Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 870
Filter
1.
J Exp Med ; 221(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39150482

ABSTRACT

Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that CD8 T cell responses to infection depend on acetyl-CoA derived from citrate via the enzyme ATP citrate lyase (ACLY). However, ablation of ACLY triggers an alternative, acetate-dependent pathway for acetyl-CoA production mediated by acyl-CoA synthetase short-chain family member 2 (ACSS2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and chromatin accessibility at effector gene loci. When ACLY is functional, ACSS2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, loss of ACLY renders CD8 T cells dependent on acetate (via ACSS2) to maintain acetyl-CoA production and effector function. Together, ACLY and ACSS2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.


Subject(s)
ATP Citrate (pro-S)-Lyase , Acetates , Acetyl Coenzyme A , CD8-Positive T-Lymphocytes , Chromatin , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Chromatin/metabolism , Acetyl Coenzyme A/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , ATP Citrate (pro-S)-Lyase/genetics , Mice , Acetates/metabolism , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Acetylation , Mice, Knockout , Cytosol/metabolism , Histones/metabolism
2.
Phytochemistry ; 226: 114221, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39002688

ABSTRACT

An extensive phytochemical investigation on the EtOAc-soluble fraction of the 90% MeOH extract from the twigs and needles of the 'vulnerable' Chinese endemic conifer Tsuga forrestii (Forrest's hemlock) led to the isolation and characterization of 50 structurally diverse diterpenoids, including 15 unreported C-18 carboxylated ones (tsugaforrestiacids A-O, 1-15, resp.). Among them, compounds 1-7 are abieten-18-oic acids, compound 8 is an abieten-18-succinate, and compounds 10-12 are podocarpen-18-oic acids, whereas compounds 13-15 are pimarane-type, isopimarane-type, and totarane-type diterpenoid acids, respectively. Their structures and absolute configurations were determined by a combination of spectroscopic methods, GIAO NMR calculations and DP4+ probability analyses, electronic circular dichroism (ECD) data, and single crystal X-ray diffraction analyses. All the isolates were evaluated for their inhibitory activities against the ATP-citrate lyase (ACL), a key enzyme in cellular metabolism. Tsugaforrestiacids E (5) and H (8) were found to have significant inhibitory effects against ACL, with IC50 values of 5.3 and 6.2 µM, respectively. The interactions of the bioactive molecules with the ACL enzyme were examined by molecular docking studies. The isolated diterpenoids also provide chemotaxonomic evidence to support the delimitation of Tsuga from its closest sister group (Nothotsuga). The above findings highlight the importance of protecting plant species with unique and diverse secondary metabolites, which may be potential sources of new therapeutic agents for the treating ACL-associated diseases.


Subject(s)
ATP Citrate (pro-S)-Lyase , Diterpenes , Phytochemicals , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , ATP Citrate (pro-S)-Lyase/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , China , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Endangered Species , Molecular Docking Simulation , Structure-Activity Relationship , Plant Leaves/chemistry
3.
Mar Drugs ; 22(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921556

ABSTRACT

Tuberculosis, a persistent illness caused by Mycobacterium tuberculosis, remains a significant global public health challenge. The widespread use of anti-tuberculosis drugs has resulted in the emergence of drug-resistant strains, which complicates treatment efforts. Addressing this issue is crucial and hinges on the development of new drugs that can effectively target the disease. This involves identifying novel therapeutic targets that can disrupt the bacterium's survival mechanisms in various environments such as granulomas and lesions. Citrate lyase, essential for the survival of Mycobacterium species at lesion sites and in granulomatous conditions, is a potential target for the treatment of tuberculosis. This manuscript aimed to construct an efficient enzyme inhibitor screening platform using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF MS). This system can accurately identify compounds with enzyme inhibitory activity from a library of marine terpenoids and phenolic compounds. Utilizing the screened herbal enzyme inhibitors as a starting point, we analyzed their chemical structures and skillfully built a library of marine compounds based on these structures. The results showed that all of the tested compounds from the phenolics library inhibited citrate lyase by more than 50%, and a significant portion of terpenoids also demonstrated inhibition, with these active terpenoids comprising over half of the terpenoids tested. The study underscores the potential of marine-derived phenolic and terpenoid compounds as potent inhibitors of citrate lyase, indicating a promising direction for future investigations in treating tuberculosis and associated disorders.


Subject(s)
Antitubercular Agents , Enzyme Inhibitors , Mycobacterium tuberculosis , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Chromatography, High Pressure Liquid/methods , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Aquatic Organisms , Terpenes/pharmacology , Terpenes/chemistry , Humans , Phenols/pharmacology , Phenols/chemistry , Chromatography, Liquid/methods
4.
Fitoterapia ; 176: 106018, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744385

ABSTRACT

An extensive phytochemical investigation on the rare medicinal plant Semiliquidambar cathayensis (family: Hamamelidaceae) led to the isolation of four new (1-4, named semiliquidacids A-D, respectively) and 25 related known pentacyclic triterpenoids. The new structures with absolute configurations were elucidated by spectroscopic methods, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Compound 1 represents the first naturally occurring ursane-type triterpenoid featuring an uncommon C-25 formyl group. Compound 4 and oleanolic acid (13) exhibited remarkable inhibitory effects against the ATP-citrate lyase (ACL, an emerging drug target for hyperlipidemia and related metabolic disorders) with IC50 values of 6.5 and 11.9 µM, respectively. The molecular interaction and binding mode between the bioactive triterpenoids and ACL were elaborated by conducting a molecular docking study. Meanwhile, the chemotaxonomic significance of the isolated triterpenoids has been briefly discussed.


Subject(s)
ATP Citrate (pro-S)-Lyase , Molecular Docking Simulation , Pentacyclic Triterpenes , Plants, Medicinal , Molecular Structure , Plants, Medicinal/chemistry , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/isolation & purification , Pentacyclic Triterpenes/chemistry , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , China , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
5.
J Biol Chem ; 300(7): 107418, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815867

ABSTRACT

ATP-citrate lyase (ACLY) links carbohydrate and lipid metabolism and provides nucleocytosolic acetyl-CoA for protein acetylation. ACLY has two major splice isoforms: the full-length canonical "long" isoform and an uncharacterized "short" isoform in which exon 14 is spliced out. Exon 14 encodes 10 amino acids within an intrinsically disordered region and includes at least one dynamically phosphorylated residue. Both isoforms are expressed in healthy tissues to varying degrees. Analysis of human transcriptomic data revealed that the percent spliced in (PSI) of exon 14 is increased in several cancers and correlated with poorer overall survival in a pan-cancer analysis, though not in individual tumor types. This prompted us to explore potential biochemical and functional differences between ACLY isoforms. Here, we show that there are no discernible differences in enzymatic activity or stability between isoforms or phosphomutants of ACLY in vitro. Similarly, both isoforms and phosphomutants were able to rescue ACLY functions, including fatty acid synthesis and bulk histone acetylation, when re-expressed in Acly knockout cells. Deletion of Acly exon 14 in mice did not overtly impact development or metabolic physiology nor did it attenuate tumor burden in a genetic model of intestinal cancer. Notably, expression of epithelial splicing regulatory protein 1 (ESRP1) is highly correlated with ACLY PSI. We report that ACLY splicing is regulated by ESRP1. In turn, both ESRP1 expression and ACLY PSI are correlated with specific immune signatures in tumors. Despite these intriguing patterns of ACLY splicing in healthy and cancer tissues, functional differences between the isoforms remain elusive.


Subject(s)
ATP Citrate (pro-S)-Lyase , Alternative Splicing , Neoplasms , Humans , Animals , Mice , ATP Citrate (pro-S)-Lyase/metabolism , ATP Citrate (pro-S)-Lyase/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phenotype , Exons , Acetylation
6.
Acta Derm Venereol ; 104: adv23805, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38590175

ABSTRACT

ATP citrate lyase, the first rate-limiting enzyme in de novo lipogenesis, plays a crucial role in tumour progression. This study explores ATP citrate lyase's potential as a tumour biomarker and its role in cutaneous squamous cell carcinoma. ATP citrate lyase expression patterns were analysed using TCGA and TIMER databases, and patient skin specimens were collected for immunohistochemistry to determine ATP citrate lyase levels. Cell proliferation, cell cycle, apoptosis, and c-Myc expression were assessed in A431 and SCL-1 cells. Stable cell lines with reduced ATP citrate lyase expression were obtained and subcutaneously implanted into nude mice to evaluate in vivo tumour growth. Ki67, c-Myc expression and TUNEL staining were analysed in subcutaneous tumours. ATP citrate lyase exhibited upregulation in various tumours, and showed significant associations with prognosis and immune infiltrate. Moreover, ATP citrate lyase was highly expressed in cutaneous squamous cell carcinoma. After ATP citrate lyase silencing, cutaneous squamous cell carcinoma cell growth decelerated, the cell cycle halted, cell apoptosis increased, and c-Myc expression decreased. Animal experiments revealed that, following ATP citrate lyase knockdown, tumour tissue growth slowed down, and there was a reduction in Ki-67 and c-Myc expression, accompanied by enhanced TUNEL staining. In conclusion, ATP citrate lyase may serve as a tumour biomarker. It is highly expressed in cutaneous squamous cell carcinoma and may serve as a therapeutic target.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Mice , Animals , Humans , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Carcinoma, Squamous Cell/genetics , Biomarkers, Tumor/genetics , Mice, Nude , Skin Neoplasms/genetics
7.
Int Immunopharmacol ; 133: 112124, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38663312

ABSTRACT

The impaired osteogenic capability of bone marrow mesenchymal stem cells (BMSCs) caused by persistent inflammation is the main pathogenesis of inflammatory bone diseases. Recent studies show that metabolism is disturbed in osteogenically differentiated BMSCs in response to Lipopolysaccharide (LPS) treatment, while the mechanism involved remains incompletely revealed. Herein, we demonstrated that BMSCs adapted their metabolism to regulate acetyl-coenzyme A (acetyl-CoA) availability and RNA acetylation level, ultimately affecting osteogenic differentiation. The mitochondrial dysfunction and impaired osteogenic potential upon inflammatory conditions accompanied by the reduced acetyl-CoA content, which in turn suppressed N4-acetylation (ac4C) level. Supplying acetyl-CoA by sodium citrate (SC) addition rescued ac4C level and promoted the osteogenic capacity of LPS-treated cells through the ATP citrate lyase (ACLY) pathway. N-acetyltransferase 10 (NAT10) inhibitor remodelin reduced ac4C level and consequently impeded osteogenic capacity. Meanwhile, the osteo-promotive effect of acetyl-CoA-dependent ac4C might be attributed to fatty acid oxidation (FAO), as evidenced by activating FAO by L-carnitine supplementation counteracted remodelin-induced inhibition of osteogenesis. Further in vivo experiments confirmed the promotive role of acetyl-CoA in the endogenous bone regeneration in rat inflammatory mandibular defects. Our study uncovered a metabolic-epigenetic axis comprising acetyl-CoA and ac4C modification in the process of inflammatory osteogenesis of BMSCs and suggested a new target for bone tissue repair in the context of inflammatory bone diseases.


Subject(s)
Acetyl Coenzyme A , Cell Differentiation , Lipopolysaccharides , Mesenchymal Stem Cells , Osteogenesis , Animals , Osteogenesis/drug effects , Acetyl Coenzyme A/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cell Differentiation/drug effects , Acetylation , Cells, Cultured , Rats , Male , Rats, Sprague-Dawley , ATP Citrate (pro-S)-Lyase/metabolism , Acetyltransferases/metabolism , Acetyltransferases/genetics
8.
Fitoterapia ; 176: 105964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663561

ABSTRACT

Berberine was used as the lead compound in the present study to design and synthesize novel berberine derivatives by splicing bromine bridges of different berberine carbon chain lengths coupled nitric oxide donors, and their lipid lowering activities were assessed in a variety of ways. This experiment synthesized 17 new berberine nitric oxide donor derivatives. Compared with berberine hydrochloride, most of the compounds exhibited certain glycerate inhibitory activity, and compounds 6a, 6b, 6d, 12b and 12d showed higher inhibitory activity than berberine, with 6a, 6b and 6d having significant inhibitory activity. In addition, compound 6a linked to furazolidone nitric oxide donor showed better NO release in experiments; In further mechanistic studies, we screened and got two proteins, PCSK9 and ACLY, and docked two proteins with 17 compounds, and found that most of the compounds bound better with ATP citrate lyase (ACLY), among which there may be a strong interaction between compound 6a and ACLY, and the interaction force was better than the target drug Bempedoic Acid, which meaning that 6a may exert hypolipidemic effects by inhibiting ACLY; moreover, we also found that 6a may had the better performance in gastrointestinal absorption, blood-brain barrier permeability, Egan, Muegge class drug principle model calculation and bioavailability.


Subject(s)
Berberine , Hypolipidemic Agents , Nitric Oxide Donors , Berberine/pharmacology , Berberine/analogs & derivatives , Berberine/chemical synthesis , Berberine/chemistry , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemical synthesis , Hypolipidemic Agents/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry , Humans , Molecular Structure , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , ATP Citrate (pro-S)-Lyase/metabolism , Proprotein Convertase 9/metabolism , Molecular Docking Simulation , Animals , Blood-Brain Barrier/drug effects , Nitric Oxide/metabolism , PCSK9 Inhibitors
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670440

ABSTRACT

BACKGROUND & AIMS: Hypertrophic scar (HS) is a skin fibroproliferative disorder occurring after burns, surgeries or traumatic injuries, and it has caused a tremendous economic and medical burden. Its molecular mechanism is associated with the abnormal proliferation and transition of fibroblasts and excessive deposition of extracellular matrix. Cartilage intermediate layer protein 2 (CILP2), highly homologous to cartilage intermediate layer protein 1 (CILP1), is mainly secreted predominantly from chondrocytes in the middle/deeper layers of articular cartilage. Recent reports indicate that CILP2 is involved in the development of fibrotic diseases. We investigated the role of CILP2 in the progression of HS. METHODS AND RESULTS: It was found in this study that CILP2 expression was significantly higher in HS than in normal skin, especially in myofibroblasts. In a clinical cohort, we discovered that CILP2 was more abundant in the serum of patients with HS, especially in the early stage of HS. In vitro studies indicated that knockdown of CILP2 suppressed proliferation, migration, myofibroblast activation and collagen synthesis of hypertrophic scar fibroblasts (HSFs). Further, we revealed that CILP2 interacts with ATP citrate lyase (ACLY), in which CILP2 stabilizes the expression of ACLY by reducing the ubiquitination of ACLY, therefore prompting Snail acetylation and avoiding reduced expression of Snail. In vivo studies indicated that knockdown of CILP2 or ACLY inhibitor, SB-204990, significantly alleviated HS formation. CONCLUSION: CILP2 exerts a vital role in hypertrophic scar formation and might be a detectable biomarker reflecting the progression of hypertrophic scar and a therapeutic target for hypertrophic scar.


Subject(s)
Cicatrix, Hypertrophic , Snail Family Transcription Factors , Adult , Animals , Female , Humans , Male , Mice , Acetylation , Cell Movement , Cell Proliferation , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , ATP Citrate (pro-S)-Lyase/metabolism
10.
Fitoterapia ; 175: 105956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604261

ABSTRACT

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.


Subject(s)
ATP Citrate (pro-S)-Lyase , Eleutherococcus , Eleutherococcus/chemistry , Molecular Structure , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/isolation & purification , Quinic Acid/chemistry , Hydroxybenzoates/pharmacology , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/chemistry , Structure-Activity Relationship
11.
Cancer Sci ; 115(5): 1433-1445, 2024 May.
Article in English | MEDLINE | ID: mdl-38494608

ABSTRACT

Lipid metabolic reprogramming of tumor cells has been proven to play a critical role in tumor initiation and development. However, lipid metabolism in cancer-associated fibroblasts (CAFs) has rarely been studied, particularly in CAFs of oral squamous cell carcinoma (OSCC). Additionally, the molecular mechanism by which tumor cells regulate lipid metabolism in fibroblasts is unclear. In this study, we found that phosphorylated ATP citrate lyase (p-ACLY), a key lipid metabolic enzyme, was upregulated in OSCC CAFs. Compared to paracancerous normal fibroblasts, CAFs showed enhanced lipid synthesis, such as elevated cytosolic acetyl-CoA level and accumulation of lipid droplets. Conversely, reduction of p-ACLY level blocked this biological process. In addition, blocking lipid synthesis in CAFs or inhibiting fatty acid uptake by OSCC cells reduced the promotive effects of CAFs on OSCC cell proliferation, invasion, and migration. These findings suggested that CAFs are one of lipid sources required for OSCC progression. Mechanistically, AKT signaling activation was involved in the upregulation of p-ACLY level and lipid synthesis in CAFs. Interleukin-8 (IL8), an exocrine cytokine of OSCC cells, could activate AKT and then phosphorylate ACLY in fibroblasts. This study suggested that the IL8/AKT/p-ACLY axis could be considered as a potential target for OSCC treatment.


Subject(s)
ATP Citrate (pro-S)-Lyase , Cancer-Associated Fibroblasts , Carcinoma, Squamous Cell , Disease Progression , Interleukin-8 , Proto-Oncogene Proteins c-akt , Animals , Humans , Male , Mice , ATP Citrate (pro-S)-Lyase/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Interleukin-8/metabolism , Lipid Metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Up-Regulation
12.
Nature ; 627(8005): 865-872, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509377

ABSTRACT

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Epigenetic Memory , Multiple Sclerosis , Animals , Female , Humans , Male , Mice , Acetyl Coenzyme A/metabolism , Astrocytes/enzymology , Astrocytes/metabolism , Astrocytes/pathology , ATP Citrate (pro-S)-Lyase/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation Sequencing , CRISPR-Cas Systems , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/enzymology , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Multiple Sclerosis/enzymology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Single-Cell Gene Expression Analysis , Transposases/metabolism
13.
J Cell Mol Med ; 28(6): e18129, 2024 03.
Article in English | MEDLINE | ID: mdl-38426936

ABSTRACT

ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , ATP Citrate (pro-S)-Lyase , Sirtuin 2/genetics , Sirtuin 2/metabolism , Cell Proliferation , Esophageal Neoplasms/metabolism , Lipids , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
14.
Immunohorizons ; 8(1): 57-73, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38193847

ABSTRACT

The accumulation of lipid and the formation of macrophage foam cells is a hallmark of atherosclerosis, a chronic inflammatory disease. To better understand the role of macrophage lipid accumulation in inflammation during atherogenesis, we studied early molecular events that follow the accumulation of oxidized low-density lipoprotein (oxLDL) in cultured mouse macrophages. We previously showed that oxLDL accumulation downregulates the inflammatory response in conjunction with downregulation of late-phase glycolysis. In this study, we show that within hours after LPS stimulation, macrophages with accumulated oxLDL maintain early-phase glycolysis but selectively downregulate activation of AKT2, one of three AKT isoforms. The inhibition of AKT2 activation reduced LPS-induced ATP citrate lyase activation, acetyl-CoA production, and acetylation of histone 3 lysine 27 (H3K27ac) in certain inflammatory gene promoters. In contrast to oxLDL, multiple early LPS-induced signaling pathways were inhibited in macrophages with accumulated cholesterol, including TBK1, AKT1, AKT2, MAPK, and NF-κB, and early-phase glycolysis. The selective inhibition of LPS-induced AKT2 activation was dependent on the generation of mitochondrial oxygen radicals during the accumulation of oxLDL in macrophages prior to LPS stimulation. This is consistent with increased oxidative phosphorylation, fatty acid synthesis, and oxidation pathways found by comparative transcriptomic analyses of oxLDL-loaded versus control macrophages. Our study shows a functional connection between oxLDL accumulation, inactivation of AKT2, and the inhibition of certain inflammatory genes through epigenetic changes that occur soon after LPS stimulation, independent of early-phase glycolysis.


Subject(s)
ATP Citrate (pro-S)-Lyase , Atherosclerosis , Lipoproteins, LDL , Animals , Mice , Acetyl Coenzyme A , Acetylation , Acyltransferases , ATP Citrate (pro-S)-Lyase/genetics , Lipopolysaccharides , Macrophages , Epigenesis, Genetic
15.
Gut ; 73(4): 601-612, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38176897

ABSTRACT

OBJECTIVE: Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD. DESIGN: ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models. RESULTS: ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis. CONCLUSION: ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Intraepithelial Lymphocytes , Humans , Animals , Intraepithelial Lymphocytes/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , CD8-Positive T-Lymphocytes/metabolism , Colitis/metabolism , Inflammation/metabolism , Butyrates , Intestinal Mucosa/metabolism , Dextran Sulfate , Disease Models, Animal
16.
Nat Prod Res ; 38(10): 1719-1726, 2024 May.
Article in English | MEDLINE | ID: mdl-37265118

ABSTRACT

A new lignan, named pouzolignan P (1), together with 14 known ones (2 - 15) were isolated from the roots of Pouzolzia zeylanica (L.) Benn. Their structures were deduced based on the detailed spectroscopic analysis. All the isolates were evaluated for their inhibitory activities toward the ATP citrate lyase (ACLY). Among them, four lignans, isopouzolignan K (3), gnemontanins E (5), gnetuhainin I (6), and styraxlignolide D (15) showed excellent ACLY inhibitory effect with IC50 values of 9.06, 0.59, 2.63, and 7.62 µM, respectively. These compounds were further evaluated for their cholesterol-lowing effects on ox-LDL-induced high-cholesterol HepG2 cells. Compound 15 emerges as the most potent ACLY inhibitor, which significantly decreased the TC level in a dose-dependent manner. In addition, molecular docking simulations elucidated that 15 formed a strong hydrogen-bond interaction with Glu599 of ACLY, which was an important site responsible for the enzyme catalytic activity.


Subject(s)
ATP Citrate (pro-S)-Lyase , Lignans , ATP Citrate (pro-S)-Lyase/chemistry , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Cholesterol
17.
J Immunol ; 212(1): 7-11, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38038390

ABSTRACT

The 2'3'-cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of IFN genes (STING) pathway can sense infection and cellular stress by detecting cytosolic DNA. Upon ligand binding, cGAS produces the cyclic dinucleotide messenger cGAMP, which triggers its receptor STING. Active STING initiates gene transcription through the transcription factors IFN regulatory factor 3 (IRF3) and NF-κB and induces autophagy, but whether STING can cause changes in the metabolism of macrophages is unknown. In this study, we report that STING signaling activates ATP-citrate lyase (ACLY) by phosphorylation in human macrophages. Using genetic and pharmacologic perturbation, we show that STING targets ACLY via its prime downstream signaling effector TANK (TRAF family member-associated NF-κB activator)-binding kinase 1 (TBK1). We further identify that TBK1 alters cellular metabolism upon cGAMP treatment. Our results suggest that STING-mediated metabolic reprogramming adjusts the cellular response to DNA sensing in addition to transcription factor activation and autophagy induction.


Subject(s)
NF-kappa B , Protein Serine-Threonine Kinases , Humans , ATP Citrate (pro-S)-Lyase/metabolism , DNA , Interferon Regulatory Factor-3/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , NF-kappa B/metabolism , Nucleotidyltransferases/metabolism , Protein Serine-Threonine Kinases/metabolism
18.
Bioorg Chem ; 142: 106933, 2024 01.
Article in English | MEDLINE | ID: mdl-37890210

ABSTRACT

ATP citrate lyase (ACLY), a strategic metabolic enzyme that catalyzes the glycolytic to lipidic metabolism, has gained increasing attention as an attractive therapeutic target for hyperlipidemia, cancers and other human diseases. Despite of continual research efforts, targeting ACLY has been very challenging. In this field, most reported ACLY inhibitors are "substrate-like" analogues, which occupied with the same active pockets. Besides, some ACLY inhibitors have been disclosed through biochemical screening or high throughput virtual screening. In this review, we briefly summarized the cancer-related functions and the recent advance of ACLY inhibitors with a particular focus on the SAR studies and their modes of action. We hope to provide a timely and updated overview of ACLY and the discovery of new ACLY inhibitors.


Subject(s)
ATP Citrate (pro-S)-Lyase , Neoplasms , Humans , ATP Citrate (pro-S)-Lyase/metabolism , Neoplasms/metabolism , Lipid Metabolism
19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 743-751, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37927015

ABSTRACT

Objective To investigate the role of ATP citrate lyase(ACLY)in the development of hepatocellular carcinoma(HCC)and the impact of this enzyme on the immune microenvironment of HCC.Methods We utilized the University of Alabama at Birmingham Cancer Data Analysis Portal and the Gene Expression Profiling Interactive Analysis to identify the changes in ACLY expression and prognosis across different tumor types from The Cancer Genome Atlas.With HCC as the disease model,we analyzed the ACLY expression in HCC samples from the gene expression database.Furthermore,we collected the clinical specimens from HCC patients to verify the mRNA and protein levels of ACLY.In addition,we conducted transcriptome sequencing after knocking down the expression of ACLY to analyze the differentially expressed genes and investigated the impact of ACLY expression interference on cell proliferation and other functions.Finally,we explored the correlations of ACLY with immune cells and immune infiltration in the tumor microenvironment,new antigens,and immune checkpoint genes.Results ACLY expression was significantly up-regulated in solid tumors including HCC(all P<0.05),and high ACLY expression was associated with overall survival rate in HCC(P=0.005).Furthermore,high ACLY expression affected the presence of immune cells(e.g.,tumor-associated fibroblasts)and the expression of genes involved in lipid metabolism(all P<0.05).Conclusions ACLY is closely related to the occurrence and development of HCC and lipid metabolism abnormalities.Moreover,it has a specific impact on the immune microenvironment of HCC.


Subject(s)
ATP Citrate (pro-S)-Lyase , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Clinical Relevance , Lipid Metabolism , Tumor Microenvironment
20.
Cell Cycle ; 22(20): 2288-2301, 2023 10.
Article in English | MEDLINE | ID: mdl-38009671

ABSTRACT

Mounting evidence indicates the potential involvement of ATP-citrate lyase (ACLY) in the modulation of various cancer types. Nevertheless, the precise biological significance of ACLY in gastric cancer (GC) remains elusive. This study sought to elucidate the biological function of ACLY and uncover its influence on peritoneal metastasis in GC. The expression of ACLY was assessed using both real-time quantitative PCR and western blot techniques. To investigate the impact of ACLY on the proliferation of gastric cancer (GC) cells, colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed. The migratory and invasive abilities of GC were evaluated using wound healing and transwell assays. Additionally, a bioinformatics analysis was employed to predict the correlation between ACLY and HIF-1A. This interaction was subsequently confirmed through a chromatin immunoprecipitation (ChIP) assay. ACLY exhibited upregulation in gastric cancer (GC) as well as in peritoneal metastasis. Its overexpression was found to facilitate the proliferation and metastasis of GC cells in both in vitro and in vivo experiments. Moreover, ACLY was observed to play a role in promoting angiogenesis and epithelial-mesenchymal transition (EMT). Notably, under hypoxic conditions, HIF-1A levels were elevated, thereby acting as a transcription factor to upregulate ACLY expression. Under the regulatory influence of HIF-1A, ACLY exerts a significant impact on the progression of gastric cancer, thereby facilitating peritoneal metastasis.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , ATP Citrate (pro-S)-Lyase/metabolism , Peritoneal Neoplasms/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL