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 370
Filter
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612387

ABSTRACT

Apobec-1 complementation factor (A1CF) functions as an RNA-binding cofactor for APO-BEC1-mediated C-to-U conversion during RNA editing and as a hepatocyte-specific regulator in the alternative pre-mRNA splicing of metabolic enzymes. Its role in RNA editing has not been clearly established. Western blot, co-immunoprecipitation (Co-IP), immunofluorescence (IF), methyl thiazolyl tetrazolium (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to examine the role of A1CF beyond RNA editing in renal carcinoma cells. We demonstrated that A1CF interacts with NKRF, independent of RNA and DNA, without affecting its expression or nuclear translocation; however, it modulates p65(Ser536) phosphorylation and IFN-ß levels. Truncation of A1CF or deletion on NKRF revealed that the RRM1 domain of A1CF and the p65 binding motif of NKRF are required for their interaction. Deletion of RRM1 on A1CF abrogates NKRF binding, and the decrease in IFN-ß expression and p65(Ser536) phosphorylation was induced by A1CF. Moreover, full-length A1CF, but not an RRM1 deletion mutant, promoted cell proliferation in renal carcinoma cells. Perturbation of A1CF levels in renal carcinoma cells altered anchorage-independent growth and tumor progression in nude mice. Moreover, p65(Ser536) phosphorylation and IFN-ß expression were lower, but ki67 was higher in A1CF-overexpressing tumor tissues of a xenograft mouse model. Notably, primary and metastatic samples from renal cancer patients exhibited high A1CF expression, low p65(Ser536) phosphorylation, and decreased IFN-ß levels in renal carcinoma tissues compared with the corresponding paracancerous tissues. Our results indicate that A1CF-decreased p65(Ser536) phosphorylation and IFN-ß levels may be caused by A1CF competitive binding to the p65-combined site on NKRF and demonstrate the direct binding of A1CF independent of RNA or DNA in signal pathway regulation and tumor promotion in renal carcinoma cells.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , APOBEC-1 Deaminase , Carcinoma, Renal Cell/genetics , Disease Models, Animal , DNA , Kidney Neoplasms/genetics , Mice, Nude , Phosphorylation , RNA , RNA-Binding Proteins , Interferon-beta
2.
Front Immunol ; 15: 1340273, 2024.
Article in English | MEDLINE | ID: mdl-38601149

ABSTRACT

The AID/APOBECs are a group of zinc-dependent cytidine deaminases that catalyse the deamination of bases in nucleic acids, resulting in a cytidine to uridine transition. Secreted novel AID/APOBEC-like deaminases (SNADs), characterized by the presence of a signal peptide are unique among all of intracellular classical AID/APOBECs, which are the central part of antibody diversity and antiviral defense. To date, there is no available knowledge on SNADs including protein characterization, biochemical characteristics and catalytic activity. We used various in silico approaches to define the phylogeny of SNADs, their common structural features, and their potential structural variations in fish species. Our analysis provides strong evidence of the universal presence of SNAD1 proteins/transcripts in fish, in which expression commences after hatching and is highest in anatomical organs linked to the immune system. Moreover, we searched published fish data and identified previously, "uncharacterized proteins" and transcripts as SNAD1 sequences. Our review into immunological research suggests SNAD1 role in immune response to infection or immunization, and interactions with the intestinal microbiota. We also noted SNAD1 association with temperature acclimation, environmental pollution and sex-based expression differences, with females showing higher level. To validate in silico predictions we performed expression studies of several SNAD1 gene variants in carp, which revealed distinct patterns of responses under different conditions. Dual sensitivity to environmental and pathogenic stress highlights its importance in the fish and potentially enhancing thermotolerance and immune defense. Revealing the biological roles of SNADs represents an exciting new area of research related to the role of DNA and/or RNA editing in fish biology.


Subject(s)
Cytidine Deaminase , Nucleic Acids , Animals , APOBEC-1 Deaminase/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA , Cytidine
3.
Proc Natl Acad Sci U S A ; 121(17): e2312330121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625936

ABSTRACT

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.


Subject(s)
Chromatin , Muscle Proteins , APOBEC Deaminases/genetics , APOBEC-1 Deaminase/genetics , Cell Differentiation/genetics , Chromatin/genetics , Cytidine Deaminase/metabolism , DNA , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Myoblasts/metabolism , RNA, Messenger/genetics , Animals , Mice
4.
Sci Rep ; 13(1): 22255, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097707

ABSTRACT

Cisplatin (CP) induces acute kidney injury (AKI) whereby proximal tubules undergo regulated necrosis. Repair is almost complete after a single dose. We now demonstrate a role for Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (Apobec-1) that is prominently expressed at the interface between acute and chronic kidney injury (CKD), in the recovery from AKI. Apobec-1 knockout (KO) mice exhibited greater mortality than in wild type (WT) and more severe AKI in both CP- and unilateral ischemia reperfusion (IR) with nephrectomy. Specifically, plasma creatinine (pCr) 2.6 ± 0.70 mg/dL for KO, n = 10 and 0.16 ± 0.02 for WT, n = 6, p < 0.0001 in CP model and 1.34 ± 0.22 mg/dL vs 0.75 ± 0.06, n = 5, p < 0.05 in IR model. The kidneys of Apobec-1 KO mice showed increased necrosis, increased expression of KIM-1, NGAL, RIPK1, ASCL4 and increased lipid accumulation compared to WT kidneys (p < 0.01). Neutrophils and activated T cells were both increased, while macrophages were reduced in kidneys of Apobec-1 KO animals. Overexpression of Apobec-1 in mouse proximal tubule cells protected against CP-induced cytotoxicity. These findings suggest that Apobec-1 mediates critical pro-survival responses to renal injury and increasing Apobec-1 expression could be an effective strategy to mitigate AKI.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Mice , Animals , APOBEC-1 Deaminase/metabolism , Cisplatin/adverse effects , Cisplatin/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Kidney/metabolism , Necrosis/metabolism , Mice, Knockout , Reperfusion Injury/metabolism , Mice, Inbred C57BL
5.
BMC Bioinformatics ; 24(1): 370, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784060

ABSTRACT

BACKGROUND: Fusion of RNA-binding proteins (RBPs) to RNA base-editing enzymes (such as APOBEC1 or ADAR) has emerged as a powerful tool for the discovery of RBP binding sites. However, current methods that analyze sequencing data from RNA-base editing experiments are vulnerable to false positives due to off-target editing, genetic variation and sequencing errors. RESULTS: We present FLagging Areas of RNA-editing Enrichment (FLARE), a Snakemake-based pipeline that builds on the outputs of the SAILOR edit site discovery tool to identify regions statistically enriched for RNA editing. FLARE can be configured to analyze any type of RNA editing, including C to U and A to I. We applied FLARE to C-to-U editing data from a RBFOX2-APOBEC1 STAMP experiment, to show that our approach attains high specificity for detecting RBFOX2 binding sites. We also applied FLARE to detect regions of exogenously introduced as well as endogenous A-to-I editing. CONCLUSIONS: FLARE is a fast and flexible workflow that identifies significantly edited regions from RNA-seq data. The FLARE codebase is available at https://github.com/YeoLab/FLARE .


Subject(s)
RNA Editing , RNA , Workflow , RNA-Seq , Binding Sites , APOBEC-1 Deaminase
6.
Sci Adv ; 9(35): eadj1568, 2023 09.
Article in English | MEDLINE | ID: mdl-37647411

ABSTRACT

CRISPR nucleases generate a broad spectrum of mutations that includes undesired editing outcomes. Here, we develop optimized C-to-T base editing systems for the generation of precise loss- or gain-of-function alleles in Drosophila and identify temperature as a crucial parameter for efficiency. We find that a variant of the widely used APOBEC1 deaminase has attenuated activity at 18° to 29°C and shows considerable dose-dependent toxicity. In contrast, the temperature-tolerant evoCDA1 domain mediates editing of typically more than 90% of alleles and is substantially better tolerated. Furthermore, formation of undesired mutations is exceptionally rare in Drosophila compared to other species. The predictable editing outcome, high efficiency, and product purity enables near homogeneous induction of STOP codons or alleles encoding protein variants in vivo. Last, we demonstrate how optimized expression enables conditional base editing in marked cell populations. This work substantially facilitates creation of precise alleles in Drosophila and provides key design parameters for developing efficient base editing systems in other ectothermic species.


Subject(s)
Drosophila , Gene Editing , Drosophila/genetics , Gene Editing/methods , Animals , APOBEC-1 Deaminase/genetics , APOBEC-1 Deaminase/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Silencing
7.
J Virol ; 97(1): e0179522, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36598198

ABSTRACT

Activation-induced cytidine deaminase/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) proteins are cytosine deaminases implicated in diverse biological functions. APOBEC1 (A1) proteins have long been thought to regulate lipid metabolism, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. Endogenous retroviruses (ERVs) document past retroviral infections and are ubiquitous within the vertebrate genomes. Here, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in ERVs, and interrogate the evolutionary arms race between A1 genes and ERVs across vertebrate species. We find that A1 genes are widely present in tetrapods, recurrently amplified and lost in certain lineages, suggesting that A1 genes might have originated during the early evolution of tetrapods. A1-mediated mutation footprints can be detected in ERVs across tetrapods. Moreover, A1 genes appear to have experienced episodic positive selection in many tetrapod lineages. Taken together, we propose that a long-running arms race between A1 genes and retroviruses might have persisted throughout the evolutionary course of tetrapods. IMPORTANCE APOBEC3 (A3) genes have been thought to function in defense against retroviruses, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. In this study, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in endogenous retroviruses (ERVs), and explore the evolutionary arms race between A1 genes and ERVs across vertebrate species. We found A1 proteins originated during the early evolution of tetrapods, and detected the footprints of A1-induced hypermutations in retroviral fossils. A1 genes appear to have experienced pervasive positive selection in tetrapods. Our study indicates a long-running arms race between A1 genes and retroviruses taking place throughout the evolutionary course of tetrapods.


Subject(s)
APOBEC-1 Deaminase , Endogenous Retroviruses , Evolution, Molecular , Retroviridae Infections , Animals , APOBEC-1 Deaminase/genetics , APOBEC-1 Deaminase/immunology , Endogenous Retroviruses/classification , Endogenous Retroviruses/genetics , Endogenous Retroviruses/immunology , Mutation , Phylogeny , Retroviridae Infections/immunology , Vertebrates/immunology
8.
Nat Genet ; 55(2): 246-254, 2023 02.
Article in English | MEDLINE | ID: mdl-36702998

ABSTRACT

APOBEC mutational signatures SBS2 and SBS13 are common in many human cancer types. However, there is an incomplete understanding of its stimulus, when it occurs in the progression from normal to cancer cell and the APOBEC enzymes responsible. Here we whole-genome sequenced 342 microdissected normal epithelial crypts from the small intestines of 39 individuals and found that SBS2/SBS13 mutations were present in 17% of crypts, more frequent than most other normal tissues. Crypts with SBS2/SBS13 often had immediate crypt neighbors without SBS2/SBS13, suggesting that the underlying cause of SBS2/SBS13 is cell-intrinsic. APOBEC mutagenesis occurred in an episodic manner throughout the human lifespan, including in young children. APOBEC1 mRNA levels were very high in the small intestine epithelium, but low in the large intestine epithelium and other tissues. The results suggest that the high levels of SBS2/SBS13 in the small intestine are collateral damage from APOBEC1 fulfilling its physiological function of editing APOB mRNA.


Subject(s)
Apolipoproteins B , Cytidine Deaminase , Child , Humans , Child, Preschool , Apolipoproteins B/genetics , Cytidine Deaminase/genetics , Mutagenesis/genetics , RNA, Messenger/genetics , APOBEC-1 Deaminase/genetics , Intestine, Small
9.
J Mol Biol ; 435(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38708190

ABSTRACT

Cytidine (C) to Uridine (U) RNA editing is a post-transcription modification that is involved in diverse biological processes. APOBEC1 (A1) catalyzes the conversion of C-to-U in RNA, which is important in regulating cholesterol metabolism through its editing activity on ApoB mRNA. However, A1 requires a cofactor to form an "editosome" for RNA editing activity. A1CF and RBM47, both RNA-binding proteins, have been identified as cofactors that pair with A1 to form editosomes and edit ApoB mRNA and other cellular RNAs. SYNCRIP is another RNA-binding protein that has been reported as a potential regulator of A1, although it is not directly involved in A1 RNA editing activity. Here, we describe the identification and characterization of a novel cofactor, RBM46 (RNA-Binding-Motif-protein-46), that can facilitate A1 to perform C-to-U editing on ApoB mRNA. Additionally, using the low-error circular RNA sequencing technique, we identified novel cellular RNA targets for the A1/RBM46 editosome. Our findings provide further insight into the complex regulatory network of RNA editing and the potential new function of A1 with its cofactors.


Subject(s)
APOBEC-1 Deaminase , RNA Editing , RNA-Binding Proteins , Uridine , Humans , APOBEC-1 Deaminase/metabolism , APOBEC-1 Deaminase/genetics , Apolipoproteins B/metabolism , Apolipoproteins B/genetics , Cytidine/metabolism , Cytidine/genetics , HEK293 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Uridine/metabolism , Uridine/genetics
10.
Microbiol Spectr ; 10(6): e0376022, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36374037

ABSTRACT

Genome editing technology is a powerful tool for programming microbial cell factories. However, rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of the bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we demonstrate the genome engineering of Corynebacterium glutamicum as a GC-rich model industrial bacterium by generating premature termination codons (PTCs) in desired genes using high-fidelity cytosine base editors (CBEs). Through this CBE-STOP approach of introducing specific cytosine conversions, we constructed several single-gene-inactivated strains for three genes (ldh, idsA, and pyc) with high base editing efficiencies of average 95.6% (n = 45, C6 position) and the highest success rate of up to 100% for PTCs and ultimately developed a strain with five genes (ldh, actA, ackA, pqo, and pta) that were inactivated sequentially for enhancing succinate production. Although these mutant strains showed the desired phenotypes, whole-genome sequencing (WGS) data revealed that genome-wide point mutations occurred in each strain and further accumulated according to the duration of CBE plasmids. To lower the undesirable mutations, high-fidelity CBEs (pCoryne-YE1-BE3 and pCoryne-BE3-R132E) was employed for single or multiplexed genome editing in C. glutamicum, resulting in drastically reduced sgRNA-independent off-targets. Thus, we provide a CRISPR-assisted bacterial genome engineering tool with an average high efficiency of 90.5% (n = 76, C5 or C6 position) at the desired targets. IMPORTANCE Rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we identified the DNA off-targets for single and multiple genome engineering of the industrial bacterium Corynebacterium glutamicum using whole-genome sequencing. Further, we developed the high-fidelity (HF)-CBE with significantly reduced off-targets with comparable efficiency and precision. We believe that our DNA off-target analysis and the HF-CBE can promote CRISPR-assisted genome engineering over conventional gene manipulation tools by providing a markerless genetic tool without need for a foreign DNA donor.


Subject(s)
Corynebacterium glutamicum , Gene Editing , Animals , Rats , Gene Editing/methods , Corynebacterium glutamicum/genetics , Cytosine , Mutation , DNA/genetics , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems , APOBEC-1 Deaminase/genetics
11.
Cells ; 11(22)2022 11 12.
Article in English | MEDLINE | ID: mdl-36429012

ABSTRACT

RNA editing is an epitranscriptomic modification, leading to targeted changes in RNA transcripts. It is mediated by the action of ADAR (adenosine deaminases acting on double-stranded (ds) RNA and APOBEC (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like) deaminases and appears to play a major role in the pathogenesis of many diseases. Here, we assessed its role in experimental autoimmune encephalomyelitis (EAE), a widely used non-clinical model of autoimmune inflammatory diseases of the central nervous system (CNS), which resembles many aspects of human multiple sclerosis (MS). We have analyzed in silico data from microglia isolated at different timepoints through disease progression to identify the global editing events and validated the selected targets in murine tissue samples. To further evaluate the functional role of RNA editing, we induced EAE in transgenic animals lacking expression of APOBEC-1. We found that RNA-editing events, mediated by the APOBEC and ADAR deaminases, are significantly reduced throughout the course of disease, possibly affecting the protein expression necessary for normal neurological function. Moreover, the severity of the EAE model was significantly higher in APOBEC-1 knock-out mice, compared to wild-type controls. Our results implicate regulatory epitranscriptomic mechanisms in EAE pathogenesis that could be extrapolated to MS and other neurodegenerative disorders (NDs) with common clinical and molecular features.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , RNA Editing , Humans , Mice , Animals , RNA Editing/genetics , APOBEC-1 Deaminase/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , RNA, Double-Stranded , Mutagenesis, Site-Directed , Mice, Knockout
12.
Nat Genet ; 54(11): 1599-1608, 2022 11.
Article in English | MEDLINE | ID: mdl-36280735

ABSTRACT

Mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC)3 cytosine deaminase activity have been found in over half of cancer types, including some therapy-resistant and metastatic tumors. Driver mutations can occur in APOBEC3-favored sequence contexts, suggesting that mutagenesis by APOBEC3 enzymes may drive cancer evolution. The APOBEC3-mediated signatures are often detected in subclonal branches of tumor phylogenies and are acquired in cancer cell lines over long periods of time, indicating that APOBEC3 mutagenesis can be ongoing in cancer. Collectively, these and other observations have led to the proposal that APOBEC3 mutagenesis represents a disease-modifying process that could be inhibited to limit tumor heterogeneity, metastasis and drug resistance. However, critical aspects of APOBEC3 biology in cancer and in healthy tissues have not been clearly defined, limiting well-grounded predictions regarding the benefits of inhibiting APOBEC3 mutagenesis in different settings in cancer. We discuss the relevant mechanistic gaps and strategies to address them to investigate whether inhibiting APOBEC3 mutagenesis may confer clinical benefits in cancer.


Subject(s)
Neoplasms , Humans , Mutagenesis/genetics , Neoplasms/genetics , Neoplasms/pathology , APOBEC-1 Deaminase/genetics , Mutation , Cytidine Deaminase/genetics , APOBEC Deaminases/genetics
13.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144542

ABSTRACT

The apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G) converts cytosine to uracil in DNA/RNA. Its role in resisting viral invasion has been well documented. However, its expression pattern and potential function in AML remain unclear. In this study, we carried out a bioinformatics analysis and revealed that the expression of APOBEC3G was significantly upregulated in AML, and high expression of APOBEC3G was significantly associated with short overall survival (OS). APOBEC3G expression was especially increased in non-M3AML, and correlated with the unfavorable cytogenetic risks. Additionally, Cox regression analyses indicated APOBEC3G is a hazard factor that cannot be ignored for OS of AML patients. In molecular docking simulations, the natural product crotonoside was found to interact well with APOBEC3G. The expression of APOBEC3G is the highest in KG-1 cells, and the treatment with crotonoside can reduce the expression of APOBEC3G. Crotonoside can inhibit the viability of different AML cells in vitro, arrest KG-1 and MV-4-11 cells in the S phase of the cell cycle and affect the expression of cycle-related proteins, and induce cell apoptosis. Therefore, APOBEC3G could be a potential drug target of crotonoside, and crotonoside can be considered as a lead compound for APOBEC3G inhibition in non-M3 AML.


Subject(s)
Biological Products , HIV-1 , Leukemia, Myeloid, Acute , APOBEC-1 Deaminase , APOBEC-3G Deaminase/genetics , Adenosine , Biomarkers , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Cytosine , Guanosine , HIV-1/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Molecular Docking Simulation , Prognosis , RNA , Uracil
14.
BMC Bioinformatics ; 23(1): 312, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918642

ABSTRACT

Although there have been some recent cell and animal experiments indicating that expression of the gene encoding apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) is closely related to cancer, it still lacks pan-cancer analysis. Here we analyzed the potential carcinogenic role of APOBEC3B in 33 tumors based on The Cancer Genome Atlas (TCGA). APOBEC3B was highly expressed in most tumors and weakly expressed in a few. Differences in expression level were significantly correlated with the pathological tumor stage and prognosis of affected patients. The high-frequency APOBEC3B changes were principally mutations and amplifications in some tumors, such as uterine corpus endometrial carcinomas or cutaneous melanomas. In testicular germ cell tumors and invasive breast carcinomas, APOBEC3B expression and CD8+ T lymphocyte counts were correlated. In other cancers, such as human papilloma virus (HPV)-related head and neck squamous cell carcinomas or esophageal adenocarcinomas, there was also cancer-associated fibroblast infiltration. The APOBEC3B enzyme acts in the mitochondrial respiratory electron transport chain and in oxidative phosphorylation. This first pan-cancer study provides a comprehensive understanding of the multiple roles of APOBEC3B in different tumor types.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , APOBEC-1 Deaminase/metabolism , Animals , Carcinoma, Squamous Cell/genetics , Catalytic Domain , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Esophageal Neoplasms/genetics , Humans , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism
15.
Sci Rep ; 12(1): 13599, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948620

ABSTRACT

Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the 'biased fertilization', we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.


Subject(s)
Semen , Sperm-Ovum Interactions , APOBEC-1 Deaminase/genetics , Animals , Female , Fertilization , Male , Mice , Oocytes , RNA, Messenger/genetics , Spermatozoa
16.
STAR Protoc ; 3(3): 101646, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36042888

ABSTRACT

Most techniques for mapping m6A-methylated RNAs transcriptome-wide require large amounts of RNA and have been limited to bulk cells and tissues. Here, we provide a detailed protocol for the identification of m6A sites in single HEK293T cells using single-cell DART-seq (scDART-seq). The protocol details how to generate cell lines with inducible expression of the APOBEC1-YTH transgene and the use of important controls for minimizing false positives. We also describe the bioinformatic analysis to identify m6A sites. For complete details on the use and execution of this protocol, please refer to Tegowski et al. (2022).


Subject(s)
High-Throughput Nucleotide Sequencing , Transcriptome , APOBEC-1 Deaminase/genetics , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Humans , RNA , Sequence Analysis, RNA/methods , Transcriptome/genetics
17.
J Genet Genomics ; 49(10): 927-933, 2022 10.
Article in English | MEDLINE | ID: mdl-35421582

ABSTRACT

CRISPR/Cas9 system is a robust genome editing platform in biotechnology and medicine. However, it generally produces small insertions/deletions (indels, typically 1-3 bp) but rarely induces larger deletions in specific target sites. Here, we report a cytidine deaminase-Cas9 fusion-induced deletion system (C-DEL) and an adenine deaminase-Cas9 fusion-induced deletion system (A-DEL) by combining Cas9 with rat APOBEC1 (rA1) and TadA 8e, respectively. Both C-DEL and A-DEL improve the efficiency of deletions compared with the conventional Cas9 system in human cells. In addition, the C-DEL system generates a considerable fraction of predictable multinucleotide deletions from 5'-deaminated C bases to the Cas9-cleavage site and increases the proportion of larger deletions at the target loci. Taken together, the C-DEL and A-DEL systems provide a practical strategy for producing efficient multinucleotide deletions, expanding the CRISPR/Cas9 toolsets for gene modifications in human cells.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Rats , Animals , CRISPR-Cas Systems/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , INDEL Mutation/genetics , APOBEC-1 Deaminase/genetics
18.
Nucleic Acids Res ; 50(3): 1551-1561, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35048970

ABSTRACT

During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying variants of concern (VOC). Viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host single nucleotide variations (iSNVs). Analysing 1347 samples collected till June 2020, we recorded 16 410 iSNV sites throughout the SARS-CoV-2 genome. We found ∼42% of the iSNV sites to be reported as SNVs by 30 September 2020 in consensus sequences submitted to GISAID, which increased to ∼80% by 30th June 2021. Following this, analysis of another set of 1774 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) lineage-defining variations appeared as iSNVs before getting fixed in the population. Besides, mutations in RdRp as well as RNA-editing by APOBEC and ADAR deaminases seem to contribute to the differential prevalence of iSNVs in hosts. We also observe hyper-variability at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions.


Subject(s)
Evolution, Molecular , Genetic Variation/genetics , Genome, Viral/genetics , Host-Pathogen Interactions/genetics , SARS-CoV-2/genetics , APOBEC-1 Deaminase/genetics , Adenosine Deaminase/genetics , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Coronavirus RNA-Dependent RNA Polymerase/genetics , Databases, Genetic , Immune Evasion/genetics , India/epidemiology , Phylogeny , RNA-Binding Proteins/genetics , SARS-CoV-2/classification , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
19.
Int J Antimicrob Agents ; 59(1): 106492, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34871747

ABSTRACT

BACKGROUND: The impact of drug resistance mutational load and APOBEC editing in heavily treatment-experienced (HTE) people living with multidrug-resistant HIV has not been investigated. MATERIAL AND METHODS: This study explored the HIV-DNA and HIV-RNA mutational load of drug resistance and APOBEC-related mutations through next-generation sequencing (NGS, Illumina MiSeq) in 20 failing HTE participants enrolled in the PRESTIGIO registry. RESULTS: The patients showed high levels of both HIV-DNA (4.5 [4.0-5.2] log10 copies/106 T-CD4+ cell) and HIV-RNA (4.5 [4.1-5.0] log10 copies/mL) with complex resistance patterns in both compartments. Among the 255 drug-resistant mutations found, 66.3% were concordantly detected in both HIV-DNA and HIV-RNA; 71.3% of mutations were already present in historical Sanger genotypes. At an intra-patient frequency > 5%, a considerable proportion of mutations detected through DNA-NGS were found in historical genotypes but not through RNA-NGS, and few patients had APOBEC-related mutations. Of 14 patients who switched therapy, the five who failed treatment had DNA resistance with higher intra-patient frequency and higher DNA/RNA mutational load in a context of tendentially less pronounced APOBEC editing compared with those who responded. CONCLUSIONS: Using NGS in HIV-DNA and HIV-RNA together with APOBEC editing evaluation might help to identify HTE individuals with MDR who are more prone to experience virological failure.


Subject(s)
APOBEC-1 Deaminase/genetics , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV-1/drug effects , Viral Load/drug effects , Adult , Female , Gene Editing , Genetic Variation , Genotype , Humans , Italy , Male , Middle Aged , Mutation , Sequence Analysis, DNA , Sequence Analysis, RNA
20.
Plant Biotechnol J ; 20(2): 350-359, 2022 02.
Article in English | MEDLINE | ID: mdl-34582079

ABSTRACT

Two type II-C Cas9 orthologs (Nm1Cas9 and Nm2Cas9) were recently identified from Neisseria meningitidis and have been extensively used in mammalian cells, but whether these NmCas9 orthologs or other type II-C Cas9 proteins can mediate genome editing in plants remains unclear. In this study, we developed and optimized targeted mutagenesis systems from NmCas9s for plants. Efficient genome editing at the target with N4 GATT and N4 CC protospacer adjacent motifs (PAMs) was achieved with Nm1Cas9 and Nm2Cas9 respectively. These results indicated that a highly active editing system could be developed from type II-C Cas9s with distinct PAM preferences, thus providing a reliable strategy to extend the scope of genome editing in plants. Base editors (BEs) were further developed from the NmCas9s. The editing efficiency of adenine BEs (ABEs) of TadA*-7.10 and cytosine BEs (CBEs) of rat APOBEC1 (rAPO1) or human APOBEC3a (hA3A) were extremely limited, whereas ABEs of TadA-8e and CBEs of Petromyzon marinus cytidine deaminase 1 (PmCDA1) exhibited markedly improved performance on the same targets. In addition, we found that fusion of a single-stranded DNA-binding domain from the human Rad51 protein enhanced the base editing capability of rAPO1-CBEs of NmCas9s. Together, our results suggest that the engineering of NmCas9s or other type II-C Cas9s can provide useful alternatives for crop genome editing.


Subject(s)
Neisseria meningitidis , Oryza , APOBEC-1 Deaminase/genetics , Adenine , Animals , CRISPR-Cas Systems/genetics , Cytidine Deaminase , Gene Editing/methods , Mammals/genetics , Neisseria meningitidis/genetics , Oryza/genetics , Proteins , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...