Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Plant Cell Rep ; 43(4): 89, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462577

ABSTRACT

KEY MESSAGE: This study provides novel insights into the evolution, diversification, and functions of melatonin biosynthesis genes in Prunus species, highlighting their potential role in regulating bud dormancy and abiotic stresses. The biosynthesis of melatonin (MEL) in plants is primarily governed by enzymatic reactions involving key enzymes such as serotonin N-acetyltransferase (SNAT), tryptamine 5-hydroxylase (T5H), N-acetylserotonin methyltransferase (ASMT) and tryptophan decarboxylase (TDC). In this study, we analyzed Melatonin genes in four Prunus species such as Prunus avium (Pavi), Prunus pusilliflora (Ppus), Prunus serulata (Pser), and Prunus persica (Pper) based on comparative genomics approach. Among the four Prunus species, a total of 29 TDCs, 998 T5Hs, 16 SNATs, and 115 ASMTs within the genome of four Prunus genomes. A thorough investigation of melatonin-related genes was carried out using systematic biological methods and comparative genomics. Through phylogenetic analysis, orthologous clusters, Go enrichment, syntenic relationship, and gene duplication analysis, we discovered both similarities and variations in Melatonin genes among these Prunus species. Additionally, our study revealed the existence of unique subgroup members in the Melatonin genes of these species, which were distinct from those found in Arabidopsis genes. Furthermore, the transcriptomic expression analysis revealed the potential significance of melatonin genes in bud dormancy regulation and abiotic stresses. Our extensive results offer valuable perspectives on the evolutionary patterns, intricate expansion, and functions of PavMEL genes. Given their promising attributes, PavTDCs, PavT5H, PavNAT, and three PavASMT genes warrant in-depth exploration as prime candidates for manipulating dormancy in sweet cherry. This was done to lay the foundation for future explorations into the structural and functional aspects of these factors in Prunus species. This study offers significant insights into the functions of ASMT, SNAT, T5H, and TDC genes and sheds light on their roles in Prunus avium. Moreover, it established a robust foundation for further exploration functional characterization of melatonin genes in fruit species.


Subject(s)
Arabidopsis , Melatonin , Prunus avium , Prunus , Prunus avium/genetics , Prunus avium/metabolism , Prunus/genetics , Prunus/metabolism , 5-Methoxytryptamine , Melatonin/genetics , Melatonin/metabolism , Phylogeny , Acetylserotonin O-Methyltransferase/chemistry , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , Arabidopsis/genetics , Genomics , Stress, Physiological/genetics
2.
Commun Biol ; 6(1): 1126, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935873

ABSTRACT

N-acetylserotonin O-methyltransferase (ASMT) is responsible for melatonin biosynthesis. The Asmt gene is located on the X chromosome, and its genetic polymorphism is associated with depression in humans. However, the underlying mechanism remains unclear. Here, we use CRISPR/Cas9 to delete 20 bp of exon 2 of Asmt, and construct C57BL/6J mouse strain with Asmt frameshift mutation (Asmtft/ft). We show that female Asmtft/ft mice exhibit anxiety- and depression-like behaviors, accompanied by an obvious structural remodeling of gut microbiota. These behavioral abnormalities are not observed in male. Moreover, female Asmtft/ft mice show a lower neurobehavioral adaptability to exercise, while wild-type shows a "higher resilience". Cross-sectional and longitudinal analysis indicates that the structure of gut microbiota in Asmtft/ft mice is less affected by exercise. These results suggests that Asmt maintains the plasticity of gut microbiota in female, thereby enhancing the neurobehavioral adaptability to exercise.


Subject(s)
Gastrointestinal Microbiome , Melatonin , Humans , Animals , Male , Female , Mice , Acetylserotonin O-Methyltransferase/chemistry , Acetylserotonin O-Methyltransferase/genetics , Cross-Sectional Studies , Mice, Inbred C57BL
3.
Physiol Plant ; 175(5): e14015, 2023.
Article in English | MEDLINE | ID: mdl-37882265

ABSTRACT

Recognized for its multifaceted functions, melatonin is a hormone found in both animals and plants. In the plant kingdom, it plays diverse roles, regulating growth, development, and stress responses. Notably, melatonin demonstrates its significance by mitigating the effects of abiotic stresses like drought. However, understanding the precise regulatory mechanisms controlling melatonin biosynthesis genes, especially during monocots' response to stresses, requires further exploration. Seeking to understand the molecular basis of drought stress tolerance in wheat, we analyzed RNA-Seq libraries of wheat exposed to drought stress using bioinformatics methods. In light of our findings, we identified that the Myelocytomatosis oncogenes 2 (MYC2) transcription factor is a hub gene upstream of a main melatonin biosynthesis gene, N-acetylserotonin methyltransferase (ASMT), in the wheat drought response-gene network. Promoter analysis of the ASMT gene suggested that it might be a target gene of MYC2. We conducted a set of molecular and physiochemical assays along with robust machine learning approaches to elevate those findings further. MYC2 and ASMT were co-regulated under Jasmonate, drought, and a combination of them in the leaf tissues of wheat was detected. A meaningful correlation was observed among gene expression profiles, melatonin contents, photosynthetic activities, antioxidant enzyme activities, H2 O2 levels, and plasma membrane damage. The results indicated an evident relationship between jasmonic acid and the melatonin biosynthesis pathway. Moreover, it seems that the MYC2-ASMT module might contribute to wheat drought tolerance by regulating melatonin contents.


Subject(s)
Acetylserotonin O-Methyltransferase , Melatonin , Animals , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/chemistry , Acetylserotonin O-Methyltransferase/metabolism , Triticum/genetics , Triticum/metabolism , Drought Resistance , Gene Expression
4.
Reprod Fertil Dev ; 35(11): 563-574, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37290449

ABSTRACT

CONTEXT: Melatonin influences female reproduction, but expression of the melatonin system has not been characterised in the ovine uterus. AIMS: We aimed to determine whether synthesising enzymes (arylalkylamine N-acetyltransferase (AANAT) and N-acetylserotonin-O-methyltransferase (ASMT)), melatonin receptors 1 and 2 (MT1 and MT2), and catabolising enzymes (myeloperoxidase (MPO) and indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and 2)), are expressed in the ovine uterus, and if they are influenced by the oestrous cycle (Experiment 1) or by undernutrition (Experiment 2). METHODS: In Experiment 1, gene and protein expression was determined in sheep endometrium samples collected on days 0 (oestrus), 5, 10 and 14 of the oestrous cycle. In Experiment 2, we studied uterine samples from ewes fed either 1.5 or 0.5times their maintenance requirements. KEY RESULTS: We have demonstrated the expression of AANAT and ASMT in the endometrium of sheep. AANAT and ASMT transcripts, and AANAT protein were more elevated at day 10, then decreased to day 14. A similar pattern was observed for MT2 , IDO1 , and MPO mRNA, which suggests that the endometrial melatonin system might be influenced by ovarian steroid hormones. Undernutrition increased AANAT mRNA expression, but seemed to decrease its protein expression, and increased MT2 and IDO2 transcripts, whereas ASMT expression was unaffected. CONCLUSIONS: The melatonin system is expressed in the ovine uterus and is affected by oestrous cycle and undernutrition. IMPLICATIONS: The results help explain the adverse effects of undernutrition on reproduction in sheep, and the success of exogenous melatonin treatments in improving reproductive outcomes.


Subject(s)
Melatonin , Animals , Sheep/genetics , Female , Melatonin/metabolism , Uterus/metabolism , Endometrium/metabolism , RNA, Messenger/metabolism , Arylalkylamine N-Acetyltransferase/genetics , Arylalkylamine N-Acetyltransferase/metabolism , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism
5.
Tree Physiol ; 43(2): 335-350, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36124720

ABSTRACT

Melatonin enhances plant tolerance to various environmental stressors. Although exogenous application of melatonin has been investigated, the role of endogenous melatonin metabolism in the response of apples to drought stress and nutrient utilization remains unclear. Here, we investigated the effects of ectopically expressing the human melatonin synthase gene HIOMT on transgenic apple plants under drought stress conditions. The tolerance of transgenic apple lines that ectopically expressed HIOMT improved significantly under drought conditions. After 10 days of natural drought stress treatment, the transgenic apple plants showed higher relative water content, chlorophyll levels and Fv/Fm, and lower relative electrolyte leakage and hydrogen peroxide accumulation, than wild-type plants. The activities of peroxidase, superoxide dismutase and catalase, as well as genes in the ascorbate-glutathione cycle, increased more in transgenic apple plants than in the wild-type. The ectopic expression of HIOMT also markedly alleviated the inhibitory effects of long-term drought stress on plant growth, photosynthetic rate and chlorophyll concentrations in apple plants. The uptake and utilization of 15N increased markedly in the transgenic lines under long-term moderate drought stress. Drought stress sharply reduced the activity of enzymes involved in nitrogen metabolism, but ectopic expression of HIOMT largely reversed that response. The expression levels of genes of nitrogen metabolism and uptake were more upregulated in transgenic apple plants than the wild-type. Overall, our study demonstrates that ectopic expression of HIOMT enhanced the tolerance of apple plants to drought stress, and transgenic apple plants showed improved growth due to higher nutrient utilization efficiency under drought conditions.


Subject(s)
Malus , Melatonin , Humans , Malus/genetics , Malus/metabolism , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , Melatonin/metabolism , Droughts , Ectopic Gene Expression , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Chlorophyll/metabolism , Nitrogen/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Methods Mol Biol ; 2550: 29-32, 2022.
Article in English | MEDLINE | ID: mdl-36180674

ABSTRACT

Melatonin synthesis by extrapineal sources adjusts physiological and pathophysiological processes in several types of cells and tissues. As measuring locally produced melatonin in fresh tissues might be a challenge due to limited material availability, we created a simple predictive model, the MEL-Index, which infers the content of tissue melatonin using gene expression data. The MEL-Index can be a powerful tool to study the role of melatonin in different contexts. Applying the MEL-Index method to RNA-seq datasets, we have shed light into the clinical relevance of melatonin as a modulator tumor progression and lung infection due to COVID-19. The MEL-Index combines the z-normalized expressions of ASMT (Acetylserotonin O-Methyltransferase), last enzyme of the biosynthetic pathway, and CYP1B1 (cytochrome P450 family enzyme), which encodes the enzyme that metabolizes melatonin in extrahepatic tissues. In this chapter, we describe the steps for calculating the MEL-Index.


Subject(s)
COVID-19 , Melatonin , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , COVID-19/genetics , Cytochrome P-450 Enzyme System/genetics , Gene Expression , Humans , Melatonin/metabolism
7.
Neuroscience ; 499: 12-22, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35798261

ABSTRACT

The pineal gland is a key player in surveillance and defense responses. In healthy conditions, nocturnal circulating melatonin (MEL) impairs the rolling and adhesion of leukocytes to the endothelial layer. Fungi, bacteria, and pro-inflammatory cytokines block nocturnal pineal MEL synthesis, facilitating leukocyte migration to injured areas. ATP is a cotransmitter of the noradrenergic signal and potentiates noradrenaline (NAd)-induced MEL synthesis via P2Y1 receptor (P2Y1R) activation. Otherwise, ATP low-affinity P2X7 receptor (P2X7R) activation impairs N-acetylserotonin (NAS) into MEL conversion in NAd incubated pineals. Here we mimicked a focal increase of ATP by injecting low (0.3 and 1.0 µg) and high (3.0 µg) ATP in the right lateral ventricle of adult rats. Nocturnal pineal activity mimicked the in culture data. Low ATP doses increased MEL output, while high ATP dose and the P2X7R agonist BzATP (15.0-50.0 ng) increased NAS pineal and blood content. In the brain, the response was structure-dependent. There was an increase in cortical and no change in cerebellar MEL. These effects were mediated by changes in the expression of coding genes to synthetic and metabolizing melatonergic enzymes. Thus, the pineal gland plays a role as a first-line structure to respond to the death of cells inside the brain by turning NAS into the darkness hormone.


Subject(s)
Melatonin , Pineal Gland , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Melatonin/pharmacology , NAD/metabolism , Norepinephrine/metabolism , Norepinephrine/pharmacology , Pineal Gland/metabolism , Rats , Receptors, Purinergic P2X7/metabolism , Serotonin/analogs & derivatives
8.
Genes (Basel) ; 13(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35885979

ABSTRACT

Aralkylamine N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT), the two rate-limiting enzymes for melatonin synthesis, regulate melatonin production in mammals. Through analysis of the milk melatonin level and dairy herd improvement (DHI) index, it was found that the melatonin concentration in milk was significantly negatively correlated with the 305 day milk yield (305M) and peak milk yield (PeakM) (p < 0.05), while it was significantly positively correlated with the serum melatonin concentration (p < 0.05). The full-length of AANAT and ASMT were sequenced and genotyped in 122 cows. Three SNPs in AANAT and four SNPs in ASMT were significantly related to MT levels in the milk and serum (p < 0.05). The SNPs in AANAT were temporarily denoted as N-SNP1 (g.55290169 T>C), N-SNP2 (g.55289357 T>C), and N-SNP3 (g.55289409 C>T). The SNPs in ASMT were temporarily denoted as M-SNP1 (g.158407305 G>A), M-SNP2 (g.158407477 A>G), M-SNP3 (g.158407874 G>A), and M-SNP4 (g.158415342 T>C). The M-SNP1, M-SNP2, and M-SNP3 conformed to the Hardy−Weinberg equilibrium (p > 0.05), while other SNPs deviated from the Hardy−Weinberg equilibrium (p < 0.05). The potential association of MT production and each SNP was statistically analyzed using the method of linkage disequilibrium (LD). The results showed that N-SNP2 and N-SNP3 had some degree of LD (D' = 0.27), but M-SNP1 and M-SNP2 had a strong LD (D' = 0.98). Thus, the DHI index could serve as a prediction of the milk MT level. The SNPs in AANAT and ASMT could be used as potential molecular markers for screening cows to produce high melatonin milk.


Subject(s)
Acetylserotonin O-Methyltransferase , Melatonin , Acetylserotonin O-Methyltransferase/genetics , Acetyltransferases/genetics , Animals , Cattle/genetics , Female , Mammals , Melatonin/genetics , Milk , Polymorphism, Single Nucleotide/genetics
9.
Biosci Rep ; 42(7)2022 07 29.
Article in English | MEDLINE | ID: mdl-35771226

ABSTRACT

Sleep disorder caused by abnormal circadian rhythm is one of the main symptoms and risk factors of depression. As a known hormone regulating circadian rhythms, melatonin (MT) is also namely N-acetyl-5-methoxytryptamine. N-acetylserotonin methyltransferase (Asmt) is the key rate-limiting enzyme of MT synthesis and has been reportedly associated with depression. Although 50-90% of patients with depression have sleep disorders, there are no effective treatment ways in the clinic. Exercise can regulate circadian rhythm and play an important role in depression treatment. In the present study, we showed that Asmt knockout induced depression-like behaviors, which were ameliorated by swimming exercise. Moreover, swimming exercise increased serum levels of MT and 5-hydroxytryptamine (5-HT) in Asmt knockout mice. In addition, the microarray data identified 10 differentially expressed genes (DEGs) in KO mice compared with WT mice and 29 DEGs in KO mice after swimming exercise. Among the DEGs, the direction and magnitude of change in epidermal growth factor receptor pathway substrate 8-like 1 (Eps8l1) and phospholipase C-ß 2 (Plcb2) were confirmed by qRT-PCR partly. Subsequent bioinformatic analysis showed that these DEGs were enriched significantly in the p53 signaling pathway, long-term depression and estrogen signaling pathway. In the protein-protein interaction (PPI) networks, membrane palmitoylated protein 1 (Mpp1) and p53-induced death domain protein 1 (Pidd1) were hub genes to participate in the pathological mechanisms of depression and exercise intervention. These findings may provide new targets for the treatment of depression.


Subject(s)
Acetylserotonin O-Methyltransferase , Melatonin , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , Animals , Depression/genetics , Hypothalamus/metabolism , Melatonin/genetics , Mice , Transcriptome , Tumor Suppressor Protein p53/genetics
10.
Gene ; 814: 146128, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34971752

ABSTRACT

Melatonin, an important regulator of mammalian reproduction, is mainly produced in the pineal gland, and granulosa cells (GCs), the main mammalian ovarian secretory cells, synthesize melatonin and express melatonin receptors (MRs) MT1 and MT2. However, studies on melatonin regulation in GCs are lacking in sheep. In this study, we explored the effects of ß-estradiol (E2) on melatonin production and MR expression in GCs. We cultured sheep GCs to analyze the expression of the melatonin rate-limiting enzymes AANAT and HIOMT and the effects of E2 on AANAT, HIOMT, and MR expression and melatonin synthesis. To determine whether estrogen receptors (ERs) mediated E2 action on melatonin secretion and MR expression, we assessed ERA and ERB expression in GCs and observed whether ER antagonists counterbalanced the effects of E2. GCs expressed AANAT and HIOMT mRNA, indicating that they transformed exogenous serotonin into melatonin. E2 inhibited melatonin production by downregulating AANAT, HIOMT, and MRs. GCs expressed ERA and ERB; ERA/ERB inhibitors abolished E2-mediated inhibition of melatonin secretion and MR expression. PHTPP upregulated melatonin secretion and MT1 expression in E2-treated GCs, but did not significantly affect AANAT and MT2 expression. In conclusion, melatonin secretion in GCs was inhibited by E2 through an ERA- and ERB-mediated process.


Subject(s)
Estradiol/physiology , Granulosa Cells/metabolism , Melatonin/biosynthesis , Receptor, Melatonin, MT1/biosynthesis , Receptor, Melatonin, MT2/biosynthesis , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , Animals , Arylalkylamine N-Acetyltransferase/genetics , Arylalkylamine N-Acetyltransferase/metabolism , Cells, Cultured , Female , Granulosa Cells/enzymology , Sheep
11.
Tree Physiol ; 42(5): 1114-1126, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34865159

ABSTRACT

Improving apple water-use efficiency (WUE) is increasingly desirable in the face of global climate change. Melatonin is a pleiotropic molecule that functions in plant development and stress tolerance. In apple, exogenous application of melatonin has been largely investigated, but melatonin biosynthesis and its physiological roles remain elusive. In the plant biosynthetic pathway of melatonin, the last and key step is that N-acetylserotonin methyltransferase (ASMT) converts N-acetylserotonin into melatonin. Here, we identified an apple ASMT gene, MdASMT9, using homology-based cloning and in vitro enzyme assays. Overexpression of MdASMT9 significantly increased melatonin accumulation in transgenic apple lines. Moreover, an enhanced WUE was observed in the MdASMT9-overexpressing apple lines. Under well-watered conditions, this increase in WUE was attributed to an enhancement of photosynthetic rate and stomatal aperture via a reduction in abscisic acid biosynthesis. By contrast, under long-term moderate water deficit conditions, regulations in photoprotective mechanisms, stomatal behavior, osmotic adjustment and antioxidant activity enhanced the WUE in transgenic apple lines. Taken together, our findings shed light on the positive effect of MdASMT9 on improving WUE of apple by modulating melatonin biosynthesis.


Subject(s)
Malus , Melatonin , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , Malus/metabolism , Melatonin/genetics , Melatonin/metabolism , Serotonin/analogs & derivatives , Water
12.
Molecules ; 26(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885890

ABSTRACT

In this article, we attempt to classify a potential dimorphism of melatonin production. Thus, a new concept of "reserve or maximum capacity of melatonin synthetic function" is introduced to explain the subtle dimorphism of melatonin production in mammals. Considering ASMT/ASMTL genes in the pseudoautosomal region of sex chromosomes with high prevalence of mutation in males, as well as the sex bias of the mitochondria in which melatonin is synthesized, we hypothesize the existence of a dimorphism in melatonin production to favor females, which are assumed to possess a higher reserve capacity for melatonin synthesis than males. Under physiological conditions, this subtle dimorphism is masked by the fact that cells or tissues only need baseline melatonin production, which can be accomplished without exploiting the full potential of melatonin's synthetic capacity. This capacity is believed to exceed the already remarkable nocturnal increase as observed within the circadian cycle. However, during aging or under stressful conditions, the reserve capacity of melatonin's synthetic function is required to be activated to produce sufficiently high levels of melatonin for protective purposes. Females seem to possess a higher reserve/maximum capacity for producing more melatonin than males. Thus, this dimorphism of melatonin production becomes manifest and detectable under these conditions. The biological significance of the reserve/maximum capacity of melatonin's synthetic function is to improve the recovery rate of organisms from injury, to increase resistance to pathogen infection, and even to enhance their chances of survival by maximizing melatonin production under stressful conditions. The higher reserve/maximum capacity of melatonin synthesis in females may also contribute to the dimorphism in longevity, favoring females in mammals.


Subject(s)
Melatonin/metabolism , Acetylserotonin O-Methyltransferase/genetics , Acetylserotonin O-Methyltransferase/metabolism , Animals , Biosynthetic Pathways , Female , Humans , Male , Melatonin/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Sex Characteristics
13.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830307

ABSTRACT

Melatonin, a widely known indoleamine molecule that mediates various animal and plant physiological processes, is formed from N-acetyl serotonin via N-acetylserotonin methyltransferase (ASMT). ASMT is an enzyme that catalyzes melatonin synthesis in plants in the rate-determining step and is homologous to hydroxyindole-O-methyltransferase (HIOMT) melatonin synthase in animals. To date, little is known about the effect of HIOMT on salinity in apple plants. Here, we explored the melatonin physiological function in the salinity condition response by heterologous expressing the homologous human HIOMT gene in apple plants. We discovered that the expression of melatonin-related gene (MdASMT) in apple plants was induced by salinity. Most notably, compared with the wild type, three transgenic lines indicated higher melatonin levels, and the heterologous expression of HIOMT enhanced the expression of melatonin synthesis genes. The transgenic lines showed reduced salt damage symptoms, lower relative electrolyte leakage, and less total chlorophyll loss from leaves under salt stress. Meanwhile, through enhanced activity of antioxidant enzymes, transgenic lines decreased the reactive oxygen species accumulation, downregulated the expression of the abscisic acid synthesis gene (MdNCED3), accordingly reducing the accumulation of abscisic acid under salt stress. Both mechanisms regulated morphological changes in the stomata synergistically, thereby mitigating damage to the plants' photosynthetic ability. In addition, transgenic plants also effectively stabilized their ion balance, raised the expression of salt stress-related genes, as well as alleviated osmotic stress through changes in amino acid metabolism. In summary, heterologous expression of HIOMT improved the adaptation of apple leaves to salt stress, primarily by increasing melatonin concentration, maintaining a high photosynthetic capacity, reducing reactive oxygen species accumulation, and maintaining normal ion homeostasis.


Subject(s)
Acetylserotonin O-Methyltransferase/genetics , Gene Expression Regulation, Plant , Genes, Plant , Malus/genetics , Melatonin/genetics , Abscisic Acid/metabolism , Amino Acids/metabolism , Chlorophyll/metabolism , Homeostasis/genetics , Ions/metabolism , Malus/growth & development , Malus/metabolism , Melatonin/metabolism , Osmotic Pressure , Photosynthesis/genetics , Plant Development/genetics , Plant Stomata/genetics , Plant Stomata/growth & development , Plant Stomata/metabolism , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Salinity , Salt Tolerance/genetics , Signal Transduction/genetics
14.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681693

ABSTRACT

Serotonin (Ser) and melatonin (Mel) serve as master regulators of plant growth and development by influencing diverse cellular processes. The enzymes namely, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) catalyse the formation of Ser from tryptophan. Subsequently, serotonin N-acetyl transferase (SNAT) and acetyl-serotonin methyltransferase (ASMT) form Mel from Ser. Plant genomes harbour multiple genes for each of these four enzymes, all of which have not been identified. Therefore, to delineate information regarding these four gene families, we carried out a genome-wide analysis of the genes involved in Ser and Mel biosynthesis in Arabidopsis, tomato, rice and sorghum. Phylogenetic analysis unravelled distinct evolutionary relationships among these genes from different plants. Interestingly, no gene family except ASMTs showed monocot- or dicot-specific clustering of respective proteins. Further, we observed tissue-specific, developmental and stress/hormone-mediated variations in the expression of the four gene families. The light/dark cycle also affected their expression in agreement with our quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Importantly, we found that miRNAs (miR6249a and miR-1846e) regulated the expression of Ser and Mel biosynthesis under light and stress by influencing the expression of OsTDC5 and OsASMT18, respectively. Thus, this study may provide opportunities for functional characterization of suitable target genes of the Ser and Mel pathway to decipher their exact roles in plant physiology.


Subject(s)
Acetylserotonin O-Methyltransferase/genetics , Aromatic-L-Amino-Acid Decarboxylases/genetics , Arylalkylamine N-Acetyltransferase/genetics , Cytochrome P-450 Enzyme System/genetics , Magnoliopsida/metabolism , Melatonin/biosynthesis , Serotonin/biosynthesis , Acetylserotonin O-Methyltransferase/metabolism , Arabidopsis/metabolism , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Arylalkylamine N-Acetyltransferase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Magnoliopsida/enzymology , Magnoliopsida/genetics , Magnoliopsida/physiology , Oryza/metabolism , Phylogeny , Plant Proteins/metabolism , Sequence Analysis, DNA , Sorghum/metabolism
15.
FASEB J ; 35(9): e21783, 2021 09.
Article in English | MEDLINE | ID: mdl-34403510

ABSTRACT

Melatonin is a pleiotropic molecule with a variety of biological functions, which include its immunoregulatory action in mammals. Brucellosis is a worldwide endemic zoonotic disease caused by the Brucella, which not only causes huge economic losses for the livestock industry but also impacts human health. To target this problem, in current study, two marker-free transgenic sheep overexpressing melatonin synthetic enzyme ASMT (acetylserotonin O-methyltransferase) gene were generated and these melatonin enrich transgenic sheep were challenged by Brucella infection. The results showed that the serum melatonin concentration was significantly higher in transgenic sheep than that of wild type (726.92 ± 70.6074 vs 263.10 ± 34.60 pg/mL, P < .05). Brucella challenge test showed that two thirds (4/6) of the wild-type sheep had brucellosis, while none of the transgenic sheep were infected. Whole-blood RNA-seq results showed that differential expression genes (DEGs) were significantly enriched in natural killer cell-mediated cytotoxicity, phagosome, antigen processing, and presentation signaling pathways in overexpression sheep. The DEGs of toll-like receptors (TLRs) and NOD-like receptors (NLRs) families were verified by qPCR and it showed that TLR1, TLR2, TLR7, CD14, NAIP, and CXCL8 expression levels in overexpression sheep were significantly higher and NLRP1, NLRP3, and TNF expression levels were significantly lower than those of wild type. The rectal feces were subjected to 16S rDNA amplicon sequencing, and the microbial functional analysis showed that the transgenic sheep had significantly lower abundance of microbial genes related to infectious diseases compared to the wild type, indicating overexpression animals are likely more resistant to infectious diseases than wild type. Furthermore, exogenous melatonin treatment relieved brucellosis inflammation by upregulating anti-inflammatory cytokines IL-4 and downregulating pro-inflammatory IL-2, IL-6, and IFN-γ. Our preliminary results provide an informative reference for the study of the relationship between melatonin and brucellosis.


Subject(s)
Acetylserotonin O-Methyltransferase/genetics , Brucellosis/genetics , Brucellosis/immunology , Gastrointestinal Microbiome , Signal Transduction/immunology , Acetylserotonin O-Methyltransferase/metabolism , Animals , Animals, Genetically Modified , Brucellosis/prevention & control , Feces/microbiology , Gastrointestinal Microbiome/genetics , Inflammation Mediators/immunology , Melatonin/therapeutic use , Sheep/immunology
16.
Front Immunol ; 12: 673692, 2021.
Article in English | MEDLINE | ID: mdl-34305903

ABSTRACT

In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


Subject(s)
Cellular Reprogramming/genetics , Multifactorial Inheritance/genetics , SARS-CoV-2/pathogenicity , Acetylserotonin O-Methyltransferase/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Cell Cycle/genetics , Databases, Genetic , Daucus carota/genetics , Daucus carota/growth & development , Fermentation , Gene Expression Profiling , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Tubulin/genetics , Viruses/pathogenicity
17.
Article in Russian | MEDLINE | ID: mdl-34184492

ABSTRACT

Melatonin is the most well-known regulator of the circadian rhythms of all living organisms and the main substrate synthesized at night. There are 4 stages in the synthesis of melatonin. This review focuses on the 2nd, 3rd, and 4th stages. The review is aimed at analyzing publications on molecular genetic association studies on the role of single nucleotide polymorphisms (SNPs) of the DDC (AADC), AANAT and ASMT genes encoding melatonin synthesis enzymes in the pathogenesis of socially significant neuropsychiatric disorders in humans. The authors analyzed the available full-text articles from several databases, as well as materials from electronic resources. Search depth was 15 years. The analysis of these studies over the past decade show the association of some SNPs of the studied genes with the risk of neuropsychiatric disorders such as delayed sleep phase disorder, attention deficit hyperactivity disorder, autism spectrum disorder, migraine, Parkinson's disease, depression, anxiety, bipolar-affective disorder, schizophrenia.


Subject(s)
Acetylserotonin O-Methyltransferase , Aromatic-L-Amino-Acid Decarboxylases/genetics , Arylalkylamine N-Acetyltransferase/genetics , Autism Spectrum Disorder , Melatonin , Acetylserotonin O-Methyltransferase/genetics , Circadian Rhythm/genetics , Humans , Polymorphism, Single Nucleotide
18.
J Pineal Res ; 71(3): e12737, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33844336

ABSTRACT

Terrestrialization is one of the most momentous events in the history of plant life, which leads to the subsequent evolution of plant diversity. The transition species, in this process, had to acquire a range of adaptive mechanisms to cope with the harsh features of terrestrial environments compared to that of aquatic habitat. As an ancient antioxidant, a leading regulator of ROS signaling or homeostasis, and a presumed plant master regulator, melatonin likely assisted plants transition to land and their adaption to terrestrial ecosystems. N-acetylserotonin methyltransferases (ASMT) and caffeic acid O-methyltransferases (COMT), both in the O-methyltransferase (OMT) family, catalyze the core O-methylation reaction in melatonin biosynthesis. How these two enzymes with close relevance evolved in plant evolutionary history and whether they participated in plant terrestrialization remains unknown. Using combined phylogenetic evidence and protein structure analysis, it is revealed that COMT likely evolved from ASMT by gene duplication and subsequent divergence. Newly emergent COMT gained a significantly higher ASMT activity to produce greater amounts of melatonin for immobile plants to acclimate to the stressful land environments after evolving from the more environmentally-stable aquatic conditions. The COMT genes possess more conserved substrate-binding sites at the amino acid level and more open protein conformation compared to ASMT, and getting a new function to catalyze the lignin biosynthesis. This development directly contributed to the dominance of vascular plants among the Earth's flora and prompted plant colonization of land. Thus, ASMT, together with its descendant COMT, might play key roles in plant transition to land. The current study provides new insights into plant terrestrialization with gene duplication contributing to this process along with well-known horizontal gene transfer.


Subject(s)
Acetylserotonin O-Methyltransferase , Melatonin , Acetylserotonin O-Methyltransferase/genetics , Ecosystem , Methyltransferases/genetics , Phylogeny , Serotonin/analogs & derivatives
19.
Int J Cancer ; 148(11): 2848-2856, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33586202

ABSTRACT

Acetylserotonin O-methyltransferase (ASMT) is a key enzyme in the synthesis of melatonin. Although melatonin has been shown to exhibit anticancer activity and prevents endocrine resistance in breast cancer, the role of ASMT in breast cancer progression remains unclear. In this retrospective study, we analyzed gene expression profiles in 27 data sets on 7244 patients from 11 countries. We found that ASMT expression was significantly reduced in breast cancer tumors relative to healthy tissue. Among breast cancer patients, those with higher levels of ASMT expression had better relapse-free survival outcomes and longer metastasis-free survival times. Following treatment with tamoxifen, patients with greater ASMT expression experienced longer periods before relapse or distance recurrence. Motivated by these results, we devised an ASMT gene signature that can correctly identify low-risk cases with a sensitivity and specificity of 0.997 and 0.916, respectively. This signature was robustly validated using 23 independent breast cancer mRNA array data sets from different platforms (consisting of 5800 patients) and an RNAseq data set from TCGA (comprising 1096 patients). Intriguingly, patients who are classified as high-risk by the signature benefit from adjuvant chemotherapy, and those with grade II tumors who are classified as low-risk exhibit improved overall survival and distance relapse-free outcomes following endocrine therapy. Together, our findings more clearly elucidate the roles of ASMT, provide strategies for improving the efficacy of tamoxifen treatment and help to identify those patients who may maximally benefit from adjuvant or endocrine therapies.


Subject(s)
Acetylserotonin O-Methyltransferase/genetics , Breast Neoplasms/drug therapy , Sequence Analysis, RNA/methods , Tamoxifen/therapeutic use , Up-Regulation , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Grading , Oligonucleotide Array Sequence Analysis , Retrospective Studies , Survival Analysis , Treatment Outcome
20.
J Pineal Res ; 70(2): e12709, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33315239

ABSTRACT

Hypericum perforatum is among the most commonly used herbal remedies and supplements. The aerial plant parts are often used to treat depression. Due to the lack of genomic information of H. perforatum, the gene networks regulating secondary metabolite synthesis remain unclear. Here, we present a high-quality genome for H. perforatum with a 2.3-Mb scaffold N50. The draft assembly covers 91.9% of the predicted genome and represents the fourth sequenced genus in the order Malpighiales. Comparing this sequence with model or related species revealed that Populus trichocarpa and Hevea brasiliensis could be grouped into one branch, while H. perforatum and Linum usitatissimum are grouped in another branch. Combined with transcriptome data, 40 key genes related to melatonin, hyperforin, and hypericin synthesis were screened and analyzed. Five N-acetylserotonin O-methyltransferases (HpASMT1-HpASMT5) were cloned and functionally characterized. Purified HpASMT3 protein converted N-acetylserotonin into melatonin with a Vmax of about 1.35 pkat/mg protein. HpASMT1 and HpASMT3 overexpression in Arabidopsis mutants caused 1.5-2-fold higher melatonin content than in mutant and wild-type plants. The endogenous reactive oxygen species (ROS) in transgenic plants was significantly lower than ROS in mutant and wild-type plants, suggesting higher drought tolerance. The obtained genomic data offer new resources for further study on the evolution of Hypericaceae family, but also provide a basis for further study of melatonin biosynthetic pathways in other plants.


Subject(s)
Acetylserotonin O-Methyltransferase/metabolism , Hypericum/chemistry , Melatonin/biosynthesis , Acetylserotonin O-Methyltransferase/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...