Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Water Res ; 256: 121562, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604064

ABSTRACT

Halophenylacetamides (HPAcAms) have been identified as a new group of nitrogenous aromatic disinfection byproducts (DBPs) in drinking water, but the toxicity mechanisms associated with HPAcAms remain almost completely unknown. In this work, the cytotoxicity of HPAcAms in human hepatoma (HepG2) cells was evaluated, intracellular oxidative stress/damage levels were analyzed, their binding interactions with antioxidative enzyme were explored, and a quantitative structure-activity relationship (QSAR) model was established. Results indicated that the EC50 values of HPAcAms ranged from 2353 µM to 9780 µM, and the isomeric structure as well as the type and number of halogen substitutions could obviously induce the change in the cytotoxicity of HPAcAms. Upon exposure to 2-(3,4-dichlorophenyl)acetamide (3,4-DCPAcAm), various important biomarkers linked to oxidative stress and damage, such as reactive oxygen species, 8­hydroxy-2-deoxyguanosine, and cell apoptosis, exhibited a significant increase in a dose-dependent manner. Moreover, 3,4-DCPAcAm could directly bind with Cu/Zn-superoxide dismutase and induce the alterations in the structure and activity, and the formation of complexes was predominantly influenced by the van der Waals force and hydrogen bonding. The QSAR model supported that the nucleophilic reactivity as well as the molecular compactness might be highly important in their cytotoxicity mechanisms in HepG2 cells, and 2-(2,4-dibromophenyl)acetamide and 2-(3,4-dibromophenyl)acetamide deserved particular attention in future studies due to the relatively higher predicted cytotoxicity. This study provided the first comprehensive investigation on the cytotoxicity mechanisms of HPAcAm DBPs.


Subject(s)
Disinfection , Drinking Water , Drinking Water/chemistry , Humans , Hep G2 Cells , Quantitative Structure-Activity Relationship , Acetamides/toxicity , Acetamides/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Oxidative Stress/drug effects , Disinfectants/toxicity , Disinfectants/chemistry , Reactive Oxygen Species/metabolism
2.
J Hazard Mater ; 471: 134270, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640676

ABSTRACT

Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to ß subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.


Subject(s)
Acetamides , Endoplasmic Reticulum , Herbicides , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Unfolded Protein Response , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Acetamides/pharmacology , Acetamides/toxicity , Herbicides/toxicity , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Unfolded Protein Response/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/drug effects , Cytosol/metabolism , Cytosol/drug effects , Molecular Docking Simulation , Proteotoxic Stress
3.
Environ Microbiol ; 25(12): 2972-2987, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37994199

ABSTRACT

Herbicides are important, ubiquitous environmental contaminants, but little is known about their interaction with bacterial aquatic communities. Here, we sampled a protected natural freshwater habitat and characterised its microbiome in interaction with herbicides. We evolved the freshwater microbiomes in a microcosm assay of exposure (28 days) to flufenacet and metazachlor at environmental concentrations of 0.5, 5 and 50 µg L-1 . Inhibitory effects of herbicides were exemplarily assessed in cultured bacteria from the same pond (Pseudomonas alcaligenes, Paenibacillus amylolyticus and Microbacterium hominis). Findings were compared to long-term concentrations as provided by local authorities. Here, environmental concentrations reached up to 11 µg L-1 (flufenacet) and 76 µg L-1 (metazachlor). Bacteria were inhibited at minimum inhibitory concentrations far above these values; however, concentrations of 50 µg L-1 of flufenacet resulted in measurable growth impairment. While most herbicide-exposed microcosm assays did not differ from controls, Acidobacteria were selected at high environmental concentrations of herbicides. Alpha-diversity (e.g., taxonomic richness on phylum level) was reduced when aquatic microbiomes were exposed to 50 µg metazachlor or flufenacet. One environmental strain of P. alcaligenes showed resistance to high concentrations of flufenacet (50 g L-1 ). In total, this study reveals that ecologic imbalance due to herbicide use significantly impacts aquatic microbiomes.


Subject(s)
Herbicides , Herbicides/pharmacology , Herbicides/analysis , Acetamides/toxicity , Ecosystem
4.
Environ Pollut ; 331(Pt 1): 121878, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37236591

ABSTRACT

The lack of data on the chronic effects of chloroacetanilide herbicide metabolites on non-target aquatic organisms creates a gap in knowledge about the comprehensive impacts of excessive and repeated pesticide use. Therefore, this study evaluates the long-term effects of propachlor ethanolic sulfonic acid (PROP-ESA) after 10 (T1) and 20 (T2) days at the environmental level of 3.5 µg.L-1 (E1) and its 10x fold multiply 35 µg.L-1 (E2) on a model organism Mytilus galloprovincialis. To this end, the effects of PROP-ESA usually showed a time- and dose-dependent trend, especially in its amount in soft mussel tissue. The bioconcentration factor increased from T1 to T2 in both exposure groups - from 2.12 to 5.30 in E1 and 2.32 to 5.48 in E2. Biochemical haemolymph profile and haemocyte viability were not affected by PROP-ESA exposure. In addition, the viability of digestive gland (DG) cells decreased only in E2 compared to control and E1 after T1. Moreover, malondialdehyde levels increased in E2 after T1 in gills, and DG, superoxidase dismutase activity and oxidatively modified proteins were not affected by PROP-ESA. Histopathological observation showed several damages to gills (e.g., increased vacuolation, over-production of mucus, loss of cilia) and DG (e.g., growing haemocyte trend infiltrations, alterations of tubules). This study revealed a potential risk of chloroacetanilide herbicide, propachlor, via its primary metabolite in the Bivalve bioindicator species M. galloprovincialis. Furthermore, considering the possibility of the biomagnification effect, the most prominent threat poses the ability of PROP-ESA to be accumulated in edible mussel tissues. Therefore, future research about the toxicity of pesticide metabolites alone or their mixtures is needed to gain comprehensive results about their impacts on living non-target organisms.


Subject(s)
Herbicides , Mytilus , Water Pollutants, Chemical , Animals , Mytilus/metabolism , Herbicides/metabolism , Acetamides/toxicity , Acetamides/metabolism , Gills/metabolism , Water Pollutants, Chemical/metabolism
5.
Environ Toxicol Pharmacol ; 96: 104008, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36341964

ABSTRACT

The metabolism and toxicity of current-use herbicide safeners remain understudied. We investigated the enantioselective metabolism of the safener benoxacor in Rhesus monkey subcellular fractions. Benoxacor was incubated with liver microsomes and cytosol from female and male monkeys (≤30 min). Benoxacor levels and enantiomeric fractions were determined with gas chromatography. Benoxacor was metabolized by microsomal cytochrome P450 enzymes (CYPs), cytosolic glutathione-S-transferases (GSTs), and microsomal and cytosolic carboxylesterase (CESs). CES-mediated microsomal metabolism followed the order males > females, whereas the CYP-mediated clearance followed the order females > males. CYP-mediated metabolism initially resulted in an enrichment of the second eluting benoxacor enantiomer (E2-benoxacor), whereas the first eluting benoxacor enantiomer (E1-benoxacor) was enriched after 10 or 30 min in female or male microsomal incubations. Benoxacor metabolism by GSTs was enantiospecific, with a total depletion of E1-benoxacor after approximately 20 min. Thus, the enantioselective metabolism of benoxacor by GSTs and CYPs may affect its toxicity.


Subject(s)
Acetamides , Microsomes, Liver , Male , Female , Animals , Microsomes, Liver/metabolism , Cytosol/metabolism , Acetamides/toxicity , Acetamides/chemistry , Acetamides/metabolism , Cytochrome P-450 Enzyme System/metabolism , Microsomes/metabolism
6.
Environ Res ; 209: 112859, 2022 06.
Article in English | MEDLINE | ID: mdl-35114144

ABSTRACT

Chloroacetamide herbicides (CAAHs) are important herbicides that were widely used to control agricultural weeds. However, their mass applications have seriously contaminated environment, and they are toxic to living beings. CAAHs are easy to enter anoxic environments such as subsoil, wetland sediment, and groundwater, where CAAHs are mainly degraded by anaerobic organisms. To date, there are no research on the anaerobic degradation of CAAHs by pure isolate and toxicity of anaerobic metabolites of CAAHs. In this study, the anaerobic degradation kinetics and metabolites of CAAHs by an anaerobic isolate BAD-10T and the toxicity of anaerobic metabolites were studied. Isolate BAD-10T could degrade alachlor, acetochlor, propisochlor, butachlor, pretilachlor and metolachlor with the degradation kinetics fitting the pseudo-first-order kinetics equation. The degradation rates of CAAHs were significantly affected by the length of N-alkoxyalkyl groups, the shorter the N-alkoxyalkyl groups, the higher the degradation rates. Four metabolites 2-ethyl-6-methyl-N-(ethoxymethyl)-acetanilide (EMEMA), N-(2-methyl-6-ethylphenyl)-acetamide (MEPA), N-2-ethylphenyl acetamide and 2-ethyl-N-carboxyl aniline were identified during acetochlor degradation, and an anaerobic catabolic pathway of acetochlor was proposed. The toxicity of EMEMA and EMPA for zebrafish, Arabidopsis and Chlorella ellipsoidea were obviously lower than that of acetochlor, indicating that the anaerobic degradation of acetochlor by isolate BAD-10T is a detoxification process. The work reveals the anaerobic degradation kinetics and catabolic pathway of CAAHs and highlights a potential application of Proteiniclasticum sediminis BAD-10T for bioremediation of CAAHs residue-contaminated environment.


Subject(s)
Chlorella , Herbicides , Acetamides/metabolism , Acetamides/toxicity , Anaerobiosis , Animals , Biodegradation, Environmental , Chlorella/metabolism , Herbicides/toxicity , Zebrafish/metabolism
7.
Ecotoxicol Environ Saf ; 233: 113334, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35203007

ABSTRACT

Bromoacetamide (BAcAm) is a nitrogenous disinfection by-product. We previously found that BAcAm induced developmental toxicity in zebrafish embryos, but the underlying mechanisms remain to be elucidated. Since thyroid hormones (THs) homeostasis is crucial to development, we hypothesized that disruption of THs homeostasis may play a role in the developmental toxicity of BAcAm. In this study, we found BAcAm exposure significantly increased mortality and malformation rate, decreased hatching rate and body length, inhibited the locomotor capacity in zebrafish embryos. BAcAm elevated TSH, T3 and T4 levels, down-regulated T3/T4 ratios, and up-regulated mRNA expression changes of THs related genes (trh, tsh, tg, nis, tpo, dio1, dio2, ugt1ab,klf9 and rho), but down-regulated mRNA expression changes of TH receptors (tr α and tr ß). Up-regulated tr α and tr ß mRNAs by rescue treatment confirmed that both tr α and tr ß were involved in the developmental toxicity of BAcAm. In conclusion, our study indicates disruption of THs homeostasis via the thyroid hormone receptors was responsible for the developmental toxicity of BAcAm.


Subject(s)
Acetamides/toxicity , Receptors, Thyroid Hormone , Thyroid Gland/drug effects , Zebrafish , Animals , Embryo, Nonmammalian/drug effects , Homeostasis , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Thyroid Gland/metabolism , Thyroid Hormones/metabolism , Zebrafish/embryology , Zebrafish/genetics
8.
Sci Total Environ ; 821: 152961, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35031379

ABSTRACT

Arsenic (As) and disinfection by-products are important health risk factors in the water environment. However, their combined effects on different cell populations in the liver are not well known. Here, zebrafish were exposed to 100 µg/L As, 300 µg/L 2,2-dichloroacetamide (DCAcAm), and their combination for 23 days. Then transcriptome profiles of cell populations in zebrafish liver were analyzed by single-cell RNA sequencing (scRNA-seq). A total of 13,563 cells were obtained, which were identified as hepatocytes, hepatic duct cells, endothelial cells and macrophages. Hepatocytes were the main target cell subtype of As and DCAcAm exposures. DCAcAm exposure induced higher toxicity in male hepatocytes, which specifically changed amino acid metabolism, response to hormone and cofactor metabolism. However, As exposure caused higher toxicity in female hepatocytes, which altered lipid metabolism, carbon metabolism, and peroxisome. Combined exposure to As and DCAcAm decreased toxicities in hepatocytes compared to each one alone. Female hepatocytes had higher tolerance to co-exposure of As and DCAcAm than male hepatocytes. Further, combined exposure to As and DCAcAm induced functional changes in macrophages similar to As alone groups, which mainly altered the transfer of sterol and cholesterol. Hepatic duct cells and endothelial cells were not influenced by exposures to As and DCAcAm. This study for the first time highlights the cell-specific combined responses of As and DCAcAm in zebrafish liver, which provide useful information for their health risk assessment in a co-exposure environment.


Subject(s)
Acetamides/toxicity , Arsenic , Water Pollutants, Chemical/toxicity , Animals , Arsenic/toxicity , Endothelial Cells , Female , Liver , Male , Zebrafish
9.
Arch Toxicol ; 95(8): 2851-2865, 2021 08.
Article in English | MEDLINE | ID: mdl-34160648

ABSTRACT

Chromosome aberrations (CAs), i.e. changes in chromosome number or structure, are known to cause chromosome rearrangements and subsequently tumorigenesis. However, the involvement of CAs in chemical-induced carcinogenesis is unclear. In the current study, we aimed to clarify the possible involvement of CAs in chemical carcinogenesis using a rat model with the non-mutagenic hepatocarcinogen acetamide. In an in vivo micronucleus (MN) test, acetamide was revealed to induce CAs specifically in rat liver at carcinogenic doses. Acetamide also induced centromere-positive large MN (LMN) in hepatocytes. Immunohistochemical and electron microscopic analyses of the LMN, which can be histopathologically detected as basophilic cytoplasmic inclusion, revealed abnormal expression of nuclear envelope proteins, increased heterochromatinization, and massive DNA damage. These molecular pathological features in LMN progressed with acetamide exposure in a time-dependent manner, implying that LMN formation can lead to chromosome rearrangements. Overall, these data suggested that CAs induced by acetamide play a pivotal role in acetamide-induced hepatocarcinogenesis in rats and that CAs can cause chemical carcinogenesis in animals via MN formation.


Subject(s)
Acetamides/toxicity , Chromosome Aberrations/chemically induced , Hepatocytes/drug effects , Liver Neoplasms/chemically induced , Acetamides/administration & dosage , Animals , Carcinogenesis/chemically induced , Carcinogens/administration & dosage , Carcinogens/toxicity , Hepatocytes/pathology , Liver Neoplasms/pathology , Male , Micronucleus Tests , Rats , Rats, Inbred F344 , Time Factors
10.
Sci Rep ; 11(1): 12786, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140550

ABSTRACT

Soil microorganisms and their activities are essential for maintaining soil health and fertility. Microorganisms can be negatively affected by application of herbicides. Although effects of herbicides on microorganisms are widely studied, there is a lack of information for chloroacetamide herbicide dimethachlor. Thus, dimethachlor and well known linuron were applied to silty-loam luvisol and their effects on microorganisms were evaluated during112 days long laboratory assay. Dimethachlor and linuron were applied in doses 1.0 kg ha-1 and 0.8 kg ha-1 corresponding to 3.33 mg kg-1 and 2.66 mg kg-1 respectively. Also 100-fold doses were used for magnification of impacts. Linuron in 100-fold dose caused minor increase of respiration, temporal increase of soil microbial biomass, decrease of soil dehydrogenase activity, and altered microbial community. Dimethachlor in 100-fold dose significantly increased respiration; microbial biomass and decreased soil enzymatic activities. Microbial composition changed significantly, Proteobacteria abundance, particularly Pseudomonas and Achromobacter genera increased from 7 to 28th day. In-silico prediction of microbial gene expression by PICRUSt2 software revealed increased expression of genes related to xenobiotic degradation pathways. Evaluated characteristics of microbial community and activity were not affected by herbicides in recommended doses and the responsible use of both herbicides will not harm soil microbial community.


Subject(s)
Acetamides/toxicity , Linuron/toxicity , Microbiota/drug effects , Soil Microbiology , Aerobiosis/drug effects , Biomass , Carbon Dioxide/metabolism , Herbicides/toxicity , Metabolic Networks and Pathways/drug effects , Phylogeny
11.
Int J Mol Med ; 47(6)2021 Jun.
Article in English | MEDLINE | ID: mdl-33907828

ABSTRACT

The toxicity of chloroacetamide herbicide in embryo development remains unclear. Acetochlor (AC) is a chloroacetamide that metabolizes into 2­ethyl­6­methyl-2-chloroacetanilide (CMEPA) and 6­ethyl­o­toluidine (MEA). The present study determined the potential effect of AC and its metabolites on embryo development. Both HepG2 cells and zebrafish embryos were exposed to AC, CMEPA and MEA in the presence or absence of co­treatment with anti­reactive oxygen species (ROS) reagent N­acetylcysteine. The generation of ROS, levels of superoxide dismutase (SOD) and glutathione (GSH) in HepG2 cells and lactate dehydrogenase (LDH) leakage from HepG2 cells were investigated. The effects of AC, CMEPA and MEA on DNA breakage, MAPK/ERK pathway activity, viability and apoptosis of HepG2 cells were examined by comet assay, western blotting, MTT assay and flow cytometry, respectively. Levels of LDH, SOD and GSH in zebrafish embryos exposed to AC, CMEPA and MEA were measured. The hatching and survival rates of zebrafish embryos exposed to AC, CMEPA and MEA, were determined, and apoptosis of hatched fish was investigated using acridine orange staining. The present data showed AC, CMEPA and MEA induced generation of ROS and decreased levels of SOD and GSH in HepG2 cells, which in turn promoted DNA breakage and LDH leakage from cells, ultimately inhibiting cell viability and inducing apoptosis, as well as phosphorylation of JNK and P38. However, co­treatment with N­acetylcysteine alleviated the pro­apoptosis effect of AC and its metabolites. Moreover, exposure to AC, CMEPA and MEA lead to toxicity of zebrafish embryos with decreased SOD and GSH and increased LDH levels and cell apoptosis, ultimately decreasing the hatching and survival rates of zebrafish, all of which was attenuated by treatment with N­acetylcysteine. Therefore, AC and its metabolites (CMEPA and MEA) showed cytotoxicity and embryo development toxicity.


Subject(s)
Acetamides/metabolism , Acetamides/toxicity , Herbicides/metabolism , Herbicides/toxicity , Metabolome , Mutagenicity Tests , Acetanilides/toxicity , Animals , Apoptosis/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Glutathione/metabolism , Hep G2 Cells , Humans , L-Lactate Dehydrogenase/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Survival Analysis , Toluidines/toxicity , Zebrafish/embryology
12.
Chemosphere ; 274: 129711, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33524867

ABSTRACT

Metazachlor belongs to one of the most used herbicides throughout the world. In order to prevent the contamination of water bodies by such herbicides, the riparian buffers are constructed. The selection of appropriate plant species for this purpose is necessary. In our project, we studied the possibility of grey poplar to uptake and biotransform metazachlor, along with the phytotoxic effect of metazachlor and its metabolites. We used two different models - suspension cultures and poplar regenerants cultivated in vitro. Our results show that the herbicide metazachlor is readily metabolized by both suspension cultures and regenerants to 16 detectable metabolites. The detailed scheme of biotransformation pathway in poplar tissue is presented for the first time. The profile of detected metabolites was approximately the same in poplar cell cultures and regenerants, but the ratio and amounts of particular compounds was significantly different. Generally, the highest concentration (peak area/mg of DW) of all metabolites was present in the roots; the only exception was lactate conjugate (deCl-MZCl-Lact), which accumulated in the cultivation media. Although the plants were not visibly affected by metazachlor or its metabolites, they showed changes in activity of antioxidant enzymes and increased content of phenolic substances, the indicators of stress.


Subject(s)
Herbicides , Populus , Acetamides/toxicity , Herbicides/toxicity
13.
Ecotoxicol Environ Saf ; 208: 111641, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396161

ABSTRACT

Metolachlor herbicides are derived from the chloroacetamide chemical family of which there are the S- and R-metolachlor isomers. S-metolachlor is a selective herbicide that inhibits cell division and mitosis via enzyme interference. The herbicide is used globally in agriculture and studies report adverse effects in aquatic organisms; however, there are no studies investigating sub-lethal effects of S-metolachlor on swim bladder formation, mitochondrial ATP production, nor light-dark preference behaviors in fish. These endpoints are relevant for larval locomotor activity and metabolism. To address these knowledge gaps, we exposed zebrafish embryos/larvae to various concentrations of S-metolachlor (0.5-50 µM) over early development. S-metolachlor affected survival, hatching percentage, and increased developmental deformities at concentrations of 50 µM and above. Exposure levels as high as 200 µM for 24 and 48 h did not alter oxygen consumption rates in zebrafish, and there were no changes detected in endpoints related to mitochondrial oxidative phosphorylation. We observed impairment of swim bladder inflation at 50 µM in 6 dpf larvae. To elucidate mechanisms related to this, we measured relative transcript abundance for genes associated with the swim bladder (smooth muscle alpha (α)-2 actin, annexin A5, pre-B-cell leukemia homeobox 1a). Smooth muscle alpha (α)-2 actin mRNA levels were reduced in fish exposed to 50 µM while annexin A5 mRNA levels were increased in abundance, corresponding to reduced swim bladder size in larvae. A visual motor response test revealed that larval zebrafish exhibited some hyperactivity in the light with exposure to the herbicide and only the highest dose tested (50 µM) resulted in hypoactivity in the dark cycle. Regression analysis indicated that there was a positive relationship between surface area of the swim bladder and distance traveled, and the size of the swim bladder explained ~10-14% in the variation for total distance moved. Lastly, we tested larvae in a light dark preference test, and we did not detect any altered behavioral response to any concentration tested. Here we present new data on sublethal endpoints associated with exposure to the herbicide S-metolachlor and demonstrate that this chemical may disrupt transcripts associated with swim bladder formation and morphology, which could ultimately affect larval zebrafish activity. These data are expected to contribute to further risk assessment guidelines for S-metolachlor in aquatic ecosystems.


Subject(s)
Acetamides/toxicity , Air Sacs/drug effects , Herbicides/toxicity , Locomotion/drug effects , Water Pollutants, Chemical/toxicity , Air Sacs/growth & development , Air Sacs/metabolism , Animals , Embryo, Nonmammalian/drug effects , Gene Expression Regulation/drug effects , Locomotion/genetics , Zebrafish/physiology , Zebrafish Proteins/genetics
14.
Ecotoxicol Environ Saf ; 211: 111928, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33476845

ABSTRACT

The chloroacetanilides are among the most commonly used herbicides worldwide, which contaminate aquatic environments and affect aquatic phototrophs. Their sub-lethal toxicity has been evaluated using freshwater algae; however, the modes of cellular toxicity and levels of toxicity to marine organisms are not fully understood. In the present study, we assessed the cellular and molecular effects of chloroacetanilides on marine phototrophs using the dinoflagellate Prorocentrum minimum and the herbicide metazachlor (MZC). The MZC treatment led to a considerable reduction in cell number and pigment, and the EC50 of MZC was calculated to be 0.647 mg/L. The photosynthetic parameters, Fv/Fm and chlorophyll fluorescence significantly decreased with MZC exposure time in a dose-dependent manner. In addition, MZC significantly induced photosynthesis genes, including PmpsbA, PmpsaA, and PmatpB, and the antioxidant PmGST, but not PmKatG. These findings were well matched to reactive oxygen species (ROS) production in MZC-treated cells. Interestingly, we observed inflated vacuoles, undivided chloroplasts, and breakdown of thylakoid membranes in MZC-treated cells. These results support the hypothesis that MZC severely damages chloroplasts, resulting in dysfunction of the dinoflagellate photosynthesis and possibly marine phototrophs in the environment.


Subject(s)
Acetamides/toxicity , Dinoflagellida/physiology , Herbicides/toxicity , Photosynthesis/drug effects , Aquatic Organisms/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Dinoflagellida/metabolism , Reactive Oxygen Species/metabolism , Thylakoids/metabolism
15.
Ecotoxicol Environ Saf ; 207: 111264, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32911184

ABSTRACT

This study investigated the effect of the herbicide metolachlor (MET) on the redox homeostasis of the freshwater green alga Pseudokirchneriella subcapitata. At low MET concentrations (≤40 µg L-1), no effects on algal cells were detected. The exposure of P. subcapitata to 45-235 µg L-1 MET induced a significant increase of reactive oxygen species (ROS). The intracellular levels of ROS were particularly increased at high (115 and 235 µg L-1) but environmentally relevant MET concentrations. The exposure of algal cells to 115 and 235 µg L-1 MET originated a decrease in the levels of antioxidants molecules (reduced glutathione and carotenoids) as well as a reduction of the activity of scavenging enzymes (superoxide dismutase and catalase). These results suggest that antioxidant (non-enzymatic and enzymatic) defenses were affected by the excess of MET. As consequence of this imbalance (ROS overproduction and decline of the antioxidant system), ROS inflicted oxidative injury with lipid peroxidation and damage of cell membrane integrity. The results provide further insights about the toxic modes of action of MET on a non-target organism and emphasize the relevance of toxicological studies in the assessment of the impact of herbicides in freshwater environments.


Subject(s)
Acetamides/toxicity , Chlorophyceae/drug effects , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Antioxidants/metabolism , Catalase/metabolism , Chlorophyceae/physiology , Fresh Water , Glutathione/metabolism , Homeostasis/drug effects , Lipid Peroxidation/drug effects , Oxidation-Reduction , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
16.
Biomed Pharmacother ; 134: 111134, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33341672

ABSTRACT

Dasatinib is a targeted cancer therapy, while programmed death ligand 1 (PD-L1) inhibitors are a form of immune checkpoint therapy used to treat various types of cancers. Several studies showed the potential efficacy of these drugs in the management of triple-negative breast cancer- an aggressive subtype of breast cancer, which can develop during pregnancy. Nevertheless, side effects of Dasatinib (DA) and PD-L1 drugs during pregnancy, especially in the early stages of embryogenesis are not explored yet. The aim of this study is to assess the individual and combined toxicity of DA and PD-L1 inhibitors during the early stages of embryogenesis and to evaluate their effect(s) on angiogenesis using the chorioallantoic membrane (CAM) model of the embryo. Our results show that embryos die at greater rates after exposure to DA and PD-L1 inhibitors as compared to their matched controls. Moreover, treatment with these drugs significantly inhibits angiogenesis of the CAM. To further elucidate key regulator genes of embryotoxicity induced by the actions of PD-L1 and DA, an RT-PCR analysis was performed for seven target genes that regulate cell proliferation, angiogenesis, and survival (ATF3, FOXA2, MAPRE2, RIPK1, INHBA, SERPINA4, and VEGFC). Our data revealed that these genes are significantly deregulated in the brain, heart, and liver tissues of exposed embryos, compared to matched control tissues. Nevertheless, further studies are necessary to evaluate the effects of these anti breast cancer drugs and elucidate their role during pregnancy.


Subject(s)
Acetamides/toxicity , Angiogenesis Inhibitors/toxicity , B7-H1 Antigen/antagonists & inhibitors , Chorioallantoic Membrane/blood supply , Dasatinib/toxicity , Immune Checkpoint Inhibitors/toxicity , Neovascularization, Physiologic/drug effects , Protein Kinase Inhibitors/toxicity , Pyridines/toxicity , Animals , B7-H1 Antigen/metabolism , Chick Embryo , Embryonic Development/drug effects , Gene Expression Regulation, Developmental , Neovascularization, Physiologic/genetics , Signal Transduction
17.
Molecules ; 25(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32877986

ABSTRACT

Klebsiella pneumoniae causes a wide range of community and nosocomial infections. The high capacity of this pathogen to acquire resistance drugs makes it necessary to develop therapeutic alternatives, discovering new antibacterial molecules. Acetamides are molecules that have several biological activities. However, there are no reports on the activity of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide. Based on this, this study aimed to investigate the in vitro antibacterial activity of this molecule on K. pneumoniae, evaluating whether the presence of the chloro atom improves this effect. Then, analyzing its antibacterial action more thoroughly, as well as its cytotoxic and pharmacokinetic profile, in order to contribute to future studies for the viability of a new antibacterial drug. It was shown that the substance has good potential against K. pneumoniae and the chloro atom is responsible for improving this activity, stabilizing the molecule in the target enzyme at the site. The substance possibly acts on penicillin-binding protein, promoting cell lysis. The analysis of cytotoxicity and mutagenicity shows favorable results for future in vivo toxicological tests to be carried out, with the aim of investigating the potential of this molecule. In addition, the substance showed an excellent pharmacokinetic profile, indicating good parameters for oral use.


Subject(s)
Acetamides/pharmacology , Anti-Bacterial Agents/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Acetamides/toxicity , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Chemistry Techniques, Synthetic , Hemolysis/drug effects , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
18.
Ecotoxicol Environ Saf ; 205: 111339, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32961491

ABSTRACT

Famoxadone-cymoxanil is a new protective and therapeutic fungicide, but little research has been done on it or its toxicity in aquatic organisms. In this study, we used zebrafish to investigate the cardiotoxicity of famoxadone-cymoxanil and the potential mechanisms involved. Zebrafish embryos were exposed to different concentrations of famoxadone-cymoxanil until 72 h post-fertilization (hpf), then changes of heart morphology in zebrafish embryos were observed. We also detected the levels of oxidative stress, myocardial-cell proliferation and apoptosis, ATPase activity, and the expression of genes related to the cardiac development and calcium-signaling pathway. After famoxadone-cymoxanil exposure, pericardial edema, cardiac linearization, and reductions in the heart rate and cardiac output positively correlated with concentration. Although myocardial-cell apoptosis was not detected, proliferation of the cells was severely reduced and ATPase activity significantly decreased, resulting in a severe deficiency in heart function. In addition, indicators of oxidative stress changed significantly after exposure of the embryos to the fungicide. To better understand the possible molecular mechanisms of cardiovascular toxicity in zebrafish, we studied the transcriptional levels of cardiac development, calcium-signaling pathways, and genes associated with myocardial contractility. The mRNA expression levels of key genes in heart development were significantly down-regulated, while the expression of genes related to the calcium-signaling pathway (ATPase [atp2a1], cardiac troponin C [tnnc1a], and calcium channel [cacna1a]) was significantly inhibited. Expression of klf2a, a major endocardial flow-responsive gene, was also significantly inhibited. Mechanistically, famoxadone-cymoxanil toxicity might be due to the downregulation of genes associated with the calcium-signaling pathway and cardiac muscle contraction. Our results found that famoxadone-cymoxanil exposure causes cardiac developmental toxicity and severe energy deficiency in zebrafish.


Subject(s)
Acetamides/toxicity , Embryo, Nonmammalian/drug effects , Fungicides, Industrial/toxicity , Heart/drug effects , Strobilurins/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Apoptosis/drug effects , Calcium Signaling/drug effects , Calcium Signaling/genetics , Cardiotoxicity , Down-Regulation , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Gene Expression Regulation, Developmental/drug effects , Heart/embryology , Heart Rate/drug effects , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Oxidative Stress/drug effects , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
19.
Sci Rep ; 10(1): 14490, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32879347

ABSTRACT

The long-term decline of monarch butterflies has been attributed to loss of their milkweed (Asclepias sp.) host-plants after the introduction of herbicide-tolerant crops. However, recent studies report pesticide residues on milkweed leaves that could act as a contributing factor when ingested as part of their larval diet. In this study, we exposed monarch larvae to six pesticides (insecticide: clothianidin; herbicides: atrazine, S-metolachlor; fungicides: azoxystrobin, pyraclostrobin, trifloxystrobin) on their primary host-plant, A. syriaca. Each was tested at mean and maximum levels reported from published analyses of milkweeds bordering cropland and thus represent field-relevant concentrations. Monarch lethal and sub-lethal responses were tracked over their complete development, from early instar larvae to adult death. Overall, we found no impact of any pesticide on immature development time and relatively weak effects on larval herbivory or survival to adulthood. Comparatively stronger effects were detected for adult performance; namely, a 12.5% reduction in wing length in response to the fungicides azoxystrobin and trifloxystrobin. These data collectively suggest that monarch responses to host-plant pesticides are largely sublethal and more pronounced in the adult stage, despite exposure only as larvae. This outcome has important implications for risk assessment and the migratory success of monarchs in North America.


Subject(s)
Butterflies/drug effects , Herbicides/toxicity , Larva/drug effects , Pesticides/toxicity , Acetamides/toxicity , Acetates/toxicity , Animal Migration , Animals , Asclepias , Atrazine/toxicity , Ecosystem , Fungicides, Industrial/toxicity , Herbivory , Imines/toxicity , Population Dynamics , Pyrimidines/toxicity , Risk Assessment , Strobilurins/toxicity
20.
Toxicol Sci ; 177(2): 431-440, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32956443

ABSTRACT

Acetamide, a food contaminant, has been shown to induce hepatocellular tumors in rats. However, the mode of action underlying acetamide-induced hepatocarcinogenesis remains unclear. In the current study, we aimed to examine the possible involvement of in vivo mutagenicity in hepatocarcinogenesis of acetamide and evaluate its toxicological profile using a comprehensive medium-term toxicity study in gpt delta rats. Six-week-old male F344 gpt delta rats were given a basal diet containing 0%, 0.625%, 1.25%, or 2.5% acetamide for 13 weeks. In general toxicologic assessment, hepatotoxic parameters in serum, such as aspartate aminotransferase and alanine aminotransferase were significantly changed at the 1.25% group and higher. Histopathological examination of the liver revealed that various changes related to hepatic injury were observed at the 1.25% group and higher. Interestingly, Feulgen-positive cytoplasmic inclusion was frequently observed in hepatocytes in these groups. In the hematopoietic system, red blood cell parameters in plasma, such as mean corpuscular volume and mean corpuscular hemoglobin were significantly changed at the 1.25% group and higher, and decrease of erythroblast in the spleen was observed histopathologically in the 2.5% group. Thus, the no-observed-adverse-effect level of acetamide in this study was 0.625% (equivalent to 394 mg/kg body weight/day). In vivo mutation assays showed that acetamide induced no changes in gpt and red/gam gene mutant frequencies, even at the carcinogenic target site. In contrast, Ki67-positive hepatocytes were increased significantly at carcinogenic doses. Therefore, these results suggested that cell proliferation activity, but not mutagenicity, played crucial roles in acetamide-induced hepatocarcinogenesis in rats.


Subject(s)
Acetamides , Mutagens , Acetamides/toxicity , Alanine Transaminase , Animals , Dose-Response Relationship, Drug , Male , Mutagenicity Tests , Rats , Rats, Inbred F344 , Rats, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...