Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
Mem Inst Oswaldo Cruz ; 119: e230186, 2024.
Article in English | MEDLINE | ID: mdl-39045993

ABSTRACT

BACKGROUND: Giant viruses have brought new insights into different aspects of virus-cell interactions. The resulting cytopathic effects from these interactions are one of the main aspects of infection assessment in a laboratory routine, mainly reflecting on the morphological features of an infected cell. OBJECTIVES: In this work, we follow the entire kinetics of the cytopathic effect in cells infected by viruses of the Mimiviridae family, spatiotemporally quantifying typical features such as cell roundness, loss of motility, decrease in cell area and cell lysis. METHODS: Infections by Acanthamoeba polyphaga mimivirus (APMV), Tupanvirus (TPV) and M4 were carried out at multiplicity of infection (MOI) 1 and MOI 10 in Acanthamoeba castellanii. Monitoring of infections was carried out using time lapse microscopy for up to 72 hours. The images were analyzed using ImageJ software. FINDINGS: The data obtained indicate that APMV is the slowest virus in inducing the cytopathic effects of rounding, decrease in cell area, mobility and cell lysis. However, it is the only virus whose MOI increase accelerates the lysis process of infected cells. In turn, TPV and M4 rapidly induce morphological and behavioral changes. MAIN CONCLUSIONS: Our results indicate that mimiviruses induce different temporal responses within the host cell and that it is possible to use these kinetic data to facilitate the understanding of infection by these viruses.


Subject(s)
Acanthamoeba castellanii , Cytopathogenic Effect, Viral , Mimiviridae , Mimiviridae/physiology , Kinetics , Acanthamoeba castellanii/virology
2.
Virol J ; 21(1): 135, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858684

ABSTRACT

The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.


Subject(s)
Giant Viruses , Brazil , Giant Viruses/isolation & purification , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/ultrastructure , Phylogeny , Polymerase Chain Reaction , Acanthamoeba castellanii/virology , Acanthamoeba castellanii/isolation & purification , Soil Microbiology , Sewage/virology , Sequence Analysis, DNA , Seawater/virology , Water Microbiology
3.
mSystems ; 9(6): e0122623, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38717186

ABSTRACT

We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba-related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba-related diseases.


Subject(s)
Acanthamoeba castellanii , Extracellular Vesicles , Proteomics , Acanthamoeba castellanii/metabolism , Acanthamoeba castellanii/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Lipid Metabolism/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Proteome/metabolism , Proteome/genetics
4.
Biometals ; 37(5): 1225-1236, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38647983

ABSTRACT

Acanthamoeba spp. emerged as a clinically important pathogen related to amoebic keratitis. It is among the main causes of corneal transplantation and vision loss in ophthalmology. The treatment protocols have a low cure rate, high toxicity, and need for drug combination. Transition metal compounds have shown promising antiprotozoal effects. This study evaluates the amoebicidal activity of copper(II) coordination compounds in combination with chlorhexidine and the cytotoxicity to topical ocular application. These copper(II) coordination compounds were screened against Acanthamoeba castellanii trophozoites (ATCC 50492). The cytotoxicity on rabbit corneal cell line (ATCC-CCL 60) was performed. The compounds showed high amoebicidal potential, with inhibition of trophozoite viability above 80%. The Cp12 and Cp13 compounds showed Minimal Inhibitory Amoebicidal Concentration (MIAC) at 200 µM and mean inhibitory concentration (IC50) values lower than 10 µM. Against the cysts, Cp12 showed a reduction in viability (48%) in the longest incubation period. A synergistic effect for Cp12 with chlorhexidine was observed. The compounds have a dose-dependent effect against rabbit corneal cells. Compound Cp12 has potential for future application in developing ophthalmic formulations against Acanthamoeba keratitis and its use in multipurpose solutions is highlighted.


Subject(s)
Acanthamoeba castellanii , Amebicides , Copper , Animals , Rabbits , Copper/pharmacology , Copper/chemistry , Amebicides/pharmacology , Amebicides/chemistry , Acanthamoeba castellanii/drug effects , Acanthamoeba castellanii/growth & development , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Parasitic Sensitivity Tests , Drug Synergism , Cell Line , Cell Survival/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Chlorhexidine/pharmacology , Chlorhexidine/chemistry , Acanthamoeba Keratitis/drug therapy , Acanthamoeba Keratitis/parasitology , Cornea/drug effects , Cornea/parasitology , Dose-Response Relationship, Drug , Acanthamoeba/drug effects , Trophozoites/drug effects
5.
Eur J Protistol ; 94: 126086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688045

ABSTRACT

Acanthamoeba castellanii, a free-living amoeba, can be pathogenic to humans causing a corneal infection named Acanthamoeba keratitis (AK). The mannose-binding protein (MBP) is well established as the major factor related to Acanthamoeba pathogenesis. However, additional factors that participate in the adhesion process and protect trophozoites from cytolytic effects caused by host immune responses remain unknown. Ectonucleotidases, including 3'-nucleotidase/nuclease (3'-NT/NU), a bifunctional enzyme that was recently reported in A. castellanii, are frequently related to the establishment of parasitic infections. We verified that trophozoites can hydrolyze 3'-AMP, and this activity is similar to that observed in other protists. The addition of 3'-AMP increases the adhesion of trophozoites to LLC-MK2 epithelial cells, and this stimulation is completely reversed by DTT, an inhibitor of ecto-3'-nucleotidase activity. Lesions in corneal cells caused by AK infection may elevate the extracellular level of 3'-AMP. We believe that ecto-3'-nucleotidase activity can modulate the host immune response, thus facilitating the establishment of parasitic infection. This activity results from the generation of extracellular adenosine, which can bind to purinergic receptors present in host immune cells. Positive feedback may occur in this cascade of events once the ecto-3'-nucleotidase activity of trophozoites is increased by the adhesion of trophozoites to LLC-MK2 cells.


Subject(s)
Acanthamoeba castellanii , Adenosine , Cell Adhesion , Trophozoites , Acanthamoeba castellanii/enzymology , Adenosine/metabolism , Cell Line , Animals , Nucleotidases/metabolism , Epithelial Cells/parasitology
6.
Microbiol Spectr ; 12(3): e0298823, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38319117

ABSTRACT

Acanthamoeba species are clinically relevant free-living amoebae (FLA) ubiquitously found in soil and water bodies. Metabolically active trophozoites graze on diverse microbes via phagocytosis. However, functional studies on Rab GTPases (Rabs), which are critical for controlling vesicle trafficking and maturation, are scarce for this FLA. This knowledge gap can be partly explained by the limited genetic tools available for Acanthamoeba cell biology. Here, we developed plasmids to generate fusions of A. castellanii strain Neff proteins to the N- or C-termini of mEGFP and mCherry2. Phylogenomic and structural analyses of the 11 Neff Rab7 paralogs found in the RefSeq assembly revealed that eight of them had non-canonical sequences. After correcting the gene annotation for the Rab7A ortholog, we generated a line stably expressing an mEGFP-Rab7A fusion, demonstrating its correct localization to acidified macropinocytic and phagocytic vacuoles using fluorescence microscopy live cell imaging (LCI). Direct labeling of live Stenotrophomonas maltophilia ESTM1D_MKCAZ16_6a (Sm18) cells with pHrodo Red, a pH-sensitive dye, demonstrated that they reside within acidified, Rab7A-positive vacuoles. We constructed new mini-Tn7 delivery plasmids and tagged Sm18 with constitutively expressed mScarlet-I. Co-culture experiments of Neff trophozoites with Sm18::mTn7TC1_Pc_mScarlet-I, coupled with LCI and microplate reader assays, demonstrated that Sm18 underwent multiple replication rounds before reaching the extracellular medium via non-lytic exocytosis. We conclude that S. maltophilia belongs to the class of bacteria that can use amoeba as an intracellular replication niche within a Stenotrophomonas-containing vacuole that interacts extensively with the endocytic pathway.IMPORTANCEDiverse Acanthamoeba lineages (genotypes) are of increasing clinical concern, mainly causing amoebic keratitis and granulomatous amebic encephalitis among other infections. S. maltophilia ranks among the top 10 most prevalent multidrug-resistant opportunistic nosocomial pathogens and is a recurrent member of the microbiome hosted by Acanthamoeba and other free-living amoebae. However, little is known about the molecular strategies deployed by Stenotrophomonas for an intracellular lifestyle in amoebae and other professional phagocytes such as macrophages, which allow the bacterium to evade the immune system and the action of antibiotics. Our plasmids and easy-to-use microtiter plate co-culture assays should facilitate investigations into the cellular microbiology of Acanthamoeba interactions with Stenotrophomonas and other opportunistic pathogens, which may ultimately lead to the discovery of new molecular targets and antimicrobial therapies to combat difficult-to-treat infections caused by these ubiquitous microbes.


Subject(s)
Acanthamoeba castellanii , Stenotrophomonas maltophilia , Acanthamoeba castellanii/microbiology , Stenotrophomonas maltophilia/genetics , Vacuoles , Phylogeny , Bacteria
7.
Appl Environ Microbiol ; 90(2): e0173623, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38259076

ABSTRACT

In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal ß-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface ß-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a ß-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble ß-1,3-glucan substantially inhibited this adhesion, indicating the involvement of ß-1,3-glucan recognition. Biotinylated ß-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the ß-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding ß-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to ß-1,3-glucans. These findings underscore the complexity of binding via ß-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of ß-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for ß-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.


Subject(s)
Acanthamoeba castellanii , Amoeba , beta-Glucans , Amoeba/metabolism , Mannose/metabolism , Proteomics , beta-Glucans/metabolism , Glucans/metabolism , Histoplasma/metabolism
8.
Parasitol Res ; 123(2): 116, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289423

ABSTRACT

Acanthamoeba castellanii, a ubiquitous protozoan, is responsible for significant diseases such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. A crucial survival strategy of A. castellanii involves the formation of highly resistant cysts during adverse conditions. This study delves into the cellular processes underpinning encystment, focusing on gene expression changes related to reactive oxygen species (ROS) balance, with a particular emphasis on mitochondrial processes. Our findings reveal a dynamic response within the mitochondria during encystment, with the downregulation of key enzymes involved in oxidative phosphorylation (COX, AOX, and NADHalt) during the initial 48 h, followed by their overexpression at 72 h. This orchestrated response likely creates a pro-oxidative environment, facilitating encystment. Analysis of other ROS processing enzymes across the cell reveals differential expression patterns. Notably, antioxidant enzymes, such as catalases, glutaredoxins, glutathione S-transferases, peroxiredoxins, and thioredoxins, mirror the mitochondrial trend of downregulation followed by upregulation. Additionally, glycolysis and gluconeogenesis are downregulated during the early stages in order to potentially balance the metabolic requirement of the cyst. Our study underscores the importance of ROS regulation in Acanthamoeba encystment. Understanding these mechanisms offers insights into infection control and identifies potential therapeutic targets. This work contributes to unraveling the complex biology of A. castellanii and may aid in combatting Acanthamoeba-related infections. Further research into ROS and oxidase enzymes is warranted, given the organism's remarkable respiratory versatility.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Amebiasis , Cysts , Humans , Acanthamoeba castellanii/genetics , Reactive Oxygen Species , Catalase
9.
Eur J Protistol ; 91: 126026, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871554

ABSTRACT

Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Humans , Animals , Mannose/metabolism , Vanadates , Cell Adhesion/physiology , Sodium , Trophozoites
10.
Photochem Photobiol Sci ; 22(9): 2179-2188, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37296325

ABSTRACT

Despite access to drinking water being a basic human right, the availability of safe drinking water remains a privilege that many do not have and as a result, many lives are lost each year due to waterborne diseases associated with the consumption of biologically unsafe water. To face this situation, different low-cost household drinking water treatment technologies (HDWT) have been developed, and among them is solar disinfection (SODIS). Despite the effectiveness of SODIS and the epidemiological gains being consistently documented in the literature, there is a lack of evidence of the effectiveness of the batch-SODIS process against protozoan cysts as well as their internalized bacteria under real sun conditions. This work evaluated the effectiveness of the batch-SODIS process on the viability of Acanthamoeba castellanii cysts, and internalized Pseudomonas aeruginosa. Dechlorinated tap water contaminated with 5.6 × 103 cysts/L, contained in PET (polyethylene terephthalate) bottles, was exposed for 8 h a day to strong sunlight (531-1083 W/m2 of maximum insolation) for 3 consecutive days. The maximum water temperature inside the reactors ranged from 37 to 50 °C. Cyst viability was assessed by inducing excystment on non-nutrient agar, or in water with heat-inactivated Escherichia coli. After sun exposure for 0, 8, 16 and 24 h, the cysts remained viable and without any perceptible impairment in their ability to excyst. 3 and 5.5 log CFU/mL of P. aeruginosa were detected in water containing untreated and treated cysts, respectively, after 3 days of incubation at 30 °C. The batch-SODIS process is unable to inactivate A. castellanii cysts as well as its internalized bacteria. Although the use of batch SODIS by communities should continue to be encouraged, SODIS-disinfected water should be consumed within 3 days.


Subject(s)
Acanthamoeba castellanii , Drinking Water , Water Purification , Humans , Sunlight , Pseudomonas aeruginosa , Disinfection , Bacteria , Water Microbiology
11.
Arch Microbiol ; 204(10): 610, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36085198

ABSTRACT

Aliarcobacter butzleri (formerly known as Arcobacter butzleri) is an emerging food-borne zoonotic pathogen that establishes in vitro endosymbiotic relationships with Acanthamoeba castellanii, a free-living amoeba. Previously, we described that this bacterium acts as an endocytobiont of A. castellanii, surviving for at least 10 days in absence of bacterial replication. Thus, the aim of this study was to evaluate the ability of A. butzleri to survive as a long-term endosymbiont of A. castellanii for 30 days in two models of symbiotic interaction with A. castellanii: (i) endosymbiotic culture followed by gentamicin protection assay and (ii) transwell co-culture assay. The results allow us to conclude that A. butzleri is capable of surviving as an endosymbiont of A. castellanii for at least 30 days, without multiplying, under controlled laboratory conditions. In addition, in the absence of nutrients and as both microorganisms remain in the same culture, separated by semi-permeable membranes, A. castellanii does not promote the survival of A. butzleri, nor does it multiply. Our findings suggest that the greater survival capacity of A. butzleri is associated with their endosymbiont status inside A. castellanii, pointing out the complexity of this type of symbiotic relationship.


Subject(s)
Acanthamoeba castellanii , Arcobacter , Acanthamoeba castellanii/microbiology , Symbiosis
12.
Parasitol Res ; 121(9): 2615-2622, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35776211

ABSTRACT

Intron retention (IR) refers to the mechanism of alternative splicing in which an intron is not excised from the mature transcript. IR in the cosmopolitan free-living amoeba Acanthamoeba castellanii has not been studied. We performed an analysis of RNA sequencing data during encystment to identify genes that presented differentially retained introns during this process. We show that IR increases during cyst formation, indicating a potential mechanism of gene regulation that could help downregulate metabolism. We identify 69 introns from 67 genes that are differentially retained comparing the trophozoite stage and encystment after 24 and 48 h. These genes include several hypothetical proteins. We show different patterns of IR during encystment taking as examples a lipase, a peroxin-3 protein, an Fbox domain containing protein, a proteasome subunit, a polynucleotide adenylyltransferase, and a tetratricopeptide domain containing protein. A better understanding of IR in Acanthamoeba, and even other protists, could help elucidate changes in life cycle and combat disease such as Acanthamoeba keratitis in which the cyst is key for its persistence.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Acanthamoeba castellanii/genetics , Animals , Humans , Introns , Life Cycle Stages , Trophozoites
13.
Front Cell Infect Microbiol ; 12: 858979, 2022.
Article in English | MEDLINE | ID: mdl-35711659

ABSTRACT

Acanthamoeba castellanii (Ac) is a species of free-living amoebae (FLAs) that has been widely applied as a model for the study of host-parasite interactions and characterization of environmental symbionts. The sharing of niches between Ac and potential pathogens, such as fungi, favors associations between these organisms. Through predatory behavior, Ac enhances fungal survival, dissemination, and virulence in their intracellular milieu, training these pathogens and granting subsequent success in events of infections to more evolved hosts. In recent studies, our group characterized the amoeboid mannose binding proteins (MBPs) as one of the main fungal recognition pathways. Similarly, mannose-binding lectins play a key role in activating antifungal responses by immune cells. Even in the face of similarities, the distinct impacts and degrees of affinity of fungal recognition for mannose receptors in amoeboid and animal hosts are poorly understood. In this work, we have identified high-affinity ligands for mannosylated fungal cell wall residues expressed on the surface of amoebas and macrophages and determined the relative importance of these pathways in the antifungal responses comparing both phagocytic models. Mannose-purified surface proteins (MPPs) from both phagocytes showed binding to isolated mannose/mannans and mannosylated fungal cell wall targets. Although macrophage MPPs had more intense binding when compared to the amoeba receptors, the inhibition of this pathway affects fungal internalization and survival in both phagocytes. Mass spectrometry identified several MPPs in both models, and in silico alignment showed highly conserved regions between spotted amoeboid receptors (MBP and MBP1) and immune receptors (Mrc1 and Mrc2) and potential molecular mimicry, pointing to a possible convergent evolution of pathogen recognition mechanisms.


Subject(s)
Acanthamoeba castellanii , Amoeba , Acanthamoeba castellanii/microbiology , Amoeba/microbiology , Animals , Antifungal Agents , Cell Wall/metabolism , Macrophages/metabolism , Mannose/chemistry , Mice , Trophozoites/metabolism
14.
Cell Biol Int ; 46(8): 1288-1298, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35673988

ABSTRACT

Acanthamoeba castellanii is the etiological agent of amoebic keratitis and is present in the environment in trophozoite or cyst forms. Both forms can infect the vertebrate host and colonize different tissues. The high resistance of cysts to standard drugs used in clinics contributes to the lack of effective treatments. Therefore, in this context, studies have emerged to understand cyst physiology and metabolism. Phosphate transporters are proteins responsible for the uptake of extracellular inorganic phosphate and transport to the cytosol. This work aims to verify the relationship between Pi transport and energetic metabolism in cysts of A. castellanii. The phosphate uptake ratio was higher in cysts compared with trophozoites. Recently, three sequences related to phosphate transporters have been identified in the A. castellanii genome (AcPHS1, AcPHS2, and AcPHS3); the messenger RNA expression levels of which differ depending on the amoeba life form. Pi uptake in cysts displayed peak activity at alkaline pH, whereas Pi transport in trophozoites was not affected in the same pH ranges. Cysts harbor a low-affinity Pi transport system (K0,5 and Vmax values of 1.76 ± 0.26 mM and 104.6 ± 6.3 nmol Pi × h-1 × 106 cells) compared to the trophozoite phosphate transport system. Pi transport seems important for anaerobic adenosine triphosphate synthesis in cysts, which initially occurs through the glycolytic pathway and subsequently through the pyruvate ferredoxin oxidoreductase pathway. Altogether, these results suggest that contrary to that previously postulated, cysts are active metabolic forms, and, as noted in trophozoites, phosphate uptake is important for energetic metabolism.


Subject(s)
Acanthamoeba castellanii , Acanthamoeba castellanii/genetics , Adenosine Triphosphate/pharmacology , Anaerobiosis , Animals , Phosphate Transport Proteins , Phosphates , Trophozoites/physiology
15.
Curr Protoc ; 2(5): e455, 2022 May.
Article in English | MEDLINE | ID: mdl-35612516

ABSTRACT

This article describes a practical method for prospecting and isolating giant viruses based on direct inoculation of environmental samples into amoeba cultures of Acanthamoeba castellanii. The giant viruses that infect amoebas have already been isolated from various environmental samples in several countries worldwide, including in extreme environments. Here we describe the methodologic procedures regarding the prospecting of giant viruses in A. castellanii, including the preparation of environmental samples, the culture of amoebas, and the observation of cytopathic effects that can indicate the presence and potential isolation of giant viruses. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Sample collection Support Protocol: Propagation of Acanthamoeba castellanii Basic Protocol 2: Prospecting of giant viruses in environmental samples by cytopathic effect analysis.


Subject(s)
Acanthamoeba castellanii , Amoeba , Giant Viruses
16.
Arch Virol ; 167(2): 711-715, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35000005

ABSTRACT

Here, we propose the creation of the family "Yaraviridae", a new taxon to classify a virus infecting Acanthamoeba castellanii cells. Recently, we described the discovery of a new virus infecting free-living amoebae, yaravirus, which has features that strongly differ from those of all other viruses of amoebae described to date. Yaravirus particles are about 80 nm in diameter and have a dsDNA genome of ~45 kbp containing 74 ORFs, most of which (>90%) have no homologs in current databases. Together, these data support the creation of a new species ("Yaravirus brasiliense"), a new viral genus (here proposed as "Yaravirus"), and a new viral family (here proposed as "Yaraviridae") to classify yaravirus and other related viruses that may be described in the future. All of them are to be included into the existing realm Varidnaviria and the kingdom Bamfordvirae, due to the presence of a major capsid protein containing a double jelly-roll fold.


Subject(s)
Acanthamoeba castellanii , Capsid Proteins , DNA Viruses/genetics , Genome, Viral
17.
Acta Parasitol ; 67(1): 511-517, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34156633

ABSTRACT

PURPOSE: Acanthamoeba spp. are free-living amoebas with worldwide distribution and play an important role as disease-causing agents in humans. Drug inability to completely eradicate these parasites along with their toxic effects suggest urgent need for new antimicrobials. Nisin is a natural antimicrobial peptide produced by Lactococcus lactis. Nisin is also the only bacteriocin approved for use in food preservation. In this work, we analyzed the effect of nisin on the growth of Acanthamoeba castellanii trophozoites. METHODS: A total of 8 × 104 trophozoites were exposed to increasing concentrations of nisin to determine its activity. Changes in cell membrane and cellular cycle of trophozoites were investigated by flow cytometry, and nisin cytotoxicity in mammalian cells was evaluated in L929 cells by MTT method. RESULTS: After 24 h exposure to increasing nisin concentrations, an IC50 of 4493.2 IU mL-1 was obtained for A. castellanii trophozoites. However, after 72 h a recovery in amoebic growth was observed, and it was no longer possible to determine IC50. Flow cytometry analysis showed that nisin has no effect on the membrane integrity. Treatment with nisin induced cell-cycle arrest during G1 and S phases in A. castellanii trophozoites, which recovered their growth after 72 h. CONCLUSION: This is one of the first studies showing the effect of internationally approved nisin against A. castellanii trophozoites. Nisin caused cell-cycle arrest in trophozoites, momentarily interfering with the DNA replication process. The data highlight the amoebostatic activity of nisin, and suggest its use as an adjuvant for the treatment of infections caused by Acanthamoeba spp.


Subject(s)
Acanthamoeba castellanii , Amoeba , Nisin , Animals , Cell Cycle Checkpoints , Humans , Mammals , Nisin/pharmacology , Trophozoites
18.
Braz. J. Pharm. Sci. (Online) ; 58: e20459, 2022. tab, graf
Article in English | LILACS | ID: biblio-1403730

ABSTRACT

Abstract Free-living amoebae of the genus Acanthamoeba are the causative agents of granulomatous encephalitis and keratitis, severe human infections. Bioactive compounds from plants are recognized as an alternative source for the development of new drugs. The Amaryllidaceae is a botanical family able to synthesize a very specific and consistent group of biologically active isoquinoline-like alkaloids. The alkaloidal fractions from the Brazilian species Hippeastrum canastrense, H. diniz-cruziae, H. puniceum, and Crinum x amabile, along with the alkaloid lycorine, were investigated against Acanthamoeba castellanii. The in vitro assays were performed with distinct concentrations of lycorine and alkaloidal fractions, while the cell viability was evaluated by the MTT method upon MDCK cells. Chlorhexidine 0.02% was used as the positive control. The effect of alkaloid fractions was concentration dependent, and 2000 µg mL-1 of H. canastrense and H. diniz-cruziae provided a 100% inhibition. At concentrations of 250, 500, and 1000 µg mL-1, the H. diniz-cruziae alkaloidal fraction showed the lowest cytotoxic effect (5%-7%) and remarkable anti-amoebic activity, demonstrating values of IC50 285.61 µg mL-1, low cytotoxicity (5%-7%), and selectivity index (7.0). Taken together, the results are indicative of the great potential that the alkaloids from H. diniz-cruziae have as new candidates for anti-amoebicidal compounds


Subject(s)
Acanthamoeba castellanii/classification , Alkaloids/administration & dosage , Amaryllidaceae/classification , Biological Products , Pharmaceutical Preparations/analysis , Madin Darby Canine Kidney Cells , Phytochemicals
19.
Curr Opin Virol ; 49: 58-67, 2021 08.
Article in English | MEDLINE | ID: mdl-34051592

ABSTRACT

Although giant viruses have existed for millennia and possibly exerted great evolutionary influence in their environment. Their presence has only been noticed by virologists recently with the discovery of Acanthamoeba polyphaga mimivirus in 2003. Its virion with a diameter of 500 nm and its genome larger than 1 Mpb shattered preconceived standards of what a virus is and triggered world-wide prospection studies. Thanks to these investigations many giant virus families were discovered, each with its own morphological peculiarities and genomes ranging from 0.4 to 2.5 Mpb that possibly encode more than 400 viral proteins. This review aims to present the morphological diversity, the different aspects observed in host-virus interactions during replication, as well as the techniques utilized during their investigation.


Subject(s)
Amoebida/virology , Giant Viruses/physiology , Giant Viruses/ultrastructure , Host Microbial Interactions , Acanthamoeba castellanii/virology , Genome, Viral , Giant Viruses/classification , Giant Viruses/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Replication Compartments/physiology , Virion/physiology , Virion/ultrastructure , Virus Replication
20.
Photochem Photobiol Sci ; 20(1): 123-137, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33721244

ABSTRACT

Solar water disinfection (SODIS) is an effective and inexpensive microbiological water treatment technique, applicable to communities lacking access to safely managed drinking water services, however, the lower volume of treated water per day (< 2.5 L per batch) is a limitation for the conventional SODIS process. To overcome this limitation, a continuous-flow solar water disinfection system was developed and tested for inactivation of Acanthamoeba castellanii cysts and Escherichia coli, Salmonella Typhimurium, Enterococcus faecalis, and Pseudomonas aeruginosa. The system consisted of a solar heater composed of a cylindrical-parabolic concentrator and a UV irradiator formed by a fresnel-type flat concentrator combined with a cylindrical-parabolic concentrator. Deionized water with low or high turbidity (< 1 or 50 nephelometric turbidity unit (NTU) where previously contaminated by 108 Cysts/L or 105-106 CFU/mL of each of four bacterial species. Then was pumped from the heating tank flowing through the heater and through the UV irradiator, then returning to the heating tank, until reaching 45, 55, 60 or 70 °C. The water was kept at the desired temperature, flowing through the UV irradiator for 0.5 and 10 min. Trophozoites were not recovered from cysts (during 20 days of incubation) when water with < 1 NTU was exposed to UV and 60 °C for 0.5 min. In water with 50 NTU, the same result was obtained after 10 min. In water with < 1 NTU, the inactivation of all bacteria was achieved when the water with < 1 NTU was exposed to 55 °C and UV for 0.5 min; in water, with 50 NTU the same result was achieved by exposure to 60 °C and UV for 0.5 min. The prototype processes 1 L of water every 90s. The system is effective and has the potential to be applied as an alternative to the large-scale public drinking water supply.


Subject(s)
Acanthamoeba castellanii/radiation effects , Bacteria/radiation effects , Ultraviolet Rays , Water Purification/methods , Disinfection/methods , Temperature , Water Purification/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL