Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.107
Filter
1.
Biochemistry ; 63(10): 1270-1277, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770609

ABSTRACT

Cyanovirin-N (CV-N) binds high-mannose oligosaccharides on enveloped viruses with two carbohydrate-binding sites, one bearing high affinity and one low affinity to Manα(1-2)Man moieties. A tandem repeat of two CV-N molecules (CVN2) was tested for antiviral activity against human immunodeficiency virus type I (HIV-1) by using a domain-swapped dimer. CV-N was shown to bind N-acetylmannosamine (ManNAc) and N-acetyl-d-glucosamine (GlcNAc) when the carbohydrate-binding sites in CV-N were free to interact with these monosaccharides independently. CVN2 recognized ManNAc at a Kd of 1.4 µM and bound this sugar in solution, regardless of the lectin making amino acid side chain contacts on the targeted viral glycoproteins. An interdomain cross-contacting residue Glu41, which has been shown to be hydrogen bonding with dimannose, was substituted in the monomeric CV-N. The amide derivative of glucose, GlcNAc, achieved similar high affinity to the new variant CVN-E41T as high-mannose N-glycans, but binding to CVN2 in the nanomolar range with four binding sites involved or binding to the monomeric CVN-E41A. A stable dimer was engineered and expressed from the alanine-to-threonine-substituted monomer to confirm binding to GlcNAc. In summary, low-affinity binding was achieved by CVN2 to dimannosylated peptide or GlcNAc with two carbohydrate-binding sites of differing affinities, mimicking biological interactions with the respective N-linked glycans of interest and cross-linking of carbohydrates on human T cells for lymphocyte activation.


Subject(s)
Acetylglucosamine , Bacterial Proteins , Carrier Proteins , Acetylglucosamine/metabolism , Acetylglucosamine/chemistry , Binding Sites , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/chemistry , Humans , HIV-1/metabolism , Protein Binding , Hexosamines/metabolism , Hexosamines/chemistry , Models, Molecular , Protein Multimerization
2.
Bioorg Chem ; 147: 107395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705105

ABSTRACT

Fluorination of carbohydrate ligands of lectins is a useful approach to examine their binding profile, improve their metabolic stability and lipophilicity, and convert them into 19F NMR-active probes. However, monofluorination of monovalent carbohydrate ligands often leads to a decreased or completely lost affinity. By chemical glycosylation, we synthesized the full series of methyl ß-glycosides of N,N'-diacetylchitobiose (GlcNAcß(1-4)GlcNAcß1-OMe) and LacdiNAc (GalNAcß(1-4)GlcNAcß1-OMe) systematically monofluorinated at all hydroxyl positions. A competitive enzyme-linked lectin assay revealed that the fluorination at the 6'-position of chitobioside resulted in an unprecedented increase in affinity to wheat germ agglutinin (WGA) by one order of magnitude. For the first time, we have characterized the binding profile of a previously underexplored WGA ligand LacdiNAc. Surprisingly, 4'-fluoro-LacdiNAc bound WGA even stronger than unmodified LacdiNAc. These observations were interpreted using molecular dynamic calculations along with STD and transferred NOESY NMR techniques, which gave evidence for the strengthening of CH/π interactions after deoxyfluorination of the side chain of the non-reducing GlcNAc. These results highlight the potential of fluorinated glycomimetics as high-affinity ligands of lectins and 19F NMR-active probes.


Subject(s)
Disaccharides , Wheat Germ Agglutinins , Disaccharides/chemistry , Disaccharides/chemical synthesis , Wheat Germ Agglutinins/chemistry , Wheat Germ Agglutinins/metabolism , Halogenation , Molecular Structure , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Lactose/analogs & derivatives
3.
Angew Chem Int Ed Engl ; 63(20): e202320247, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38501674

ABSTRACT

Protein O-GlcNAcylation is a ubiquitous posttranslational modification of cytosolic and nuclear proteins involved in numerous fundamental regulation processes. Investigation of O-GlcNAcylation by metabolic glycoengineering (MGE) has been carried out for two decades with peracetylated N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine derivatives modified with varying reporter groups. Recently, it has been shown that these derivatives can result in non-specific protein labeling termed S-glyco modification. Here, we report norbornene-modified GlcNAc derivatives with a protected phosphate at the anomeric position and their application in MGE. These derivatives overcome two limitations of previously used O-GlcNAc reporters. They do not lead to detectable S-glyco modification, and they efficiently react in the inverse-electron-demand Diels-Alder (IEDDA) reaction, which can be carried out even within living cells. Using a derivative with an S-acetyl-2-thioethyl-protected phosphate, we demonstrate the protein-specific detection of O-GlcNAcylation of several proteins and the protein-specific imaging of O-GlcNAcylation inside living cells by Förster resonance energy transfer (FRET) visualized by confocal fluorescence lifetime imaging microscopy (FLIM).


Subject(s)
Acetylglucosamine , Glycosylation , Humans , Acetylglucosamine/metabolism , Acetylglucosamine/chemistry , Protein Processing, Post-Translational , Norbornanes/chemistry , Proteins/metabolism , Proteins/chemistry , Proteins/analysis
4.
Nat Chem Biol ; 20(5): 646-655, 2024 May.
Article in English | MEDLINE | ID: mdl-38347213

ABSTRACT

Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.


Subject(s)
Amyloid , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Amyloid/metabolism , Humans , Animals , Mice , Parkinson Disease/metabolism , Parkinson Disease/pathology , Acetylglucosamine/metabolism , Acetylglucosamine/chemistry , Protein Processing, Post-Translational , Cryoelectron Microscopy , Neurons/metabolism , Neurons/pathology
5.
Bioorg Med Chem Lett ; 99: 129616, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38216097

ABSTRACT

Fischer's glycoside synthesis was applied to linker precursor alcohols of two different lengths having appropriate alkane chains to obtain the corresponding α-glycoside and it was found to be applicable with moderate yields. Water-soluble glycomonomers were systematically prepared from N-acetyl-d-glucosamine (GlcNAc) by introducing two kinds of alcohols having different methylene lengths. Typical radical polymerizations of the glycomonomers with acrylamide as a modulator for control of the distance between carbohydrate residues in water in the presence of ammonium persulfate (APS)-N,N,N',N'-tetramethylethylenediamine (TEMED) gave a series of glycopolymers with various α-glycoside-type GlcNAc residue densities. Fluorometric analysis of the interaction of wheat germ agglutinin (WGA) with the glycopolymers was performed and the results showed unique binding specificities based on structural differences.


Subject(s)
Lectins , Sugars , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Carbohydrates/chemistry , Glycosides , Lectins/metabolism , Polymerization , Polymers/chemistry , Water
6.
J Proteome Res ; 23(1): 95-106, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38054441

ABSTRACT

O-linked ß-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (i.e., O-GlcNAcylation) on serine/threonine residues of proteins, regulating a plethora of physiological and pathological events. As a dynamic process, O-GlcNAc functions in a site-specific manner. However, the experimental identification of the O-GlcNAc sites remains challenging in many scenarios. Herein, by leveraging the recent progress in cataloguing experimentally identified O-GlcNAc sites and advanced deep learning approaches, we establish an ensemble model, O-GlcNAcPRED-DL, a deep learning-based tool, for the prediction of O-GlcNAc sites. In brief, to make a benchmark O-GlcNAc data set, we extracted the information on O-GlcNAc from the recently constructed database O-GlcNAcAtlas, which contains thousands of experimentally identified and curated O-GlcNAc sites on proteins from multiple species. To overcome the imbalance between positive and negative data sets, we selected five groups of negative data sets in humans and mice to construct an ensemble predictor based on connection of a convolutional neural network and bidirectional long short-term memory. By taking into account three types of sequence information, we constructed four network frameworks, with the systematically optimized parameters used for the models. The thorough comparison analysis on two independent data sets of humans and mice and six independent data sets from other species demonstrated remarkably increased sensitivity and accuracy of the O-GlcNAcPRED-DL models, outperforming other existing tools. Moreover, a user-friendly Web server for O-GlcNAcPRED-DL has been constructed, which is freely available at http://oglcnac.org/pred_dl.


Subject(s)
Deep Learning , Humans , Animals , Mice , Proteins/metabolism , Protein Processing, Post-Translational , Acetylglucosamine/chemistry , N-Acetylglucosaminyltransferases/metabolism
7.
EMBO Rep ; 24(11): e56845, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37842859

ABSTRACT

Fate determination of primordial germ cells (PGCs) is regulated in a multi-layered manner, involving signaling pathways, epigenetic mechanisms, and transcriptional control. Chemical modification of macromolecules, including epigenetics, is expected to be closely related with metabolic mechanisms but the detailed molecular machinery linking these two layers remains poorly understood. Here, we show that the hexosamine biosynthetic pathway controls PGC fate determination via O-linked ß-N-acetylglucosamine (O-GlcNAc) modification. Consistent with this model, reduction of carbohydrate metabolism via a maternal ketogenic diet that decreases O-GlcNAcylation levels causes repression of PGC formation in vivo. Moreover, maternal ketogenic diet intake until mid-gestation affects the number of ovarian germ cells in newborn pups. Taken together, we show that nutritional and metabolic mechanisms play a previously unappreciated role in PGC fate determination.


Subject(s)
Acetylglucosamine , Signal Transduction , Infant, Newborn , Humans , Signal Transduction/physiology , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Gene Expression Regulation , Epigenesis, Genetic , Germ Cells/metabolism , Protein Processing, Post-Translational
8.
Am J Physiol Heart Circ Physiol ; 325(4): H601-H616, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37539459

ABSTRACT

The modification of serine and threonine amino acids of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates the activity, stability, function, and subcellular localization of proteins. Dysregulation of O-GlcNAc homeostasis is well established as a hallmark of various cardiac diseases, including cardiac hypertrophy, heart failure, complications associated with diabetes, and responses to acute injuries such as oxidative stress and ischemia-reperfusion. Given the limited availability of site-specific O-GlcNAc antibodies, studies of changes in O-GlcNAcylation in the heart frequently use pan-O-GlcNAc antibodies for semiquantitative evaluation of overall O-GlcNAc levels. However, there is a high degree of variability in many published cardiac O-GlcNAc blots. For example, many blots often have regions that lack O-GlcNAc positive staining of proteins either below 50 or above 100 kDa. In some O-GlcNAc blots, only a few protein bands are detected, while in others, intense bands around 75 kDa dominate the gel due to nonspecific IgM band staining, making it difficult to visualize less intense bands. Therefore, the goal of this study was to develop a modifiable protocol that optimizes O-GlcNAc positive banding of proteins in cardiac tissue extracts. We showed that O-GlcNAc blots using CTD110.6 antibody of proteins ranging from <30 to ∼450 kDa could be obtained while also limiting nonspecific staining. We also show that some myofilament proteins are recognized by the CTD110.6 antibody. Therefore, by protocol optimization using the widely available CTD110.6 antibody, we found that it is possible to obtain pan-O-GlcNAc blots of cardiac tissue, which minimizes common limitations associated with this technique.NEW & NOTEWORTHY The post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is recognized as mediating cardiac pathophysiology. However, there is considerable variability in the quality of O-GlcNAc immunoblots used to evaluate changes in cardiac O-GlcNAc levels. Here we show that with relatively minor changes to a commonly used protocol it is possible to minimize the intensity of nonspecific bands while also reproducibly generating O-GlcNAc immunoblots covering a range of molecular weights from <30 to ∼450 kDa.


Subject(s)
Acetylglucosamine , Proteins , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Proteins/metabolism , Heart , Antibodies , Immunoblotting , Protein Processing, Post-Translational , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism
9.
J Biol Chem ; 299(8): 104963, 2023 08.
Article in English | MEDLINE | ID: mdl-37356720

ABSTRACT

Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.


Subject(s)
Vimentin , Acetylglucosamine/chemistry , Cell Adhesion , Cell Movement , Hyaluronic Acid/chemistry , Intermediate Filaments/metabolism , Vimentin/metabolism , Humans , Cell Line, Tumor
10.
Anal Chem ; 95(9): 4371-4380, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36802545

ABSTRACT

Protein O-GlcNAcylation plays extremely important roles in mammalian cells, regulating signal transduction and gene expression. This modification can happen during protein translation, and systematic and site-specific analysis of protein co-translational O-GlcNAcylation can advance our understanding of this important modification. However, it is extraordinarily challenging because normally O-GlcNAcylated proteins are very low abundant and the abundances of co-translational ones are even much lower. Here, we developed a method integrating selective enrichment, a boosting approach, and multiplexed proteomics to globally and site-specifically characterize protein co-translational O-GlcNAcylation. The boosting approach using the TMT labeling dramatically enhances the detection of co-translational glycopeptides with low abundance when enriched O-GlcNAcylated peptides from cells with a much longer labeling time was used as a boosting sample. More than 180 co-translational O-GlcNAcylated proteins were site-specifically identified. Further analyses revealed that among co-translational glycoproteins, those related to DNA binding and transcription are highly overrepresented using the total identified O-GlcNAcylated proteins in the same cells as the background. Compared with the glycosylation sites on all glycoproteins, co-translational sites have different local structures and adjacent amino acid residues. Overall, an integrative method was developed to identify protein co-translational O-GlcNAcylation, which is very useful to advance our understanding of this important modification.


Subject(s)
Peptides , Protein Processing, Post-Translational , Animals , Glycosylation , Peptides/metabolism , Glycoproteins/metabolism , Acetylglucosamine/chemistry , Mammals/metabolism
11.
ChemMedChem ; 18(8): e202300001, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36752318

ABSTRACT

ß-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.


Subject(s)
Acetylglucosamine , Uridine Diphosphate , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Binding Sites , Uridine , N-Acetylglucosaminyltransferases/metabolism
12.
Bioorg Chem ; 131: 106139, 2023 02.
Article in English | MEDLINE | ID: mdl-36610251

ABSTRACT

O-GlcNAcylation is a ubiquitous post-translational modification governing vital biological processes in cancer, diabetes and neurodegeneration. Metabolic chemical reporters (MCRs) containing bio-orthogonal groups such as azido or alkyne, are widely used for labeling of interested proteins. However, most MCRs developed for O-GlcNAc modification are not specific and always lead to unexpected side reactions termed S-glyco-modification. Here, we attempt to develop a new MCR of Ac34FGlcNAz that replacing the 4-OH of Ac4GlcNAz with fluorine, which is supposed to abolish the epimerization of GALE and enhance the selectivity. The discoveries demonstrate that Ac34FGlcNAz is a powerful MCR for O-GlcNAcylation with high efficiency and the process of this labeling is conducted by the two enzymes of OGT and OGA. Most importantly, Ac34FGlcNAz is predominantly incorporated intracellular proteins in the form of O-linkage and leads to negligible S-glyco-modification, indicating it is a selective MCR for O-GlcNAcylation. Therefore, we reason that Ac34FGlcNAz developed here is a well characterized MCR of O-GlcNAcylation, which provides more choice for label and enrichment of O-GlcNAc associated proteins.


Subject(s)
Protein Processing, Post-Translational , Proteins , Acetylglucosamine/chemistry , Proteins/chemistry , Acylation
13.
Anal Chem ; 95(2): 881-888, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36580660

ABSTRACT

Among diverse protein post-translational modifications, O-GlcNAcylation, a simple but essential monosaccharide modification, plays crucial roles in cellular processes and is closely related to various diseases. Despite its ubiquity in cells, properties of low stoichiometry and reversibility are hard nuts to crack in system-wide research of O-GlcNAc. Herein, we developed a novel method employing multi-comparative thermal proteome profiling for O-GlcNAc transferase (OGT) substrate discovery. Melting curves of proteins under different treatments were profiled and compared with high reproducibility and consistency. Consequently, proteins with significantly shifted stabilities caused by OGT and uridine-5'-diphosphate N-acetylglucosamine were screened out from which new O-GlcNAcylated proteins were uncovered.


Subject(s)
Protein Processing, Post-Translational , Proteome , Proteome/metabolism , Reproducibility of Results , Acetylglucosamine/chemistry
14.
Electrophoresis ; 44(1-2): 53-61, 2023 01.
Article in English | MEDLINE | ID: mdl-35871308

ABSTRACT

O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is directly associated with the level of O-GlcNAc glycosylation of biomolecules and various diseases, and it is expected to be a promising potential new therapeutic target. Here, we develop a robust and sensitive method for OGT assay based on capillary electrophoresis-laser induced fluorescence (CE-LIF) method. AF-488-modified peptide containing serine active group is designed as substrate for OGT-catalyzed reaction, and nonradioactive UDP-GlcNAc is employed as sugar donor to perform O-GlcNAc glycosylation modification. The enzyme activity of OGT is measured by quantitative determination of glycosylated peptide produced by the reaction. Large volume sample stacking technique for sample injection and a unique fluorescence collection system for LIF detection are adopted to greatly enhance the detection sensitivity, thus a low limit of detection down to 0.23 pM for OGT detection is achieved. The method is successfully applied to detect OGT activity in clinical blood samples with satisfactory accuracy. Our study provides a simple, accurate, and sensitive method with great potential application in clinical diagnosis of O-GlcNAc-related diseases.


Subject(s)
Acetylglucosamine , Peptides , Acetylglucosamine/chemistry , Electrophoresis, Capillary , Lasers
15.
Clin Chem ; 69(1): 80-87, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36254612

ABSTRACT

BACKGROUND: GlycA is a nuclear magnetic resonance (NMR) signal in plasma that correlates with inflammation and cardiovascular outcomes in large data sets. The signal is thought to originate from N-acetylglucosamine (GlcNAc) residues of branched plasma N-glycans, though direct experimental evidence is limited. Trace element concentrations affect plasma glycosylation patterns and may thereby also influence GlycA. METHODS: NMR GlycA signal was measured in plasma samples from 87 individuals and correlated with MALDI-MS N-glycomics and trace element analysis. We further evaluated the genetic association with GlycA at rs13107325, a single nucleotide polymorphism resulting in a missense variant within SLC39A8, a manganese transporter that influences N-glycan branching, both in our samples and existing genome-wide association studies data from 22 835 participants in the Women's Health Study (WHS). RESULTS: GlycA signal was correlated with both N-glycan branching (r2 ranging from 0.125-0.265; all P < 0.001) and copper concentration (r2 = 0.348, P < 0.0001). In addition, GlycA levels were associated with rs13107325 genotype in the WHS (ß [standard error of the mean] = -4.66 [1.2674], P = 0.0002). CONCLUSIONS: These results provide the first direct experimental evidence linking the GlycA NMR signal to N-glycan branching commonly associated with acute phase reactive proteins involved in inflammation.


Subject(s)
Inflammation , Female , Humans , Acute-Phase Proteins/analysis , Acute-Phase Proteins/chemistry , Biomarkers/chemistry , Genome-Wide Association Study , Inflammation/diagnosis , Polysaccharides/chemistry , Trace Elements , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/chemistry , Cation Transport Proteins/genetics
16.
Angew Chem Int Ed Engl ; 61(49): e202206802, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36224515

ABSTRACT

Core fucosylation, the attachment of α1,6-fucose to the innermost N-acetylglucosamine (GlcNAc) residue of N-glycans, has a strong relationship with tumor growth, invasion, metastasis, prognosis, and immune evasion by regulating many membrane proteins. However, details about the functional mechanism are still largely unknown due to the lack of an effective analytical method to identify cell-surface core-fucosylated glycoproteins, and especially glycosylation sites. Here, we developed a sensitive and reversible labeling strategy for probing core fucosylation, by which core-fucosylated glycoproteins that located on cell-surface were selectively tagged by a biotinylated probe with high sensitivity. The labeled probe can be further broken enzymatically after the capture by affinity resin. The on-bead traceless cleavage allowed the global mapping of core-fucosylated glycoproteins and glycosylation sites by mass spectrometry (MS). The profile of core-fucosylated glycoproteome provides an in-depth understanding of the biological functions of core fucosylation.


Subject(s)
Fucose , Glycoproteins , Glycosylation , Fucose/chemistry , Glycoproteins/chemistry , Mass Spectrometry/methods , Acetylglucosamine/chemistry , Polysaccharides/chemistry , Proteome/metabolism
17.
ACS Appl Mater Interfaces ; 14(42): 47482-47490, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36240223

ABSTRACT

As an essential modification, O-linked ß-N-acetylglucosamine (O-GlcNAc) modulates the functions of many proteins. However, site-specific characterization of O-GlcNAcylated proteins remains challenging. Herein, an innovative material grafted with nitro-oxide (N→O) groups was designed for high affinity enrichment for O-GlcNAc peptides from native proteins. By testing with synthetic O-GlcNAc peptides and standard proteins, the synthesized material exhibited high affinity and selectivity. Based on the material prepared, we developed a workflow for site-specific analysis of O-GlcNAcylated proteins in complex samples. We performed O-GlcNAc proteomics with the PANC-1 cell line, a representative model for pancreatic ductal adenocarcinoma. In total 364 O-GlcNAc peptides from 267 proteins were identified from PANC-1 cells. Among them, 183 proteins were newly found to be O-GlcNAcylated in humans (with 197 O-GlcNAc sites newly reported). The materials and methods can be facilely applied for site-specific O-GlcNAc proteomics in other complex samples.


Subject(s)
Acetylglucosamine , Nanospheres , Humans , Acetylglucosamine/analysis , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Hydrogen Bonding , Oxides , Proteins , Peptides
18.
Front Immunol ; 13: 971883, 2022.
Article in English | MEDLINE | ID: mdl-36275759

ABSTRACT

The Apextrin C-terminal (ApeC) domain is a new protein domain largely specific to aquatic invertebrates. In amphioxus, a short-form ApeC-containing protein (ACP) family is capable of binding peptidoglycan (PGN) and agglutinating bacteria via its ApeC domain. However, the functions of ApeC in other phyla remain unknown. Here we examined 130 ACPs from gastropods and bivalves, the first and second biggest mollusk classes. They were classified into nine groups based on their phylogenetics and architectures, including three groups of short-form ACPs, one group of apextrins and two groups of ACPs of complex architectures. No groups have orthologs in other phyla and only four groups have members in both gastropods and bivalves, suggesting that mollusk ACPs are highly diversified. We selected one bivalve ACP (CgACP1; from the oyster Crossostrea gigas) and one gastropod ACP (BgACP1; from the snail Biomphalaria glabrata) for functional experiments. Both are highly-expressed, secreted short-form ACPs and hence comparable to the amphioxus ACPs previously reported. We found that recombinant CgACP1 and BgACP1 bound with yeasts and several bacteria with different affinities. They also agglutinated these microbes, but showed no inhibiting or killing effects. Further analyses show that both ACPs had high affinities to the Lys-type PGN from S. aureus but weak or no affinities to the DAP-type PGN from Bacillus subtilis. Both recombinant ACPs displayed weak or no affinities to other microbial cell wall components, including lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan A, chitin, chitosan and cellulose, as well as to several PGN moieties, including muramyl dipeptide (MDP), N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). Besides, CgACP1 had the highest expression in the gill and could be greatly up-regulated quickly after bacterial challenge. This is reminiscent of the amphioxus ACP1/2 which serve as essential mucus lectins in the gill. Taken together, the current findings from mollusk and amphioxus ACPs suggest several basic common traits for the ApeC domains, including the high affinity to Lys-type PGN, the bacterial binding and agglutinating capacity, and the role as mucus proteins to protect the mucosal surface.


Subject(s)
Chitosan , Lancelets , Animals , Peptidoglycan/pharmacology , Lipopolysaccharides , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Staphylococcus aureus/metabolism , Acetylglucosamine/chemistry , Zymosan , Lancelets/metabolism , Bacteria/metabolism , Cell Wall/metabolism , Lectins , Mollusca , Cellulose
19.
Chem Commun (Camb) ; 58(57): 7948-7951, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35748909

ABSTRACT

Electrochemical synthesis of unnatural cyclic oligosaccharides composed of N-acetylglucosamine with α-1,4-glycosidic linkages has been accomplished. A thioglycoside monomer equipped with the 2,3-oxazolidinone protecting group was used to prepare linear oligosaccharides by electrochemical polyglycosylation. In the same pot, isomerization of the linear oligosaccharides and intramolecular electrochemical glycosylation for cyclization were also conducted sequentially to obtain the precursor of the cyclic α-1,4-oligo-N-acetylglucosamine 'cyclokasaodorin'.


Subject(s)
Acetylglucosamine , Oligosaccharides , Acetylglucosamine/chemistry , Cyclization , Glycosylation , Isomerism , Oligosaccharides/chemistry
20.
FEBS Open Bio ; 12(6): 1220-1229, 2022 06.
Article in English | MEDLINE | ID: mdl-35347892

ABSTRACT

O-GlcNAcylation of intracellular proteins (O-GlcNAc) is a post-translational modification that often competes with phosphorylation in diverse cellular signaling pathways. Recent studies on human malignant tumors have demonstrated that O-GlcNAc is implicated in cellular features relevant to metastasis. Here, we report that lysophosphatidic acid (LPA)-induced ovarian cancer cell (OVCAR-3) migration is regulated by O-GlcNAc. We found that O-GlcNAc modification of ERM family proteins, a membrane-cytoskeletal crosslinker, was inversely correlated with its phosphorylation status. Moreover, the LPA-induced formation of membrane protrusion structures, as well as the migration of OVCAR-3 cells, was reduced by the accumulation of O-GlcNAc. Collectively, these findings suggest that O-GlcNAc is an essential signaling element controlling ERM family proteins involved in OVCAR-3 cell migration.


Subject(s)
Acetylglucosamine , Ovarian Neoplasms , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Apoptosis , Cell Line, Tumor , Cell Movement , Female , Humans , Lysophospholipids
SELECTION OF CITATIONS
SEARCH DETAIL
...