Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Metab ; 32(6): 967-980.e5, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33264602

ABSTRACT

Autoimmune T cells in rheumatoid arthritis (RA) have a defect in mitochondrial oxygen consumption and ATP production. Here, we identified suppression of the GDP-forming ß subunit of succinate-CoA ligase (SUCLG2) as an underlying abnormality. SUCLG2-deficient T cells reverted the tricarboxylic acid (TCA) cycle from the oxidative to the reductive direction, accumulated α-ketoglutarate, citrate, and acetyl-CoA (AcCoA), and differentiated into pro-inflammatory effector cells. In AcCoAhi RA T cells, tubulin acetylation stabilized the microtubule cytoskeleton and positioned mitochondria in a perinuclear location, resulting in cellular polarization, uropod formation, T cell migration, and tissue invasion. In the tissue, SUCLG2-deficient T cells functioned as cytokine-producing effector cells and were hyperinflammatory, a defect correctable by replenishing the enzyme. Preventing T cell tubulin acetylation by tubulin acetyltransferase knockdown was sufficient to inhibit synovitis. These data link mitochondrial failure and AcCoA oversupply to autoimmune tissue inflammation.


Subject(s)
Arthritis, Rheumatoid/immunology , Succinate-CoA Ligases/immunology , T-Lymphocytes/immunology , Acetyl Coenzyme A/immunology , Adult , Aged , Animals , Cytokines/immunology , Female , Humans , Male , Mice , Microtubules/immunology , Middle Aged , T-Lymphocytes/cytology
2.
Front Immunol ; 10: 944, 2019.
Article in English | MEDLINE | ID: mdl-31134063

ABSTRACT

Metabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN-γ). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions.


Subject(s)
Macrophage Activation/immunology , Macrophages/immunology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/immunology , Pyruvate Dehydrogenase Complex/immunology , Acetyl Coenzyme A/immunology , Acetyl Coenzyme A/metabolism , Animals , Cytosol/immunology , Cytosol/metabolism , Diet, High-Fat/adverse effects , Insulin Resistance/genetics , Insulin Resistance/immunology , Macrophages/classification , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/immunology , Mitochondria/metabolism , Obesity/etiology , Obesity/genetics , Obesity/immunology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/deficiency , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/immunology , Pyruvic Acid/metabolism
3.
Trends Biochem Sci ; 41(5): 460-471, 2016 05.
Article in English | MEDLINE | ID: mdl-26935843

ABSTRACT

The integration of biochemistry into immune cell biology has contributed immensely to our understanding of immune cell function and the associated pathologies. So far, most studies have focused on the regulation of metabolic pathways during an immune response and their contribution to its success. More recently, novel signalling functions of metabolic intermediates are being discovered that might play important roles in the regulation of immunity. Here we describe the three long-known small metabolites lactate, acetyl-CoA, and succinate in the context of immunometabolic signalling. Functions of these ubiquitous molecules are largely dependent on their intra- and extracellular concentrations as well as their subcompartmental localisation. Importantly, the signalling functions of these metabolic intermediates extend beyond self-regulatory roles and include cell-to-cell communication and sensing of microenvironmental conditions to elicit stress responses and cellular adaptation.


Subject(s)
Citric Acid Cycle/immunology , Glycolysis/immunology , Immunity, Innate , Macrophages/metabolism , Signal Transduction/immunology , T-Lymphocytes/metabolism , Acetyl Coenzyme A/immunology , Acetyl Coenzyme A/metabolism , Cell Communication/immunology , Cytokines/biosynthesis , Cytokines/immunology , Endothelial Cells/cytology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Fatty Acids/immunology , Fatty Acids/metabolism , Humans , Lactic Acid/immunology , Lactic Acid/metabolism , Macrophages/cytology , Macrophages/immunology , Neurons/cytology , Neurons/immunology , Neurons/metabolism , Succinic Acid/immunology , Succinic Acid/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...