Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.241
Filter
1.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38658183

ABSTRACT

Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.


Subject(s)
Acetic Acid , Adaptation, Physiological , Homeostasis , Ions , Saccharomyces cerevisiae , Stress, Physiological , Acetic Acid/metabolism , Acetic Acid/pharmacology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/growth & development , Ions/metabolism , Hydrogen-Ion Concentration
2.
Open Vet J ; 14(1): 186-199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633173

ABSTRACT

Background: Bacillus cereus (B. cereus) biofilm is grown not only on medical devices but also on different substrata and is considered a potential hazard in the food industry. Quorum sensing plays a serious role in the synthesis of biofilm with its surrounding extracellular matrix enabling irreversible connection of the bacteria. Aim: The goal of the current investigation was to ascertain the prevalence, patterns of antimicrobial resistance, and capacity for B. cereus biofilm formation in meat and meat products in Egypt. Methods: In all, 150 meat and meat product samples were used in this study. For additional bacteriological analysis, the samples were moved to the Bacteriology Laboratory. Thereafter, the antimicrobial, antiquorum sensing, and antibiofilm potential of apple cider vinegar (ACV) on B. cereus were evaluated. Results: Out of 150 samples, 34 (22.67%) tested positive for B. cereus. According to tests for antimicrobial susceptibility, every B. cereus isolates tested positive for colistin and ampicillin but negative for ciprofloxacin and imipenem. The ability to form biofilms was present in all 12 multidrug-resistant B. cereus isolates (n = 12); of these, 6 (50%), 3 (25%), and 3 (25%) isolates were weak, moderate, and strong biofilm producers, respectively. It is noteworthy that the ACV demonstrated significant inhibitory effects on B. cereus isolates, with minimum inhibitory concentrations varying between 2 and 8 µg/ml. Furthermore, after exposing biofilm-producing B. cereus isolates to the minimum biofilm inhibitory concentrations 50 of 4 µg/ml, it demonstrated good antibiofilm activity (>50% reduction of biofilm formation). Strong biofilm producers had down-regulated biofilm genes (tasA and sipW) and their regulator (plcR) compared to the control group, according to reverse transcriptase quantitative polymerase chain reaction analysis. Conclusion: Our study is the first report, that spotlights the ACV activity against B. cereus biofilm and its consequence as a strong antibacterial and antibiofilm agent in the food industry and human health risk.


Subject(s)
Anti-Infective Agents , Malus , Humans , Animals , Bacillus cereus/genetics , Acetic Acid/pharmacology , Meat/microbiology , Anti-Infective Agents/pharmacology , Biofilms
3.
J Food Sci ; 89(5): 2581-2596, 2024 May.
Article in English | MEDLINE | ID: mdl-38551187

ABSTRACT

The high concentration of citric acid in lemons limits the production of lemon fruit vinegar because it inhibits the metabolism of acetic acid bacteria and reduces the utilization of raw materials. This study aimed to enhance the citric acid tolerance of Acetobacter tropicalis by using complex mutagenesis and adaptive laboratory evolution (ALE) and improving the quality of lemon fruit vinegar. After mutagenesis and ALE, A. tropicalis JY-135 grew well under 40 g/L citric acid, and it showed high physiological activity and excellent fermentation performance under high concentrations of citric acid. The survival rate and ATP content of JY-135 were 15.27 and 9.30 times higher than that of the original strain J-2736. In the fermentation of lemon fruit vinegar, the acid production and the number of aroma-active compounds were 1.61-fold and 2.17-fold than J-2736. In addition, we found that citric acid tolerance of JY-135 is related to the respiratory electron-transport chain and the tricarboxylic acid (TCA) cycle. This work is of great significance for the production of high-quality lemon fruit vinegar and the enrichment of seed resources of acetic acid bacteria.


Subject(s)
Acetic Acid , Acetobacter , Citric Acid , Citrus , Fermentation , Fruit , Mutagenesis , Acetobacter/genetics , Acetobacter/metabolism , Acetobacter/drug effects , Acetic Acid/pharmacology , Acetic Acid/metabolism , Citric Acid/pharmacology , Fruit/microbiology , Fruit/chemistry
4.
FEBS J ; 291(10): 2209-2220, 2024 May.
Article in English | MEDLINE | ID: mdl-38383986

ABSTRACT

Yeast cells are extensively used as a key model organism owing to their highly conserved genome, metabolic pathways, and cell biology processes. To assist in genetic engineering and analysis, laboratory yeast strains typically harbor auxotrophic selection markers. When uncompensated, auxotrophic markers cause significant phenotypic bias compared to prototrophic strains and have different combinatorial influences on the metabolic network. Here, we used BY4741, a laboratory strain commonly used as a "wild type" strain in yeast studies, to generate a set of revertant strains, containing all possible combinations of four common auxotrophic markers (leu2∆, ura3∆, his3∆1, met15∆). We examined the effect of the auxotrophic combinations on complex phenotypes such as resistance to rapamycin, acetic acid, and ethanol. Among the markers, we found that leucine auxotrophy most significantly affected the phenotype. We analyzed the phenotypic bias caused by auxotrophy at the genomic level using a prototrophic version of a genome-wide deletion library and a decreased mRNA perturbation (DAmP) library. Prototrophy was found to suppress rapamycin sensitivity in many mutants previously annotated for the phenotype, raising a possible need for reevaluation of the findings in a native metabolic context. These results reveal a significant phenotypic bias caused by common auxotrophic markers and support the use of prototrophic wild-type strains in yeast research.


Subject(s)
Phenotype , Saccharomyces cerevisiae , Sirolimus , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/drug effects , Sirolimus/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ethanol/pharmacology , Ethanol/metabolism , Acetic Acid/metabolism , Acetic Acid/pharmacology , Genetic Markers , Leucine/metabolism , Leucine/pharmacology , Leucine/genetics
5.
Int J Biol Macromol ; 264(Pt 1): 130088, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354936

ABSTRACT

Bioactive macromolecule mining is important for the functional chemome analysis of traditional Chinese vinegar. In this study, we isolated and characterized carbohydrate-containing macromolecules from Shanxi aged vinegar (CCMSAV) and evaluated their immunomodulatory activity. The isolation process involved ethanol precipitation, deproteinization, decolorization, and DEAE-650 M column chromatography, resulting in the acquisition of four sub-fractions. All sub-fractions exhibited a molecular weight range of 6.92 to 16.71 kDa and were composed of 10 types of monosaccharides. Comparative analysis of these sub-fractions with two melanoidins exhibited similarities in elemental composition, spectral signature, and pyrolytic characteristics. Immunological assays confirmed the significantly enhanced cell viability, phagocytic activity, and secretion of nitric oxide, tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells by all four sub-fractions. Further investigation of the immunomodulatory mechanism revealed that SAV-RP70-X, the most potent purified sub-fraction, enhanced aerobic glycolysis in macrophages and activated Toll-like receptor 2 (TLR2), TLR4, mannose receptor (MR), scavenger receptor (SR), and the dendritic cell-associated C-type lectin-1 receptor (Dectin-1). Furthermore, the activation of macrophages was associated with the MyD88/PI3K/Akt/NF-κB signaling pathway. Methylation analysis revealed that 1,4-Xylp was the most abundant glycosidic linkage in SAV-RP70-X.


Subject(s)
Acetic Acid , Phosphatidylinositol 3-Kinases , Polymers , Animals , Mice , Acetic Acid/pharmacology , Acetic Acid/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Macrophages/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism
6.
Bull Entomol Res ; 114(2): 180-189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38327068

ABSTRACT

Drosophila suzukii (Matsumura) is an exotic pest of economic importance that affects several soft-skinned fruits in Mexico. Previously, we found that yellow or yellow-green rectangular cards inside a transparent trap baited with attractants improved D. suzukii capture. In this study, we evaluated the influence of rectangular cards with different yellow shades inside a transparent multi-hole trap baited with apple cider vinegar (ACV) on D. suzukii capture in the field. Second, we tested whether ACV-baited traps with cards of other geometric shapes affected D. suzukii catches compared to traps with rectangular cards. Third, we evaluated the effects of commercial lures combined with a more efficient visual stimulus from previous experiments on trapping D. suzukii flies. We found that ACV-baited traps plus a yellow-shaded rectangle card with 67% reflectance at a 549.74 nm dominant wavelength captured more flies than ACV-baited traps with yellow rectangle cards with a higher reflectance. Overall, ACV-baited traps with rectangles and squares caught more flies than did ACV-baited traps without visual stimuli. The traps baited with SuzukiiLURE-Max, ACV and Z-Kinol plus yellow rectangles caught 57, 70 and 101% more flies, respectively, than the traps baited with the lure but without a visual stimulus.


Subject(s)
Drosophila , Insect Control , Animals , Drosophila/physiology , Insect Control/instrumentation , Insect Control/methods , Pheromones/pharmacology , Female , Photic Stimulation , Mexico , Acetic Acid/pharmacology , Male
7.
Int J Biol Macromol ; 261(Pt 1): 129597, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266828

ABSTRACT

Bacterial cellulose (BC) is a remarkable biomacromolecule with potential applications in food, biomedical, and other industries. However, the low economic feasibility of BC production processes hinders its industrialization. In our previous work, we obtained candidate strains with improved BC production through random mutations in Gluconacetobacter. In this study, the molecular identification of LYP25 strain with significantly improved productivity, the development of chestnut pericarp (CP) hydrolysate medium, and its application in BC fermentation were performed for cost-effective BC production process. As a result, the mutant strain was identified as Gluconacetobacter xylinus. The CP hydrolysate (CPH) medium contained 30 g/L glucose with 0.4 g/L acetic acid, whereas other candidates known to inhibit fermentation were not detected. Although acetic acid is generally known as a fermentation inhibitor, it improves the BC production by G. xylinus when present within about 5 g/L in the medium. Fermentation of G. xylinus LYP25 in CPH medium resulted in 17.3 g/L BC, a 33 % improvement in production compared to the control medium, and BC from the experimental and control groups had similar physicochemical properties. Finally, the overall process of BC production from biomass was evaluated and our proposed platform showed the highest yield (17.9 g BC/100 g biomass).


Subject(s)
Acetic Acid , Gluconacetobacter xylinus , Acetic Acid/pharmacology , Gluconacetobacter xylinus/metabolism , Cellulose/chemistry , Biomass , Fermentation
8.
Appl Biochem Biotechnol ; 196(3): 1155-1174, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37166651

ABSTRACT

The trend in bioplastic application has increased over the years where polyhydroxyalkanoates (PHAs) have emerged as a potential candidate with the advantage of being bio-origin, biodegradable, and biocompatible. The present study aims to understand the effect of acetic acid concentration (in combination with sucrose) as a mixture variable and its time of addition (process variable) on PHA production by Cupriavidus necator. The addition of acetic acid at a concentration of 1 g l-1 showed a positive influence on biomass and PHA yield; however, the further increase had a reversal effect. The addition of acetic acid at the time of incubation showed a higher PHA yield, whereas maximum biomass was achieved when acetic acid was added after 48 h. Genetic algorithm (GA) optimized artificial neural network (ANN) was used to model PHA concentration from mixture-process design data. Fitness of the GA-ANN model (R2: 0.935) was superior when compared to the polynomial model (R2: 0.301) from mixture design. Optimization of the ANN model projected 2.691 g l-1 PHA from 7.245 g l-1 acetic acid, 12.756 g l-1 sucrose, and the addition of acetic acid at the time of incubation. Sensitivity analysis indicates the inhibitory effect of all the predictors at higher levels. ANN model can be further used to optimize the variables while extending the bioprocess to fed-batch operation.


Subject(s)
Cupriavidus necator , Polyhydroxyalkanoates , Acetic Acid/pharmacology , Sucrose/pharmacology , Dietary Supplements
9.
Chemosphere ; 349: 140870, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056716

ABSTRACT

Empirical information about the transport properties of neonicotinoid pesticides through the soil as affected by the ubiquitous low molecular weight organic acids (LMWOAs) is lacking. Herein, the impacts of three LMWOAs with different molecular structures, including citric acid, acetic acid, and malic acid, on the mobility characteristics of two typical neonicotinoid pesticides (Dinotefuran (DTF) and Nitenpyram (NTP)) were explored. Interestingly, under acidic conditions, different mechanisms were involved in transporting DTF and NTP by adding exogenous LMWOAs. Concretely, acetic acid and malic acid inhibited DTF transport, ascribed to the enhanced electrostatic attraction between DTF and porous media and the additional binding sites provided by the deposited LMWOAs. However, citric acid slightly enhanced DTF mobility due to the fact that the inhibitory effect was weakened by the steric hindrance effect induced by the deposited citric acid with a large molecular size. In comparison, all three LMWOAs promoted NTP transport at pH 5.0. Because the interaction between NTP with soil organic matter (e.g., via π-π stacking interaction) was masked by the LMWOAs coating on soil surfaces. Nevertheless, LMWOAs could promote the mobility of both neonicotinoid pesticides at pH 7.0 due to the steric hindrance effect caused by the deposited organic acids and the competitive retention between LMWOAs and pesticides for effective surface deposition sites of soil particles. Furthermore, the extent of the promotion effects of LMWOAs generally followed the order of citric acid > malic acid > acetic acid. This pattern was highly related to their molecular structures (e.g., number and type of functional groups and molecular size). Additionally, when the background solutions contained Ca2+, the bridging effect of cations also contributed to the transport-enhancement effects of LMWOAs. The findings provide valuable information about the mobility behaviors of neonicotinoid pesticides co-existing with LMWOAs in soil-water systems.


Subject(s)
Soil Pollutants , Soil , Molecular Structure , Soil/chemistry , Porosity , Organic Chemicals/chemistry , Citric Acid/chemistry , Molecular Weight , Acetic Acid/pharmacology , Neonicotinoids , Soil Pollutants/analysis
10.
Microbes Infect ; 26(3): 105286, 2024.
Article in English | MEDLINE | ID: mdl-38160785

ABSTRACT

Lacticaseibacillus rhamnosus Lcr35 is a well-known bacterial strain whose efficiency in preventing recurrent vulvovaginal candidiasis has been largely demonstrated in clinical trials. The presence of sodium thiosulfate (STS) has been shown to enhance its ability to inhibit the growth of Candida albicans strains. In this study, we confirmed that Lcr35 has a fungicidal effect not only on the planktonic form of C. albicans but also on other life forms such as hypha and biofilm. Transcriptomic analysis showed that the presence of C. albicans induced a metabolic adaptation of Lcr35 potentially associated with a competitive advantage over yeast cells. However, STS alone had no impact on the global gene expression of Lcr35, which is not in favor of the involvement of an enzymatic transformation of STS. Comparative HPLC and gas chromatography-mass spectrometry analysis of the organic phase from cell-free supernatant (CFS) fractions obtained from Lcr35 cultures performed in the presence and absence of STS identified elemental sulfur (S0) in the samples initially containing STS. In addition, the anti-Candida activity of CFS from STS-containing cultures was shown to be pH-dependent and occurred at acidic pH lower than 5. We next investigated the antifungal activity of lactic acid and acetic acid, the two main organic acids produced by lactobacilli. The two molecules affected the viability of C. albicans but only at pH 3.5 and in a dose-dependent manner, an antifungal effect that was enhanced in samples containing STS in which the thiosulfate was decomposed into S0. In conclusion, the use of STS as an excipient in the manufacturing process of Lcr35 exerted a dual action since the production of organic acids by Lcr35 facilitates the decomposition of thiosulfate into S0, thereby enhancing the bacteria's own anti-fungal effect.


Subject(s)
Lacticaseibacillus rhamnosus , Thiosulfates , Antifungal Agents/pharmacology , Candida albicans , Acetic Acid/pharmacology , Biofilms
11.
J Contemp Dent Pract ; 24(10): 779-786, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-38152911

ABSTRACT

AIMS AND BACKGROUND: This study evaluates the antimicrobial activities of commercially available 5% apple cider vinegar (ACV) against Enterococcus faecalis, Streptococcus mutans, and Lactobacillus casei. Materials and methods: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were conducted using the broth microdilution method. Sodium hypochlorite (NaOCl) of 5.25% was used as a positive control, and comparisons were also made with acetic acid (AA) as the main ingredient in ACV. The three test bacteria treated with the most effective ACV dilution were visualized under a transmission electron microscope (TEM) for structural changes. RESULTS: Minimal inhibitory concentration was determined at 0.625% of the concentration of ACV against S. mutans and E. faecalis and 1.25% of the concentration of ACV against L. casei with two-fold serial dilutions. A concentration of 5 × 10-1% with 10-fold serial dilutions was found to be the MIC value for all three bacteria. No significant differences were found when compared with the positive control (NaOCl) (p = 0.182, p = 0.171, and p = 0.234), respectively, for two-fold serial dilutions and (p = 1.000, p = 0.658, and p = 0.110), respectively for 10-fold serial dilutions. MBC was observed to be 5% ACV for both E. faecalis and S. mutans. However, positive microbial growth was observed on the agar plate when cultured with L. casei. An independent sample t-test showed no significant differences (p > 0.05) in the antimicrobial activities between 5% ACV and 5% pure AA. TEM revealed cell wall and cytoplasmic membrane disruptions on all three bacteria at MIC value. CONCLUSION: Apple cider vinegar has antimicrobial activities against Enterococcus faecalis, Streptococcus mutans, and Lactobacillus casei at their respective MIC values. CLINICAL SIGNIFICANCE: Apple cider vinegar can be an alternative antimicrobial dental pulp disinfectant to sodium hypochlorite. Apple cider vinegar can be used safely, especially in children's dental pulp therapy and deep caries management, when adequate tooth isolation is not readily achievable. Thus, adverse reactions commonly associated with other frequently used chemical disinfectants can be avoided.


Subject(s)
Anti-Infective Agents , Disinfectants , Malus , Child , Humans , Acetic Acid/pharmacology , Acetic Acid/therapeutic use , Malus/chemistry , Sodium Hypochlorite/pharmacology , Anti-Infective Agents/pharmacology , Hydrogen-Ion Concentration
12.
Am J Rhinol Allergy ; 37(6): 630-637, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37786364

ABSTRACT

BACKGROUND: COVID-19 has been associated with olfactory dysfunction in many infected patients. The rise of calcium levels in the nasal secretions plays an essential role in the olfaction process with a desensitization effect on the olfactory receptor neurons and a negative impact on the olfaction transmission. Ethylene diamine tetra acetic acid (EDTA) is a chelating agent that can bind free calcium in the nasal secretions, thereby reducing the adverse effects of calcium on olfactory function. OBJECTIVES: The objective of this work is to demonstrate the effect of intranasal EDTA on improving olfactory dysfunction following COVID-19. METHODS: Fifty patients with a history of COVID-19 and olfactory dysfunction that persisted for more than 6 months were enrolled in the current prospective randomized clinical trial. Participants were randomized into 2 equal groups. Twenty-five patients were treated with olfactory training only, while the remaining 25 patients received treatment with olfactory training and a topical nasal spray of ethylene diamine tetra acetic acid. The olfactory function was assessed before treatment and 3 months later using the Sniffin' Sticks test. Additionally, the determination of calcium level in the nasal secretions was performed using an ion-selective electrode before treatment and 3 months later. RESULTS: Eighty-eight percent of the patients treated with olfactory training in addition to EDTA exhibited clinical improvement, while 60% showed improvement in patients treated with olfactory training only. Furthermore, a significant decrease in the measured calcium level in the nasal secretions was demonstrated after the use of ethylene diamine tetra compared to patients treated with olfactory training only. CONCLUSION: Ethylene diamine tetra acetic acid may be associated with an improvement of the olfactory function post-COVID-19.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , Smell/physiology , Olfaction Disorders/drug therapy , Olfaction Disorders/etiology , Acetic Acid/pharmacology , Acetic Acid/therapeutic use , Calcium/pharmacology , Calcium/therapeutic use , Edetic Acid/therapeutic use , Edetic Acid/pharmacology , COVID-19/complications , Ethylenes/pharmacology , Ethylenes/therapeutic use
13.
Mol Cells ; 46(10): 637-653, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37853687

ABSTRACT

The physiology of most organisms, including Drosophila, is heavily influenced by their interactions with certain types of commensal bacteria. Acetobacter and Lactobacillus, two of the most representative Drosophila commensal bacteria, have stimulatory effects on host larval development and growth. However, how these effects are related to host immune activity remains largely unknown. Here, we show that the Drosophila development-promoting effects of commensal bacteria are suppressed by host immune activity. Mono-association of germ-free Drosophila larvae with Acetobacter pomorum stimulated larval development, which was accelerated when host immune deficiency (IMD) pathway genes were mutated. This phenomenon was not observed in the case of mono-association with Lactobacillus plantarum. Moreover, the mutation of Toll pathway, which constitutes the other branch of the Drosophila immune pathway, did not accelerate A. pomorum-stimulated larval development. The mechanism of action of the IMD pathway-dependent effects of A. pomorum did not appear to involve previously known host mechanisms and bacterial metabolites such as gut peptidase expression, acetic acid, and thiamine, but appeared to involve larval serum proteins. These findings may shed light on the interaction between the beneficial effects of commensal bacteria and host immune activity.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila melanogaster/physiology , Acetic Acid/pharmacology , Bacteria , Thiamine , Larva
14.
Psicothema ; 35(4): 423-431, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37882427

ABSTRACT

BACKGROUND: Adolescence in mammals is a period marked by increased novelty-seeking and enhanced responsiveness to the stressful properties of novel stimuli. Despite the need to taste potentially toxic novel foods during the adolescent growth spurt, there has been little study of taste neophobia and its attenuation. METHOD: Four experiments were carried out to compare taste neophobia and related memory processes in male and female adolescent (PND28) and adult (PND70) Wistar rats. Experiments 1 and 2 evaluated attenuation of taste neophobia to cider vinegar (3%) and sodium saccharin (0.1%) solutions were evaluated. Additionally, to test the role of memory in neophobia during adolescence, latent inhibition of taste aversion and object recognition memory were assessed in Experiment 3 and Experiment 4, respectively. RESULTS: Adolescent and adult rats exhibited taste neophobia to the saccharin solution but adolescent rats required more exposure trials than adults to recognize the vinegar solution as safe. Both groups exhibited similar latent inhibition of taste aversion and object recognition memory. No sex effect was significant. CONCLUSIONS: Contrary to the accepted view associating adolescence with reduced neophobia, adolescent rats exhibited taste neophobia which even increased when sour tastes were encountered.


Subject(s)
Saccharin , Taste , Rats , Male , Female , Animals , Taste/physiology , Rats, Wistar , Saccharin/pharmacology , Acetic Acid/pharmacology , Taste Perception/physiology , Avoidance Learning/physiology , Mammals
15.
Microbiol Res ; 277: 127487, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37713908

ABSTRACT

Acetic acid tolerance of Saccharomyces cerevisiae is an important trait in sourdough fermentation processes, where the accumulation of acid by the growth of lactic acid bacteria reduces the yeast metabolic activity. In this work, we have carried out adaptive laboratory evolution (ALE) experiments in two sourdough isolates of S. cerevisiae exposed to acetic acid, or alternatively to acetic acid and myriocin, an inhibitor of sphingolipid biosynthesis that sped-up the evolutionary adaptation. Evolution approaches resulted in acetic tolerance, and surprisingly, increased lactic susceptibility. Four evolved clones, one from each parental strain and evolutionary scheme, were selected on the basis of their potential for CO2 production in sourdough conditions. Among them, two showed phenotypic instability characterized by strong lactic sensitivity after several rounds of growth under unstressed conditions, while two others, displayed increased constitutive acetic tolerance with no loss of growth in lactic medium. Genome sequencing and ploidy level analysis of all strains revealed aneuploidies, which could account for phenotypic heterogeneity. In addition, copy number variations (CNVs), affecting specially to genes involved in ion transport or flocculation, and single nucleotide polymorphisms (SNPs) were identified. Mutations in several genes, ARG82, KEX1, CTK1, SPT20, IRA2, ASG1 or GIS4, were confirmed as involved in acetic and/or lactic tolerance, and new determinants of these phenotypes, MSN5 and PSP2, identified.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Acetic Acid/metabolism , Acetic Acid/pharmacology , DNA Copy Number Variations , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Fermentation , Phenotype , Karyopherins/genetics , Karyopherins/metabolism
16.
Braz J Microbiol ; 54(4): 3231-3236, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37723327

ABSTRACT

Apis mellifera is an important pollinator that has a prominent impact on crops' ecological balance. Beekeeping provides us with more valuable products like honey, pollen, propolis, beeswax, and royal jelly. The ongoing era demands more scientific and environment-friendly strategies to improve the beekeeping sector internationally. Nowadays, the use of synbiotics (a combination of probiotics and prebiotics) has been declared as the need of the hour. However, little bit studies have been carried out in this regard. To improve the beekeeping sector in Pakistan, a study was designed to exploration of probiotic and organic acids on bee tissue ileum (small intestine). 108 Colony forming units (C.F.Us) of Bacillus clausii and Lactobacillus brevis were provided with and without mixing in 1.96% acetic acid, 2.91% acetic acid, and 2.99% lactic acid to caged worker bees under controlled laboratory conditions. The provision did not affect the intestine harmfully. The mean intestinal lumen diameters (µm2) were 133.33 ± 8.82, 63.33 ± 3.33, 186.67 ± 72.19, 250.00 ± 28.87, 166.67 ± 17.64, 193.33 ± 46.31, and 140.00 ± 61.10 in experiments (1, 2, 3, 5, and 6 respectively) compared to control's 113.33 ± 38.44. Worker bees with better digestion conditions prove honeybee's health and efficiency.


Subject(s)
Probiotics , Animals , Bees , Acids , Beekeeping , Acetic Acid/pharmacology , Intestines
17.
Neurotoxicology ; 99: 14-23, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37683694

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the degeneration of dopaminergic neurons and the accumulation of Lewy bodies. Pain is one of the most common non-motor symptoms in PD, but the molecular mechanism of pain in PD is not fully understood, which prevents early diagnosis of PD. We aimed to determine the changes in opioidergic pathways when external pain is inflicted by inducing pain intraperitoneally in zebrafish, for which we generated a rotenone-induced PD model. After behavioural analyses in control(C), acetic acid (AA), rotenone (ROT), and rotenone+ acetic acid (ROT+AA) groups, catecholamine levels in brain tissue were determined by LC-MS/MS, expression of opioid peptides and their receptors by RT-PCR, expression of tyrosine hydroxylase by immunohistochemical method, and analyses of oxidant-antioxidant parameters by spectrophotometric methods. In the ROT group, distance travelled, average speed, and brain dopamine levels decreased, while LPO (lipid peroxidation) and NO (nitric oxide) increased as indicators of oxidative damage, and the SOD activity decreased. The mRNA expression of lrrk, pink1, and park7 genes associated with PD increased, while the mRNA expression of park2 decreased. This indicates that rotenone exposure is a suitable means to induce PD in zebrafish. The fact that body curvature was higher in the AA group than in the ROT and ROT+AA groups, as well as the decreased expression of penka, pdyn, and ion channels associated with the perception of peripheral pain in the ROT+AA group, suggest that mechanisms associated with pain are impaired in the rotenone-induced PD model in zebrafish.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Animals , Zebrafish , Rotenone/toxicity , Acetic Acid/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Oxidative Stress , RNA, Messenger , Disease Models, Animal , Neuroprotective Agents/pharmacology
18.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569404

ABSTRACT

Chitosan films were prepared by solvent casting using an acetic acid-based solution. The films that were developed contained 15.49% of acetic acid solution (10% v/v) and showed biocompatibility in vitro in human keratinocyte HaCaT cells and potent antiviral activity against both enveloped and non-enveloped viruses. The results showed up to 99.98% and 99.92% viral inactivation against the phi 6 enveloped bacteriophage and MS2 non-enveloped bacteriophage, respectively, suggesting that this chitosan/acetic acid film is a promising material for biomedical applications that require biodegradable broad-spectrum antiviral materials.


Subject(s)
Chitosan , Viruses , Humans , Antiviral Agents/pharmacology , Chitosan/pharmacology , Acetic Acid/pharmacology , Virus Inactivation , Biocompatible Materials/pharmacology
19.
Microbiology (Reading) ; 169(7)2023 07.
Article in English | MEDLINE | ID: mdl-37435775

ABSTRACT

Oxymel, a combination of honey and vinegar, has been used as a remedy for wounds and infections in historical and traditional medical settings. While honey is now clinically used to treat infected wounds, this use of a complex, raw natural product (NP) mixture is unusual in modern western medicine. Research into the antimicrobial activity of NPs more usually focuses on finding a single active compound. The acetic acid in vinegar is known to have antibacterial activity at low concentrations and is in clinical use to treat burn wound infections. Here, we investigated the potential for synergistic activity of different compounds present in a complex ingredient used in historical medicine (vinegar) and in an ingredient mixture (oxymel). We conducted a systematic review to investigate published evidence for antimicrobial effects of vinegars against human pathogenic bacteria and fungi. No published studies have explicitly compared the activity of vinegar with that of a comparable concentration of acetic acid. We then characterized selected vinegars by HPLC and assessed the antibacterial and antibiofilm activity of the vinegars and acetic acid, alone and in combination with medical-grade honeys, against Pseudomonas aeruginosa and Staphylococcus aureus. We found that some vinegars have antibacterial activity that exceeds that predicted by their acetic acid content alone, but that this depends on the bacterial species being investigated and the growth conditions (media type, planktonic vs. biofilm). Pomegranate vinegars may be particularly interesting candidates for further study. We also conclude that there is potential for acetic acid, and some vinegars, to show synergistic antibiofilm activity with manuka honey.


Subject(s)
Biological Products , Honey , Humans , Acetic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms
20.
Inflammopharmacology ; 31(5): 2587-2597, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37432553

ABSTRACT

INTRODUCTION: Ulcerative colitis is a chronic inflammation of the colon. However, the common treatment for it is accompanied by many complications. Therefore, the present study was aimed to determine the ameliorative effects of ferulic acid on acetic acid-induced colitis in rat. MATERIALS AND METHODS: To induce ulcerative colitis, animals received 0.8 ml of 7% acetic acid intra-rectally. Ferulic acid in 20, 40, and 60 mg/kg doses was administered orally one hour after the ulcerative colitis induction. Animals received treatments for five consecutive days and then were euthanized on the sixth day. The colon was dissected out and macroscopic lesions were examined. Colon samples were evaluated for histopathological examination, biochemical analysis, determination of the expression of inflammatory, and apoptotic genes as well as total antioxidant capacity. RESULTS: Ferulic acid significantly inhibited inflammatory and apoptotic genes mRNA expression, also production of MDA and NO. Ferulic acid significantly increased the activity of antioxidant factors (TAC content, and SOD and CAT activity), thereby preventing inflammation and histopathological damage in the colon tissue of colitis rats. CONCLUSION: The results of the present study confirmed the antioxidant, anti-inflammatory, and anti-apoptotic properties of ferulic acid. About the mechanism of action of this compound, it can be concluded that the ability of ferulic acid in the amelioration of ulcerative colitis is related to the inhibition of two LPS-TLR4-NF-κB and NF-κB-INOS-NO signaling pathways.


Subject(s)
Colitis, Ulcerative , Colitis , Rats , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Antioxidants/metabolism , Colon , Colitis/drug therapy , Oxidative Stress , Inflammation/metabolism , Acetic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...