Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.363
Filter
1.
J Agric Food Chem ; 72(20): 11405-11414, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717990

ABSTRACT

This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.


Subject(s)
Cytochrome P-450 Enzyme System , Echinochloa , Herbicide Resistance , Herbicides , Mutation , Plant Proteins , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , Echinochloa/genetics , Echinochloa/drug effects , Echinochloa/metabolism , Echinochloa/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Butanes , Nitriles , Sulfonamides , Uridine/analogs & derivatives
2.
Cell Metab ; 36(5): 884-886, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718753

ABSTRACT

Tumors compromise T cell functionality through various mechanisms, including the induction of a nutrient-scarce microenvironment, leading to lipid accumulation and metabolic reprogramming. Hunt et al. elucidate acetyl-CoA carboxylase's crucial role in regulating lipid metabolism in CD8+ T cells, uncovering a novel metabolic strategy to potentiate antitumor immune responses.


Subject(s)
Acetyl-CoA Carboxylase , CD8-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Humans , Acetyl-CoA Carboxylase/metabolism , Animals , Neoplasms/immunology , Neoplasms/metabolism , Lipid Metabolism , Tumor Microenvironment/immunology
3.
Nat Commun ; 15(1): 4083, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744825

ABSTRACT

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Subject(s)
Acetyl-CoA Carboxylase , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Survival , Fatty Acids , Glucose , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Glucose/metabolism , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fatty Acids/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice , NADP/metabolism , Protein Biosynthesis , Phosphoproteins/metabolism , Phosphoproteins/genetics , Oxidative Stress , Cell Line, Tumor , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics
4.
mBio ; 15(5): e0341423, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38572988

ABSTRACT

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Subject(s)
Acetyl-CoA Carboxylase , Carbon-Nitrogen Ligases , Chloroflexus , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/chemistry , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/chemistry , Chloroflexus/genetics , Chloroflexus/metabolism , Chloroflexus/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Biotin/metabolism , Biotin/biosynthesis , Malonyl Coenzyme A/metabolism , Acetyl Coenzyme A/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Fatty Acid Synthase, Type II
5.
Environ Pollut ; 350: 123971, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641033

ABSTRACT

Haloacetaldehyde disinfection by-products (HAL-DBPs) are among the top three unregulated DBPs found in drinking water. The cytotoxicity and genotoxicity of HALs are much higher than that of the regulated trihalomethanes and haloacetic acids. Previous studies have mainly focused on the toxic effects of single HAL, with few examining the toxic effects of mixed exposures to HALs. The study aimed to observe the effects of mixed exposures of 1∼1000X the realistic level of HALs on the hepatotoxicity and lipid metabolism of C57BL/6J mice, based on the component and concentration of HALs detected in the finished water of Shanghai. Exposure to realistic levels of HALs led to a significant increase in phosphorated acetyl CoA carboxylase 1 (p-ACC1) in the hepatic de novo lipogenesis (DNL) pathway. Additionally, exposure to 100X realistic levels of HALs resulted in significant alterations to key enzymes of DNL pathway, including ACC1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2), as well as key proteins of lipid disposal such as carnitine palmitoyltransferase 1 (CPT-1) and peroxisome proliferator activated receptor α (PPARα). Exposure to 1000X realistic levels of HALs significantly increased hepatic and serum triglyceride levels, as well as total cholesterol, low-density lipoprotein, alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and lactate dehydrogenase levels, significantly decreased high-density lipoprotein. Meanwhile, histopathological analysis demonstrated that HALs exacerbated tissue vacuolization and inflammatory cell infiltration in mice livers, which showed the typical phenotypes of non-alcoholic fatty liver disease (NAFLD). These results suggested that the HALs mixture is a critical risk factor for NAFLD and is significantly highly toxic to C57BL/6J mice.


Subject(s)
Acetaldehyde , Lipid Metabolism , Liver , Mice, Inbred C57BL , Animals , Mice , Liver/drug effects , Liver/metabolism , Acetaldehyde/toxicity , Acetaldehyde/analogs & derivatives , Lipid Metabolism/drug effects , Male , Disinfection , Water Pollutants, Chemical/toxicity , Acetyl-CoA Carboxylase/metabolism , PPAR alpha/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Lipogenesis/drug effects , Disinfectants/toxicity , Fatty Acid Synthases/metabolism , China , Drinking Water/chemistry
6.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582590

ABSTRACT

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


Subject(s)
4-Chloro-7-nitrobenzofurazan , Acetyl-CoA Carboxylase , Butanes , Herbicides , Nitriles , Oxazoles , Propionates , Acetyl-CoA Carboxylase/metabolism , Plant Proteins/genetics , Poaceae/genetics , Poaceae/metabolism , Herbicides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Mutation , Herbicide Resistance/genetics
7.
Org Lett ; 26(16): 3424-3428, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38630577

ABSTRACT

Penihemeroterpenoids A-C, the first meroterpenoids with an unprecedented 6/5/6/5/5/6/5 heptacyclic ring system, together with precursors penihemeroterpenoids D-F, were co-isolated from the fungus Penicillium herquei GZU-31-6. Among them, penihemeroterpenoids C-F exhibited lipid-lowering effects comparable to those of the positive control simvastatin by the activation of the AMPK/ACC/SREBP-1c signaling pathway, downregulated the mRNA levels of lipid synthesis genes FAS and PNPLA3, and increased the level of mRNA expression of the lipid export gene MTTP.


Subject(s)
AMP-Activated Protein Kinases , Penicillium , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , Terpenes , Penicillium/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Signal Transduction/drug effects , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , AMP-Activated Protein Kinases/metabolism , Molecular Structure , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry
8.
Cell Metab ; 36(5): 969-983.e10, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38490211

ABSTRACT

The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.


Subject(s)
Acetyl-CoA Carboxylase , CD8-Positive T-Lymphocytes , Lipid Metabolism , Tumor Microenvironment , Acetyl-CoA Carboxylase/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Humans , Fatty Acids/metabolism , Female , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondria/metabolism
9.
Cell Metab ; 36(5): 1088-1104.e12, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38447582

ABSTRACT

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.


Subject(s)
Acetyl-CoA Carboxylase , Amino Acids , Gluconeogenesis , Liver , Malonyl Coenzyme A , Mice, Knockout , Oxidation-Reduction , Animals , Malonyl Coenzyme A/metabolism , Liver/metabolism , Acetyl-CoA Carboxylase/metabolism , Mice , Amino Acids/metabolism , Male , Pyruvate Carboxylase/metabolism , Citric Acid Cycle , Pyruvic Acid/metabolism , Mice, Inbred C57BL , Fasting/metabolism , Carnitine O-Palmitoyltransferase/metabolism
10.
Mol Biol Rep ; 51(1): 402, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456942

ABSTRACT

BACKGROUND: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA. Malonyl-CoA, which plays a key role in regulating glucose and lipid metabolism, is not only a substrate for fatty acid synthesis but also an inhibitor of the oxidation pathway. ACC exists as two isoenzymes that are encoded by two different genes. ACC1 in grass carp (Ctenopharyngodon idellus) has been cloned and sequenced. However, studies on the cloning, tissue distribution, and function of ACC2 in grass carp were still rare. METHODS AND RESULTS: The full-length cDNA of acc2 was 8537 bp with a 7146 bp open reading frame encoding 2381 amino acids. ACC2 had a calculated molecular weight of 268.209 kDa and an isoelectric point of 5.85. ACC2 of the grass carp shared the closest relationship with that of the common carp (Sinocyclocheilus grahami). The expressions of acc1 and acc2 mRNA were detected in all examined tissues.  The expression level of acc1 was high in the brain and fat but absent in the midgut and hindgut. The expression level of acc2 in the kidney was significantly higher than in other tissues, followed by the heart, brain, muscle, and spleen. ACCs inhibitor significantly reduced the levels of glucose, malonyl-CoA, and triglyceride in hepatocytes. CONCLUSIONS: This study showed that the function of ACC2 was evolutionarily conserved from fish to mammals. ACCs inhibitor inhibited the biological activity of ACCs, and reduced fat accumulation in grass carp.


Subject(s)
Carps , Animals , Carps/genetics , Carps/metabolism , Cloning, Molecular , Base Sequence , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Gene Expression , Glucose , Mammals/metabolism
11.
J Transl Med ; 22(1): 196, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395901

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose global prevalence is rapidly increasing. Acetyl CoA carboxylases 1 (ACACA) is the key enzyme that controls the rate of fatty acid synthesis. Hence, it is crucial to investigate the function of ACACA in regulating lipid metabolism during the progress of NAFLD. METHODS: Firstly, a fatty liver mouse model was established by high-fat diet at 2nd, 12th, and 20th week, respectively. Then, transcriptome analysis was performed on liver samples to investigate the underlying mechanisms and identify the target gene of the occurrence and development of NAFLD. Afterwards, lipid accumulation cell model was induced by palmitic acid and oleic acid (PA ∶ OA molar ratio = 1∶2). Next, we silenced the target gene ACACA using small interfering RNAs (siRNAs) or the CMS-121 inhibitor. Subsequently, experiments were performed comprehensively the effects of inhibiting ACACA on mitochondrial function and lipid metabolism, as well as on AMPK- PPARα- CPT1A pathway. RESULTS: This data indicated that the pathways significantly affected by high-fat diet include lipid metabolism and mitochondrial function. Then, we focus on the target gene ACACA. In addition, the in vitro results suggested that inhibiting of ACACA in vitro reduces intracellular lipid accumulation, specifically the content of TG and TC. Furthermore, ACACA ameliorated mitochondrial dysfunction and alleviate oxidative stress, including MMP complete, ATP and ROS production, as well as the expression of mitochondria respiratory chain complex (MRC) and AMPK proteins. Meanwhile, ACACA inhibition enhances lipid metabolism through activation of PPARα/CPT1A, leading to a decrease in intracellular lipid accumulation. CONCLUSION: Targeting ACACA can reduce lipid accumulation by mediating the AMPK- PPARα- CPT1A pathway, which regulates lipid metabolism and alleviates mitochondrial dysfunction.


Subject(s)
Acetyl-CoA Carboxylase , Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Diet, High-Fat , Lipid Metabolism/genetics , Liver/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , PPAR alpha/metabolism , Acetyl-CoA Carboxylase/metabolism , Carnitine O-Palmitoyltransferase/metabolism
12.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38340725

ABSTRACT

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Non-alcoholic Fatty Liver Disease/pathology , Activation, Metabolic , Liver Cirrhosis/genetics , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Fibrosis , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism
13.
Biotechnol Appl Biochem ; 71(2): 402-413, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287712

ABSTRACT

Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.


Subject(s)
Acetyl-CoA Carboxylase , Streptomyces antibioticus , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Streptomyces antibioticus/metabolism , Acetyl Coenzyme A/genetics , Molecular Docking Simulation , Mutation , Saccharomyces cerevisiae/metabolism , Escherichia coli/metabolism
14.
Appl Physiol Nutr Metab ; 49(5): 614-625, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38181403

ABSTRACT

We assessed the effects of two levels of calorie restriction (CR; eating either 15% or 35% less than ad libitum, AL, food intake for 8 weeks) by 24-month-old female and male rats on glucose uptake (GU) and phosphorylation of key signaling proteins (Akt; AMP-activated protein kinase, AMPK; Akt substrate of 160 kDa, AS160) measured in isolated skeletal muscles that underwent four incubation conditions (without either insulin or AICAR, an AMPK activator; with AICAR alone; with insulin alone; or with insulin and AICAR). Regardless of sex: (1) neither CR group versus the AL group had greater GU by insulin-stimulated muscles; (2) phosphorylation of Akt in insulin-stimulated muscles was increased in 35% CR versus AL rats; (3) prior AICAR treatment of muscle resulted in greater GU by insulin-stimulated muscles, regardless of diet; and (4) AICAR caused elevated phosphorylation of acetyl CoA carboxylase, an indicator of AMPK activation, in all diet groups. There was a sexually dimorphic diet effect on AS160 phosphorylation, with 35% CR exceeding AL for insulin-stimulated muscles in male rats, but not in female rats. Our working hypothesis is that the lack of a CR-effect on GU by insulin-stimulated muscles was related to the extended duration of the ex vivo incubation period (290 min compared to 40-50 min that was previously reported to be effective). The observed efficacy of prior treatment of muscles with AICAR to improve glucose uptake in insulin-stimulated muscles supports the strategy of targeting AMPK with the goal of improving insulin sensitivity in older females and males.


Subject(s)
AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Caloric Restriction , Glucose , Insulin , Muscle, Skeletal , Proteins , Proto-Oncogene Proteins c-akt , Ribonucleotides , Signal Transduction , Animals , Female , Male , Rats , Acetyl-CoA Carboxylase/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , GTPase-Activating Proteins/metabolism , Hypoglycemic Agents/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ribonucleotides/pharmacology , Sex Factors , Signal Transduction/drug effects , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/metabolism
15.
Fish Shellfish Immunol ; 146: 109387, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272331

ABSTRACT

Acetyl-CoA carboxylase (ACC) plays a regulatory role in both fatty acid synthesis and oxidation, controlling the process of lipid deposition in the liver. Given that existing studies have shown a close relationship between low phosphorus (P) and hepatic lipid deposition, this study was conducted to investigate whether ACC plays a crucial role in this relationship. Zebrafish liver cell line (ZFL) was incubated under low P medium (LP, P concentration: 0.77 mg/L) or adequate P medium (AP, P concentration: 35 mg/L) for 240 h. The results showed that, compared with AP-treated cells, LP-treated cells displayed elevated lipid accumulation, and reduced fatty acid ß-oxidation, ATP content, and mitochondrial mass. Furthermore, transcriptomics analysis revealed that LP-treated cells significantly increased lipid synthesis (Acetyl-CoA carboxylases (acc), Stearyl coenzyme A dehydrogenase (scd)) but decreased fatty acid ß-oxidation (Carnitine palmitoyltransferase I (cptI)) and (AMP-activated protein kinase (ampk)) mRNA levels compared to AP-treated cells. The phosphorylation of AMPK and ACC, and the protein expression of CPTI were significantly decreased in LP-treated cells compared with those in AP-treated cells. After 240 h of LP treatment, PF-05175157 (an ACC inhibitor) was supplemented in the LP treatment for an additional 12 h. PF-05175157-treated cells showed higher phosphorylation of ACC, higher protein expression of CPTI, and lower protein expression of FASN, lower TG content, enhanced fatty acid ß-oxidation, increased ATP content, and mitochondrial mass compared with LP-treated cells. PF-05175157 also relieved the LP-induced oxidative stress and inflammatory response. Overall, these findings suggest that ACC is a promising target for treating LP-induced elevation of lipid deposition in ZFL, and can alleviate oxidative stress and inflammatory response.


Subject(s)
Acetyl-CoA Carboxylase , Zebrafish , Animals , Zebrafish/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , AMP-Activated Protein Kinases/genetics , Liver/metabolism , Oxidative Stress , Fatty Acids/metabolism , Phosphorus , Lipids , Adenosine Triphosphate/metabolism
16.
Free Radic Biol Med ; 212: 464-476, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38211832

ABSTRACT

Lipid metabolic reprogramming has been recognized as a hallmark of human cancer. Acetyl-CoA Carboxylases (ACCs) are key rate-limiting enzymes involved in fatty acid metabolism regulation by catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. Previously, most studies focused on the role of ACC1 in fatty acid metabolism in cancer, while the function of ACC2 remains largely uncharacterized in human cancers, especially in ovarian cancer (OC). Here, we show that ACC2 was significantly downregulated in cancerous tissue of OC, and the downregulation of ACC2 is closely associated with lager tumor size, metastases and worse prognosis in OC patients. Downregulation of ACC2 promoted proliferation and metastasis of OC both in vitro and in vivo by enhancing FAO. Notably, mitochondria-associated ubiquitin ligase (MARCH5) was identified to interact with and downregulate ACC2 by ubiquitination and degradation in OC. Moreover, ACC2 downregulation-enhanced FAO contributed to the progression of OC promoted by MARCH5. In conclusion, our findings demonstrate that MARCH5-mediated downregulation of ACC2 promotes FAO and tumorigenesis in OC, suggesting MARCH5-ACC2 axis as a potent candidate for the treatment and prevention of OC.


Subject(s)
Acetyl-CoA Carboxylase , Fatty Acids , Ovarian Neoplasms , Ubiquitin-Protein Ligases , Female , Humans , Acetyl Coenzyme A/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Down-Regulation , Fatty Acids/genetics , Fatty Acids/metabolism , Ovarian Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism
17.
Int J Food Microbiol ; 413: 110585, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38246023

ABSTRACT

Acetyl-CoA carboxylase (ACC), which catalyzes acetyl-CoA to produce malonyl-CoA, is crucial for the synthesis of mycotoxins, ergosterol, and fatty acids in various genera. However, its biofunction in Aspergillus flavus has not been reported. In this study, the accA gene was deleted and site-mutated to explore the influence of ACC on sporulation, sclerotium formation, and aflatoxin B1 (AFB1) biosynthesis. The results revealed that ACC positively regulated conidiation and sclerotium formation, but negatively regulated AFB1 production. In addition, we found that ACC is a succinylated protein, and mutation of lysine at position 990 of ACC to glutamic acid or arginine (accAK990E or accAK990R) changed the succinylation level of ACC. The accAK990E and accAK990R mutations (to imitate the succinylation and desuccinylation at K990 of ACC, respectively) downregulated fungal conidiation and sclerotium formation while increasing AFB1 production, revealing that the K990 is an important site for ACC's biofunction. These results provide valuable perspectives for future mechanism studies of the emerging roles of succinylated ACC in the regulation of the A. flavus phenotype, which is advantageous for the prevention and control of A. flavus hazards.


Subject(s)
Acetyl-CoA Carboxylase , Aspergillus flavus , Aspergillus flavus/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Virulence , Aflatoxin B1 , Mutation
18.
Surgery ; 175(2): 265-270, 2024 02.
Article in English | MEDLINE | ID: mdl-37940431

ABSTRACT

BACKGROUND: Inflammation and disruption of cardiac metabolism are prevalent in the setting of myocardial ischemia. Canagliflozin, a sodium-glucose costransporter-2 inhibitor, has beneficial effects on the heart, though the precise mechanisms are unknown. This study investigated the effects of canagliflozin therapy on metabolic pathways and inflammation in ischemic myocardial tissue using a swine model of chronic myocardial ischemia. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic ischemia. Two weeks later, pigs received either no drug (n = 8) or 300 mg canagliflozin (n = 8) daily. Five weeks later, pigs underwent terminal harvest and tissue collection. RESULTS: Canagliflozin treatment was associated with a trend toward decreased expression of fatty acid oxidation inhibitor acetyl-CoA carboxylase and decreased phosphorylated/inactivated acetyl-CoA carboxylase, a promotor of fatty acid oxidation, compared with control ischemic myocardium (P = .08, P = .03). There was also a significant modulation in insulin resistance markers p-IRS1, p-PKCα, and phosphoinositide 3-kinase in ischemic myocardium of the canagliflozin group compared with the control group (all P < .05). Canagliflozin treatment was associated with a significant increase in inflammatory markers interleukin 6, interleukin 17, interferon-gamma, and inducible nitric oxide synthase (all P < .05). There was a trend toward decreased expression of the anti-inflammatory cytokines interleukin 10 (P = .16) and interleukin 4 (P = .31) with canagliflozin treatment. CONCLUSION: The beneficial effects of canagliflozin therapy appear to be associated with inhibition of fatty acid oxidation and enhancement of insulin signaling in ischemic myocardium. Interestingly, canagliflozin appears to increase the levels of several inflammatory markers, but further studies are required to better understand how canagliflozin modulates inflammatory signaling pathways.


Subject(s)
Myocardial Ischemia , Sodium-Glucose Transporter 2 Inhibitors , Symporters , Swine , Animals , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Canagliflozin/metabolism , Myocardium/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Acetyl-CoA Carboxylase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/therapeutic use , Myocardial Ischemia/drug therapy , Myocardial Ischemia/complications , Myocardial Ischemia/metabolism , Inflammation/metabolism , Glucose/metabolism , Symporters/metabolism , Fatty Acids/metabolism , Disease Models, Animal
19.
Insect Sci ; 31(2): 387-404, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37486126

ABSTRACT

Lipid and sugar homeostasis is critical for insect development and survival. In this study, we characterized an acetyl coenzyme A carboxylase gene in Blattella germanica (BgACC) that is involved in both lipogenesis and sugar homeostasis. We found that BgACC was dominantly expressed in the fat body and integument, and was significantly upregulated after molting. Knockdown of BgACC in 5th-instar nymphs did not affect their normal molting to the next nymphal stage, but it caused a lethal phenotype during adult emergence. BgACC-RNA interference (RNAi) significantly downregulated total free fatty acid (FFA) and triacylglycerol (TAG) levels, and also caused a significant decrease of cuticular hydrocarbons (CHCs). Repression of BgACC in adult females affected the development of oocytes and resulted in sterile females, but BgACC-RNAi did not affect the reproductive ability of males. Interestingly, knockdown of BgACC also changed the expression of insulin-like peptide genes (BgILPs), which mimicked a physiological state of high sugar uptake. In addition, BgACC was upregulated when B. germanica were fed on a high sucrose diet, and repression of BgACC upregulated the expression of the glycogen synthase gene (BgGlyS). Moreover, BgACC-RNAi increased the circulating sugar levels and glycogen storage, and a longevity assay suggested that BgACC was important for the survival of B. germanica under conditions of high sucrose uptake. Our results confirm that BgACC is involved in multiple lipid biogenesis and sugar homeostasis processes, which further modulates insect reproduction and sugar tolerance. This study benefits our understanding of the crosstalk between lipid and sugar metabolism.


Subject(s)
Acetyl-CoA Carboxylase , Blattellidae , Female , Animals , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Lipogenesis , Blattellidae/genetics , Blattellidae/metabolism , Homeostasis , Sugars/metabolism , Sucrose/metabolism , Lipids
20.
Int Immunol ; 36(3): 129-139, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38041796

ABSTRACT

To meet the energetic requirements associated with activation, proliferation, and survival, T cells switch their metabolic signatures from energetically quiescent to activated. However, little is known about the role of metabolic pathway controlling the development of invariant natural killer T (iNKT) cells. In the present study, we found that acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme for the fatty acid biosynthesis pathway, plays an essential role in the development of iNKT cells in the thymus. Mice lacking T-cell specific ACC1 showed a reduced number of iNKT cells with an increased proportion of iNKT cells at immature stages 0 and 1. Furthermore, mixed bone marrow (BM) chimera experiments revealed that T-cell intrinsic ACC1 expression was selectively important for the development of thymic iNKT cells, especially for the differentiation of the NKT1 cell subset. Our single-cell RNA-sequencing (scRNA-seq) data and functional analysis demonstrated that ACC1 is responsible for survival of developing iNKT cells. Thus, these findings highlighted a novel role of ACC1 in controlling thymic iNKT cell development mediated by the control of cell survival.


Subject(s)
Natural Killer T-Cells , Mice , Animals , Thymus Gland , Cell Differentiation , Adipogenesis , Fatty Acids/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...