Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 646
Filter
1.
Anal Methods ; 16(26): 4322-4332, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38888243

ABSTRACT

Microdialysis is an important technique for in vivo sampling of tissue's biochemical composition. Understanding the factors that affect the performance of the microdialysis probes and developing methods for sample analysis are crucial for obtaining reliable results. In this work, we used experimental and numerical procedures to study the performance of microdialysis probes having different configurations, membrane materials and dimensions. For alcohol research, it is important to understand the dynamics of ethanol metabolism, particularly in the brain and in other organs, and to simultaneously measure the concentrations of ethanol and its metabolites - acetaldehyde and acetate. Our work provides a comprehensive characterization of three microdialysis probes, in terms of recovery rates and backpressure, allowing for interpretation and optimization of experimental procedures. In vivo experiments were performed to measure the time course concentration of ethanol, acetaldehyde, and acetate in the rat brain dialysate. Additionally, the combination of in vitro experimental results with numerical simulations enabled us to calculate diffusion coefficients of molecules in the microdialysis membranes and study the extent of the depletion effect caused by continuous microdialysis sampling, thus providing additional insights for probe selection and data interpretation.


Subject(s)
Brain , Ethanol , Microdialysis , Microdialysis/methods , Ethanol/metabolism , Ethanol/analysis , Ethanol/pharmacokinetics , Animals , Rats , Brain/metabolism , Acetaldehyde/analysis , Acetaldehyde/metabolism , Male , Acetates/metabolism , Acetates/pharmacokinetics
2.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930972

ABSTRACT

Copper (II), a vital fungicide in organic viticulture, also acts as a wine oxidation catalyst. However, limited data are currently available on the impact that maximum allowed copper (II) ion doses in wine grapes at harvest can have on aged wine quality. This was the focus of the present study. We investigated the copper (II) effects by producing both white and red wines from musts containing three initial metal concentrations according to the limits set for organic farming. In detail, the influence of copper (II) on fermentation evolution, chromatic characteristics, and phenolic compounds was evaluated. Interestingly, the white wine obtained with the highest permitted copper (II) dose initially exceeded the concentration of 1.0 mg/L at fermentation completion. However, after one year of storage, the copper (II) content fell below 0.2 ± 0.01 mg/L. Conversely, red wines showed copper (II) levels below 1.0 mg/L at the end of fermentation, but the initial copper (II) level in musts significantly affected total native anthocyanins, color intensity, hue, and acetaldehyde concentration. After 12-month aging, significant differences were observed in polymeric pigments, thus suggesting a potential long-term effect of copper (II) on red wine color stability.


Subject(s)
Acetaldehyde , Copper , Fermentation , Phenols , Vitis , Wine , Wine/analysis , Copper/analysis , Acetaldehyde/analysis , Phenols/analysis , Phenols/chemistry , Vitis/chemistry , Color , Anthocyanins/analysis , Anthocyanins/chemistry
3.
J Am Soc Mass Spectrom ; 35(6): 1261-1271, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780179

ABSTRACT

We investigated the applicability of proton transfer reaction-time-of-flight mass spectrometry (PTR-TOF-MS) for quantitative analysis of mixtures comprising glycerin, acetol, glycidol, acetaldehyde, acetone, and propylene glycol. While PTR-TOF-MS offers real-time simultaneous determination, the method selectivity is limited when analyzing compounds with identical elemental compositions or when labile compounds present in the mixture produce fragments that generate overlapping ions with other matrix components. In this study, we observed significant fragmentation of glycerin, acetol, glycidol, and propylene glycol during protonation via hydronium ions (H3O+). Nevertheless, specific ions generated by glycerin (m/z 93.055) and propylene glycol (m/z 77.060) enabled their selective detection. To thoroughly investigate the selectivity of the method, various mixtures containing both isotope-labeled and unlabeled compounds were utilized. The experimental findings demonstrated that when samples contained high levels of glycerin, it was not feasible to perform time-resolved analysis in H3O+ mode for acetaldehyde, acetol, and glycidol. To overcome the observed selectivity limitations associated with the H3O+ reagent ions, alternative ionization modes were investigated. The ammonium ion mode proved appropriate for analyzing propylene glycol (m/z 94.086) and acetone (m/z 76.076) mixtures. Concerning the nitric oxide mode, specific m/z were identified for acetaldehyde (m/z 43.018), acetone (m/z 88.039), glycidol (m/z 73.028), and propylene glycol (m/z 75.044). It was concluded that considering the presence of multiple product ions and the potential influence of other compounds, it is crucial to conduct a thorough selectivity assessment when employing PTR-TOF-MS as the sole method for analyzing compounds in complex matrices of unknown composition.


Subject(s)
Electronic Nicotine Delivery Systems , Mass Spectrometry , Nicotiana , Volatile Organic Compounds , Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Nicotiana/chemistry , Propylene Glycol/analysis , Propylene Glycol/chemistry , Acetaldehyde/analysis , Acetaldehyde/chemistry , Acetone/analysis , Acetone/chemistry , Acetone/analogs & derivatives , Glycerol/analysis , Glycerol/chemistry , Hot Temperature , Epoxy Compounds/chemistry , Epoxy Compounds/analysis , Propanols/chemistry , Propanols/analysis
4.
Sci Total Environ ; 929: 172629, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38649057

ABSTRACT

In the context of the increasing global use of ethanol biofuel, this work investigates the concentrations of ethanol, methanol, and acetaldehyde, in both the gaseous phase and rainwater, across six diverse urban regions and biomes in Brazil, a country where ethanol accounts for nearly half the light-duty vehicular fuel consumption. Atmospheric ethanol median concentrations in São Paulo (SP) (12.3 ± 12.1 ppbv) and Ribeirão Preto (RP) (12.1 ± 10.9 ppbv) were remarkably close, despite the SP vehicular fleet being ∼13 times larger. Likewise, the rainwater VWM ethanol concentration in SP (4.64 ± 0.38 µmol L-1) was only 26 % higher than in RP (3.42 ± 0.13 µmol L-1). This work demonstrated the importance of evaporative emissions, together with biomass burning, as sources of the compounds studied. The importance of biogenic emissions of methanol during forest flooding was identified in campaigns in the Amazon and Atlantic forests. Marine air masses arriving at a coastal site led to the lowest concentrations of ethanol measured in this work. Besides vehicular and biomass burning emissions, secondary formation of acetaldehyde by photochemical reactions may be relevant in urban and non-urban regions. The combined deposition flux of ethanol and methanol was 6.2 kg ha-1 year-1, avoiding oxidation to the corresponding and more toxic aldehydes. Considering the species determined here, the ozone formation potential (OFP) in RP was around two-fold higher than in SP, further evidencing the importance of emissions from regional distilleries and biomass burning, in addition to vehicles. At the forest and coastal sites, the OFP was approximately 5 times lower than at the urban sites. Our work evidenced that transition from gasoline to ethanol or ethanol blends brings the associated risk of increasing the concentrations of highly toxic aldehydes and ozone, potentially impacting the atmosphere and threatening air quality and human health in urban areas.


Subject(s)
Acetaldehyde , Air Pollutants , Environmental Monitoring , Ethanol , Methanol , Rain , Brazil , Acetaldehyde/analysis , Ethanol/analysis , Methanol/analysis , Air Pollutants/analysis , Cities
5.
J Environ Sci (China) ; 139: 377-388, 2024 May.
Article in English | MEDLINE | ID: mdl-38105063

ABSTRACT

Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM2.5 over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH3CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO2 and HO2, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.


Subject(s)
Air Pollutants , Air Pollutants/analysis , China , Particulate Matter/analysis , Seasons , Acetaldehyde/analysis , Environmental Monitoring , Aerosols/analysis
6.
Huan Jing Ke Xue ; 44(10): 5418-5430, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827760

ABSTRACT

The situation of air pollution in Guanzhong Plain has been increasing in recent years; hence, it is very important to study the characteristics of volatile organic compounds (VOCs) and their health risks in urban functional zones. We analyzed 115 VOCs using gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high performance liquid chromatography (HPLC) at four sampling sites in the traffic, comprehensive, industrial, and scenic zones of Baoji. We analyzed the main components and key species in the different functional zones. Ozone formation potential (OFP),·OH consumption rate (L·OH), and secondary organic aerosol formation potential (SOAFP) were used to evaluate the environmental impact, and the hazard index (HI) and lifetime cancer risk (LCR) methods were employed. The results revealed that the mean values of φ(TVOCs) in the traffic, comprehensive, industrial, and scenic zones were (59.63±23.85)×10-9, (42.92±11.88)×10-9, (60.27±24.09)×10-9, and (55.54±7.44)×10-9, respectively. The dominant contributors at the traffic zone were alkanes, and those at the other functional zones were OVOCs. Acetaldehyde, acetone, n-butane, and isopentane were abundant at different functional zones. According to the characteristic ratios of VOCs, the average ratio of toluene to benzene (T/B) at the traffic, comprehensive, industrial, and scenic zones were 1.84, 2.39, 1.28, and 1.64, respectively, and the ratio of iso-pentane to n-pentane (i/n) was mainly between 1 and 4. The results indicated that VOCs in Baoji were significantly affected by vehicle emissions and gasoline evaporation, biomass and coal combustion, and industrial coatings and foundry. The ratio of m/p-xylene to ethylbenzene (X/E) was lower than 2 at the four functional zones, and the minimum was 1.79 at the scenic zones; the results revealed that X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport. According to the ratio of formaldehyde to acetaldehyde (C1/C2) and the ratio of acetaldehyde to propanal (C2/C3), it was suggested that there may have been evident anthropogenic emission sources, and the photochemical reaction had an important effect on aldehydes and ketones. Environmental impact assessment results revealed that OVOCs and alkenes contributed significantly to OFP and OFP from large to small was as follows:industrial zone>scenic zone>traffic zone>comprehensive zone. The range of L·OH in each functional zone was 8.77-15.82 s-1, with isoprene contributing the most in the industrial zone and acetaldehyde contributing the most at other functional zones. The SOAFP of each functional zone was as follows:scenic zone>comprehensive zone>traffic zone>industrial zone. Toluene, m/p-xylene, and isoprene were the notable species. According to the health risk assessment of EPA, the HI of toxic VOCs in all functional zones was lower than 1, which was at an acceptable level. However, the number of days with HI>1 in industrial zones accounted for 42.86% of the total sampling days, indicating a high risk. The lifetime carcinogenic risk (LCR) of the traffic, comprehensive, industrial, and scenic zones were 1.83×10-5, 1.21×10-5, 1.85×10-5, and 1.63×10-5, respectively, which were all in grade Ⅲ of the rating system, indicating a high probability of cancer risk. Species with LCR greater than 10-6 were formaldehyde; acetaldehyde; 1,2-dibromoethane; 1,2-dichloroethane; 1,2-dichloropropane; and chloroform.


Subject(s)
Air Pollutants , Neoplasms , Ozone , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Vehicle Emissions/analysis , Ozone/analysis , Toluene/analysis , Risk Assessment , Acetaldehyde/analysis , Formaldehyde/analysis , China
7.
Chemosphere ; 342: 140168, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714479

ABSTRACT

It is well-documented that carbonyl compounds have adverse effects on human health. On the other hand, these oxygenated volatile organic compounds (OVOCs) are precursors of secondary pollutants such as tropospheric ozone or peroxy acetyl nitrate (PAN). In particular, formaldehyde, the simplest carbonyl, is the most abundant carbonyl in the air generated from the degradation of most volatile organic compounds (VOCs). This work presents for the first time the characterization and determination of levels of carbonyl compounds by passive monitoring performed from April-December 2021 in the city of Córdoba, Argentina, the second most populated Mediterranean city located in the center of the country. Annual concentrations, considering the 11 carbonyls measured, were in the range of 0.13-8.75 µgm-3. Formaldehyde and acetaldehyde were the carbonyls detected in the highest annual average concentrations of 4.44 ± 1.75 µgm-3 and 3.85 ± 1.44 µgm-3, respectively. These carbonyls represent a contribution of around 40-57% on total carbonyls measured. Statistical analysis to determine significant differences and Pearson correlations with the meteorological parameters were performed. Spring and summer were found to be the seasons with the highest carbonyl concentration linked to forest fire episodes, especially in springtime. The values for the C1/C2 and C2/C3 ratios showed that sources of carbonyl formation are anthropogenic. In addition, the prop-Equiv concentration was determined, where formaldehyde and acetaldehyde were the main producers of tropospheric ozone. The ozone formation potential (OFP) showed that spring and summer are the seasons where carbonyls contribute to the formation of tropospheric ozone.This study represents a first approach of the carbonyl concentration in the city and of the influence of meteorological parameters on the behavior of carbonyls.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Argentina , Environmental Monitoring , Formaldehyde/analysis , Acetaldehyde/analysis , Ozone/analysis , China
8.
World J Microbiol Biotechnol ; 39(10): 271, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37541980

ABSTRACT

Sherry wine is a pale-yellowish dry wine produced in Southern-Spain which features are mainly due to biological aging when the metabolism of biofilm-forming yeasts (flor yeasts) consumes ethanol (and other non-fermentable carbon sources) from a previous alcoholic fermentation, and produces volatile compounds such as acetaldehyde. To start aging and maintain the wine stability, a high alcohol content is required, which is achieved by the previous fermentation or by adding ethanol (fortification). Here, an alternative method is proposed which aims to produce a more economic, distinctive Sherry wine without fortification. For this, a flor yeast has been pre-acclimatized to glycerol consumption against ethanol, and later confined in a fungal-based immobilization system known as "microbial biocapsules", to facilitate its inoculum. Once aged, the wines produced using biocapsules and free yeasts (the conventional method) exhibited chemical differences in terms of acidity and volatile concentrations. These differences were evaluated positively by a sensory panel. Pre-acclimatization of flor yeasts to glycerol consumption was not successful but when cells were immobilized in fungal pellets, ethanol consumption was lower. We believe that immobilization of flor yeasts in microbial biocapsules is an economic technique that can be used to produce high quality differentiated Sherry wines.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Glycerol/metabolism , Acetaldehyde/analysis , Acetaldehyde/metabolism , Ethanol/metabolism , Fermentation
9.
Toxicol Mech Methods ; 33(9): 766-780, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37496417

ABSTRACT

Metaldehyde consumption by pets and other mammals constitute medical emergencies ideally requiring rapid poison removal. The purpose of this study was three-fold: 1) development of a sensitive method for metaldehyde quantitation in patient serum samples by gas chromatography combined with tandem quadrupole mass spectrometry (GC/MS/MS); 2) development of a sensitive method for quantitation of the volatile metaldehyde metabolite acetaldehyde by headspace analysis combined with GC/MS/MS; and 3) an initial assessment of the efficacy of combined dialysis and hemoperfusion treatments in diminishing toxin loads in canine victims of metaldehyde poisoning. Both mass spectrometric approaches relied on Multiple Reaction Monitoring (MRM) methodologies. Metaldehyde extracted via liquid-liquid partitioning from serum was detected with a limit of quantitation (LOQ) of 7.3 ± 1.4 ng/mL with linearity in the range 1-250 ng/mL with accuracy improved by inclusion of a deuterated metaldehyde internal standard. Acetaldehyde was determined to have an LOQ of 0.39 µg/mL with linearity in the range 1-1000 µg/mL. The developed methodologies were applied to canine samples taken over various time points during dialysis treatment. Two of three canine patients showed significant abatement of metaldehyde levels by over 50-fold from initial concentrations while a third was shown to be negative with no measureable metaldehyde. The toxic metabolite acetaldehyde was found in one of the metaldehyde-poisoned patients and the detected acetaldehyde was also reduced by roughly 200-fold during the course of treatment. The designed mass spectrometric techniques were thus successful in demonstrating the efficacy of the applied dialysis-hemoperfusion methods which may find wider applicability against other potentially lethal toxins in poisoned patients in future studies.


Subject(s)
Acetaldehyde , Tandem Mass Spectrometry , Humans , Animals , Dogs , Gas Chromatography-Mass Spectrometry , Acetaldehyde/analysis , Renal Dialysis , Mammals
10.
Environ Sci Technol ; 57(21): 8174-8182, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37199463

ABSTRACT

The coexistence of NO and CH3CHO in the air is considered to produce secondary peroxyacetyl nitrate (PAN) under sunlight irradiation, threatening the ecological environment and public health. Herein, we provide a simple strategy for the photocatalytic removal of NO and acetaldehyde (CH3CHO) on Sr2Sb2O7. In comparison with the single removal, the nearly complete removal of NO is reached by deep oxidation to NO3- with the assistance of CH3CHO. The underlying mechanism is revealed by GC-MS, in situ DRIFTS, and density functional theory calculations. The intermediates •CH3 from CH3CHO and NO2- from NO tend to bond and further oxidize to CH3ONO2, thus promoting NO removal. CH3NO2 and CH3ONO2 are the key products instead of PAN on Sr2Sb2O7 from the synergistic degradation of NO and CH3CHO. This work brings new insights into reaction pathway regulation for promoting performance and suppressing byproducts during synergistic air pollutant removal.


Subject(s)
Acetaldehyde , Air Pollutants , Nitrogen Dioxide , Acetaldehyde/analysis , Acetaldehyde/chemistry , Air Pollutants/analysis , Oxidation-Reduction
11.
Environ Pollut ; 331(Pt 2): 121908, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37257807

ABSTRACT

Carbonyl compounds are critical components of volatile organic compounds, which significantly participate in the photochemical formation of atmospheric ozone and thus threaten human health. Here we measured 15 C1-C8 carbonyl compounds at an urban site in Linyi, a typically industrialised city in the North China Plain (NCP). Formaldehyde (3.89 ppbv), acetaldehyde (1.66 ppbv) and acetone (2.03 ppbv) were found to be the top three carbonyl compounds, accounting for 76.11% of the total concentration of carbonyl compounds. Anthropogenic secondary formation was recognised as the main source of the top five carbonyl compounds, which included formaldehyde, acetaldehyde, acetone, butyraldehyde and benzaldehyde, and accounted for 46-54% of all sources. Alkenes were the most important precursors of formaldehyde and acetaldehyde, suggesting that reducing the emission of alkenes from anthropogenic sources is an effective way to control carbonyl compound pollution in Linyi. Furthermore, the photolysis of carbonyl compounds played a significant role (68-75%) as sources of HO2• and RO2• and thus made a significant contribution (14.6%) to the photochemical formation of O3. This study highlights the importance of anthropogenic secondary formation as a source of carbonyl compounds and provides a scientific basis for O3 pollution control in carbonyl compound-enriched cities in the NCP.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Acetone/analysis , Photochemical Processes , Environmental Monitoring , China , Acetaldehyde/analysis , Ozone/analysis , Formaldehyde/analysis , Volatile Organic Compounds/analysis , Alkenes
12.
J Anal Toxicol ; 47(5): 464-469, 2023 May 19.
Article in English | MEDLINE | ID: mdl-36943725

ABSTRACT

Metaldehyde, a widely used molluscicide, is the third cause of intoxication by pesticides in domestic animals in Europe. Most mammalian species are susceptible, and its exposure may lead to death within a few hours. While metaldehyde intoxication diagnosis is in most cases presumptive, based on the symptomatology or from "postmortem" analysis, few analytical methods are currently available for live animals. The aim of this work was to describe a fast analytical method for the specific and quantitative determination of metaldehyde in animal whole blood and serum at concentrations of toxicological significance. A liquid-liquid extraction with chloroform and gas chromatography-mass spectrometry quantification are proposed. The method limit of quantification (LOQ) was 0.04 µg/mL in serum and whole blood. The method was linear in the range from 0.04 to 200 µg/mL. The recovery was between 93% and 102% for LOQ, low, medium and high spike concentrations. Intra- and inter-assay relative standard deviation was <12% in all spike concentrations in both serum and whole blood, apart from one of the experiments at LOQ in whole blood, which accounted for 17.7%. The method was applied to real intoxication cases, and the concentration found in positive samples was between 29 and 69 µg/mL. The proposed method provides high sensitivity, accuracy and precision and can be used to assist in the diagnosis of metaldehyde poisoning.


Subject(s)
Acetaldehyde , Pesticides , Animals , Gas Chromatography-Mass Spectrometry/methods , Acetaldehyde/analysis , Chloroform/analysis , Mammals
13.
Environ Pollut ; 326: 121465, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36958651

ABSTRACT

Peroxyacetyl nitrate (PAN) is one of the critical secondary pollutants in photochemical smog. This study investigated the relationship between PAN and PAN precursors with the Regional Atmospheric Chemical Mechanism version 2 model in six episodes recorded in Zhengzhou. In all episodes, peroxyacetyl radical (PA) was primarily produced by acetaldehyde oxidation, with more than 70% contributions. In photochemical episodes and photochemical-haze co-occurring episodes (combined episodes), methylglyoxal secondarily contributes 8.1%-10.6% to PA while in haze pollution, the propagation of other radicals to PA is the second most important source (12.0%-19.1%). Among anthropogenic non-methane hydrocarbons, alkene restricted PAN formation as first-generation precursors, with the relative incremental reactivity of PAN (RIRPAN) more than 0.6 during three-type episodes. Nitrous acid (HONO) also played important role in PAN formation. Especially during photochemical episodes, RIRPAN(HONO) reached 0.79, which was comparable to the RIRPAN value of alkene. Through sensitivity analysis of the relative formation of PAN to O3 (the amount of PAN generated when 100 ppb O3 formed), HONO was identified as the key precursor of PAN in haze pollution by promoting the oxidation of NMHC, while alkene predominated the relative formation of PAN to O3 in photochemical and combined pollution through producing acetaldehyde. The sensitivity of PAN to HONO is obviously enhanced with higher NOx/VOC ratios during photochemical and combined pollution.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/analysis , Alkenes/analysis , Nitrous Acid , Seasons , Acetaldehyde/analysis , Ozone/analysis
14.
Food Chem ; 414: 135740, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36842203

ABSTRACT

Redox species in wine are altered by pH and some wines are easily degraded due to oxidation and sulfur dioxide (SO2) reduction. There is a need for quick, easy, simple, and economical methodologies for pH and wine-oxidized products (acetaldehyde) analysis. This study aimed to measure pH and degradation of wines that were electrochemically analyzed using polyaniline (PANI) sensor. Gas chromatography (GC) and fourier transform infrared spectrometer (FT-IR) were also used. Electrochemical analysis showed that oxidation was accelerated and peak currents (Ip,a) and potentials (Ep,a) shifted to negative direction due to acetaldehyde formation. PANI sensor achieved a limit of detection (LOD) of 7 × 10-1 ppm and a sensitivity of 5.20 µA ppm-1 cm-2. Acetaldehyde formation was confirmed by GC (30%) and FT-IR spectra at 1647 cm-1 to the CO vibration of aldehyde. These results suggested that acetaldehyde degraded the taste of wine after remaining open.


Subject(s)
Wine , Wine/analysis , Spectroscopy, Fourier Transform Infrared , Oxidation-Reduction , Acetaldehyde/analysis , Oxidative Stress
15.
Article in English | MEDLINE | ID: mdl-36767350

ABSTRACT

INTRODUCTION: Formaldehyde, a colorless and highly irritating substance, causes cancer of the nasopharynx and leukemia. Furthermore, it is one of the environmental mutagens to which humans are most abundantly exposed. Acetaldehyde was recently classified as carcinogen class 1B and mutagen class 2 in Annex VI EC regulation. Occupational exposure to the two aldehydes occurs in a wide variety of occupations and industries. The aim of this study is to deepen exposure to the two aldehydes in the non-traditional productive sectors of bakeries and pastry producers. METHODS: The evaluation of exposure to formaldehyde and acetaldehyde was conducted in Italy in 2019, in specific tasks and positions of 11 bakeries and pastry producers (115 measures, of which 57.4% were in fixed positions and the rest were personal air sampling). The measurements were performed using Radiello© radial diffusion samplers. A logarithmic transformation of the data was performed, and the correlation between the two substances was calculated. Moreover, linear models considering the log-formaldehyde as the outcome and adjusting for log-acetaldehyde values were used. RESULTS: The study identified high levels of acetaldehyde and formaldehyde exposure in the monitored workplaces. Higher mean values were observed in the leavening phase (8.39 µg/m3 and 3.39 µg/m3 for log-transformed data acetaldehyde and formaldehyde, respectively). The adjusted univariate analyses show statistically significant factors for formaldehyde as the presence of yeast, the presence of type 1 flour, the use of barley, the use of fats, the type of production, the use of spelt, and the presence of type 0 flour. CONCLUSIONS: The measurements confirmed the release of formaldehyde and acetaldehyde in bakeries and pastry industries, especially in some phases of the work process, such as leavening.


Subject(s)
Acetaldehyde , Occupational Exposure , Humans , Acetaldehyde/analysis , Formaldehyde/analysis , Occupational Exposure/analysis , Aldehydes/analysis , Allergens
16.
Sci Total Environ ; 863: 160769, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36526184

ABSTRACT

Carbonyls have attracted continuous attention due to their critical roles in atmospheric chemistry and their potential hazards to the ecological environment and human health. In this study, atmospheric carbonyls were measured during several ground-level-ozone (O3) pollution episodes at three urban sites (CRAES, IEP and BJUT) in Beijing in 2019 and 2020. Comparative analysis revealed that the carbonyl concentrations were 20.25 ± 6.91 ppb and 13.43 ± 5.13 ppb in 2019 and 2020 in Beijing, respectively, with a significant spatial trend from north to south, and carbonyl levels in urban Beijing were in an upper-intermediate range in China, and higher than those in other countries reported in the literature. A particularly noteworthy phenomenon is the consistency of carbonyl concentrations with variations in O3 concentrations. On O3 polluted days, the carbonyl concentrations were 1.3-1.5 times higher than those on non-O3 polluted days. Secondary formation contributed more to formaldehyde (FA) and acetaldehyde (AA) on O3 polluted days, while the anthropogenic emissions were more significant for acetone (AC) on non-O3 polluted days. Vehicle exhaust and solvent utilization were the main primary contributors to carbonyls. Due to reduced anthropogenic emissions caused by the COVID-19 lockdown and the "Program for Controlling Volatile Organic Compounds in 2020" in China, the contributions of primary emissions to carbonyls decreased in 2020 in Beijing. Human cancer risks to exposed populations from FA and AA increased with elevated O3 levels, and the risks still remained on non-O3 polluted days. The residents around the BJUT site might experience relatively higher human cancer risks than those around the other two sites. The findings in this study confirmed that atmospheric carbonyl pollution and its potential human health hazards cannot be ignored in urban Beijing; therefore, more strict control strategies for atmospheric carbonyls are urgently needed to better protect human health in Beijing in the future.


Subject(s)
Air Pollutants , COVID-19 , Ozone , Volatile Organic Compounds , Humans , Beijing , Ozone/analysis , Air Pollutants/analysis , Environmental Monitoring , Communicable Disease Control , China , Volatile Organic Compounds/analysis , Risk Assessment , Acetaldehyde/analysis , Formaldehyde/analysis
17.
Environ Pollut ; 320: 120913, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36563991

ABSTRACT

Field measurements of atmospheric carbonyl compounds (carbonyls) and essential precursors of O3 were carried out in the urban area of Linfen City (Linfen) where serious O3 pollution has occurred in recent years due to its unique terrain. Carbonyls were sampled using an automatic carbonyl sampler in August 2019 to determine their pollution characteristics and sources. An average concentration of ten carbonyls was 27 ± 5.7 µg m-3 detected using an HPLC-UV system. The concentrations of most detected carbonyls in August were significantly higher than those in the winter months in China. Acetone, formaldehyde and acetaldehyde were the most abundant species, accounting for 73% of all detected carbonyls. Formaldehyde, acetaldehyde, and methacrolein (MACR) were the most significant contributors to OH• reactivity and ozone generation, indicating that these three carbonyls were the key species influencing the production of O3. The concentrations of formaldehyde, acetaldehyde, and MACR showed similar diurnal variations on most days, with high values during the daytime reaching a peak at 10:00. However, the concentrations of the latter two species varied less than that of formaldehyde during the day. The acetone concentration generally increased continuously from morning to night, with the maximum value around 22:00. The C1/C2 ratio in summer was higher than that in winter. These results indicated that the carbonyls in Linfen were not only affected by anthropogenic sources such as vehicle exhaust but also by secondary photochemical production. The results of formaldehyde source apportionment showed that the contributions of background, primary, and secondary sources to the observed formaldehyde concentration were 27.6%, 36.6%, and 35.8%, respectively. Additionally, this study revealed for the first time that the vertical transport of air masses containing high concentrations of O3 and NO3 radicals above the boundary layer could increase the secondary generation of formaldehyde at night in summer.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Acetone/analysis , Environmental Monitoring/methods , Formaldehyde/analysis , Acetaldehyde/analysis , China , Volatile Organic Compounds/analysis
18.
Food Chem ; 401: 134125, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36096004

ABSTRACT

The influence and its mechanism of ultrasound on acetaldehyde/glyoxylic acid competing bridged the polymerization coloration of flavan-3-ols in model wine solution were investigated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and kinetics and thermodynamic model. The results indicate that ultrasound could significantly accelerate the polymerization coloration and further modify wine color. In addition, the polymerization reaction conformed first-order reaction model, and the reaction rate constant (k) values were markedly increased by ultrasound, accelerating the coloration reaction, especially in the model wine containing glyoxylic acid. Besides, the polymerization processing was non-spontaneous and endothermic according to the thermodynamic analysis. In conclusion, ultrasound was indeed conducive to accelerate glyoxylic acid/acetaldehyde-bridged the polymerization of flavan-3-ols and further effect the wine color, which could provide a theoretical basis for the scientific analysis of the mechanism of ultrasound modifying wine color.


Subject(s)
Wine , Wine/analysis , Acetaldehyde/analysis , Glyoxylates/chemistry , Chromatography, High Pressure Liquid , Polyphenols/analysis , Polymers/analysis , Flavonoids/analysis
19.
Reprod Biomed Online ; 46(1): 54-68, 2023 01.
Article in English | MEDLINE | ID: mdl-36372658

ABSTRACT

RESEARCH QUESTION: Can volatile organic compounds (VOC) be modelled in an IVF clinical setting? DESIGN: The study performed equilibrium modelling of low concentrations of airborne VOC partitioning from the air phase into the oil cover layer into the water-based culture media and into/onto the embryo (air-oil-water-embryo). The air-phase VOC were modelled based on reported VOC concentrations found in modern assisted reproductive technology (ART) suites, older IVF clinics, and hospitals, as well as at 10 parts per billion (ppb) and 100 ppb for all compounds. The modelling was performed with 23 documented healthcare-specific VOC. RESULTS: Based on the partitioning model, seven compounds (acrolein, formaldehyde, phenol, toluene, acetaldehyde, ethanol and isopropanol) should be of great concern to the embryologist and clinician. Acrolein, formaldehyde, phenol, toluene and acetaldehyde are the VOC with the most potent cytotoxic factor and the highest toxic VOC concentration in media. In addition, ethanol and isopropanol are routinely found in the greatest air-phase concentrations and modelled to have the highest water-based culture concentrations. CONCLUSIONS: The results of the equilibrium partitioning modelling of VOC provides a fundamental understanding of how airborne VOC partition from the air phase and negatively influence human IVF outcomes. The results presented here are based on the theoretical model and the values presented have not yet been measured in a laboratory or clinical setting. High air-phase concentrations and toxic concentrations of VOC in culture media are likely indicators of poor clinical outcomes. Based on this model, improved air quality in IVF laboratories reduces the chemical burden imparted on embryos, which supports findings of improved IVF outcomes with reduced air-phase VOC concentrations.


Subject(s)
Air Pollution, Indoor , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Laboratories , Acrolein , 2-Propanol , Reproductive Techniques, Assisted , Acetaldehyde/analysis , Formaldehyde/analysis , Fertilization in Vitro , Ethanol , Toluene , Phenols , Water , Air Pollution, Indoor/analysis , Environmental Monitoring/methods
20.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421150

ABSTRACT

A new spectroelectrochemical two-enzyme sensor system has been developed for the detection of acetaldehyde in wine. A combination of spectroscopy and electrochemistry improves the analytical features of the electrochemical sensor because the optical information collected with this system is only associated with acetaldehyde and avoids the interferents also present in wines as polyphenols. Spectroelectrochemical detection is achieved by the analysis of the optical properties of the K3[Fe(CN)6]/K4[Fe(CN)6] redox couple involved in the enzymatic process: aldehyde dehydrogenase catalyzes the aldehyde oxidation using ß-nicotinamide adenine dinucleotide hydrate (NAD+) as a cofactor and, simultaneously, diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of K3[Fe(CN)6]. An analysis of the characteristic UV-vis bands of K3[Fe(CN)6] at 310 and 420 nm allows the detection of acetaldehyde, since absorption bands are only related to the oxidation of this substrate, and avoids the contribution of other interferents.


Subject(s)
Acetaldehyde , Wine , Acetaldehyde/analysis , Wine/analysis , NAD/analysis , NAD/chemistry , NAD/metabolism , Electrochemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...