Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-36927688

ABSTRACT

Tuberous sclerosis complex (TSC) is characterized by multisystem, low-grade neoplasia involving the lung, kidneys, brain, and heart. Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease affecting almost exclusively women. TSC and LAM are both caused by mutations in TSC1 and TSC2 that result in mTORC1 hyperactivation. Here, we report that single-cell RNA sequencing of LAM lungs identified activation of genes in the sphingolipid biosynthesis pathway. Accordingly, the expression of acid ceramidase (ASAH1) and dihydroceramide desaturase (DEGS1), key enzymes controlling sphingolipid and ceramide metabolism, was significantly increased in TSC2-null cells. TSC2 negatively regulated the biosynthesis of tumorigenic sphingolipids, and suppression of ASAH1 by shRNA or the inhibitor ARN14976 (17a) resulted in markedly decreased TSC2-null cell viability. In vivo, 17a significantly decreased the growth of TSC2-null cell-derived mouse xenografts and short-term lung colonization by TSC2-null cells. Combined rapamycin and 17a treatment synergistically inhibited renal cystadenoma growth in Tsc2+/- mice, consistent with increased ASAH1 expression and activity being rapamycin insensitive. Collectively, the present study identifies rapamycin-insensitive ASAH1 upregulation in TSC2-null cells and tumors and provides evidence that targeting aberrant sphingolipid biosynthesis pathways has potential therapeutic value in mechanistic target of rapamycin complex 1-hyperactive neoplasms, including TSC and LAM.


Subject(s)
Lung Neoplasms , Tuberous Sclerosis , Humans , Mice , Female , Animals , Tuberous Sclerosis/drug therapy , Tumor Suppressor Proteins/genetics , Up-Regulation , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Acid Ceramidase/therapeutic use , Lung Neoplasms/pathology , Sirolimus/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Knockout
2.
Cell Commun Signal ; 20(1): 172, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316776

ABSTRACT

Acute myeloid leukemia (AML) is a type of leukemia with a poor prognosis and survival characterized by abnormal cell proliferation and differentiation. Despite advances in treatment, AML still has a low complete remission rate, particularly in elderly patients, and recurrences are frequently seen even after complete remissions. The major challenge in treating AML is the resistance of leukemia cells to chemotherapy drugs. Thus, to overcome this issue, it can be crucial to conduct new investigations to explore the mechanisms of chemo-resistance in AML and target them. In this review, the potential role of autophagy induced by FLT3-ITD and acid ceramidase in chemo-resistance in AML patients are analyzed. With regard to the high prevalence of FLT3-ITD mutation (about 25% of AML cases) and high level of acid ceramidase in these patients, we hypothesized that both of these factors could lead to chemo-resistance by inducing autophagy. Therefore, pharmacological targeting of autophagy, FLT3-ITD, and acid ceramidase production could be a promising therapeutic approach for such AML patients to overcome chemo-resistance. Video abstract.


Subject(s)
Acid Ceramidase , Leukemia, Myeloid, Acute , Humans , Aged , Acid Ceramidase/genetics , Acid Ceramidase/therapeutic use , Mutation , Leukemia, Myeloid, Acute/drug therapy , Autophagy , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/therapeutic use
3.
Phytomedicine ; 107: 154469, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36202056

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a serious health issue which causes significant morbidity and mortality. Inflammation is an important factor in the pathogenesis of ALI. Even though ALI has been successfully managed using a traditiomal Chinese medicine (TCM), Huanglian Jiedu Decoction (HLD), its mechanism of action remains unknown. PURPOSE: This study explored the therapeutic potential of HLD in lipopolysaccharide (LPS)-induced ALI rats by utilizing integrative pharmacology. METHODS: Here, the therapeutic efficacy of HLD was evaluated using lung wet/dry weight ratio (W/D), myeloperoxide (MPO) activity, and levels of tumor necrosis factor (TNF-α), interleukin (IL)-1ß and IL-6. Network pharmacology predictd the active components of HLD in ALI. Lung tissues were subjected to perform Hematoxylin-eosin (H&E) staining, metabolomics, and transcriptomics. The acid ceramidase (ASAH1) inhibitor, carmofur, was employedto suppress the sphingolipid signaling pathway. RESULTS: HLD reduced pulmonary edema and vascular permeability, and suppressed the levels of TNF-α, IL-6, and IL-1ß in lung tissue, Bronchoalveolar lavage fluid (BALF), and serum. Network pharmacology combined with transcriptomics and metabolomics showed that sphingolipid signaling was the main regulatory pathway for HLD to ameliorate ALI, as confirmed by immunohistochemical analysis. Then, we reverse verified that the sphingolipid signaling pathway was the main pathway involed in ALI. Finally, berberine, baicalein, obacunone, and geniposide were docked with acid ceramidase to further explore the mechanisms of interaction between the compound and protein. CONCLUSION: HLD does have a better therapeutic effect on ALI, and its molecular mechanism is better elucidated from the whole, which is to balance lipid metabolism, energy metabolism and amino acid metabolism, and inhibit NLRP3 inflammasome activation by regulating the sphingolipid pathway. Therefore, HLD and its active components can be used to develop new therapies for ALI and provide a new model for exploring complex TCM systems for treating ALI.


Subject(s)
Acute Lung Injury , Berberine , Acid Ceramidase/pharmacology , Acid Ceramidase/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Amino Acids , Animals , Berberine/pharmacology , Drugs, Chinese Herbal , Eosine Yellowish-(YS)/adverse effects , Hematoxylin/pharmacology , Hematoxylin/therapeutic use , Inflammasomes , Interleukin-6/pharmacology , Lipopolysaccharides/pharmacology , Lung , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Sphingolipids/adverse effects , Tumor Necrosis Factor-alpha/pharmacology
4.
Infect Immun ; 89(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33139382

ABSTRACT

Previous studies have shown that sphingosine kills a variety of pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus Sphingosine concentrations are decreased in airway epithelial cells of cystic fibrosis (CF) mice, and this defect has been linked to the infection susceptibility of these mice. Here, we tested whether the genetic overexpression of acid ceramidase rescues cystic fibrosis mice from pulmonary infections with P. aeruginosa We demonstrate that the transgenic overexpression of acid ceramidase in CF mice corresponds to the overexpression of acid ceramidase in bronchial and tracheal epithelial cells and normalizes ceramide and sphingosine levels in bronchial and tracheal epithelial cells. In addition, the expression of ß1-integrin, which is ectopically expressed on the luminal surface of airway epithelial cells in cystic fibrosis mice, an alteration that is very important for mediating pulmonary P. aeruginosa infections in cystic fibrosis, is normalized in cystic fibrosis airways upon the overexpression of acid ceramidase. Most importantly, the overexpression of acid ceramidase protects cystic fibrosis mice from pulmonary P. aeruginosa infections. Infection of CF mice or CF mice that inhaled sphingosine with P. aeruginosa or a P. aeruginosa mutant that is resistant to sphingosine indicates that sphingosine and not a metabolite kills P. aeruginosa upon pulmonary infection. These studies further support the use of acid ceramidase and its metabolite sphingosine as potential treatments of cystic fibrosis.


Subject(s)
Acid Ceramidase/genetics , Acid Ceramidase/pharmacology , Acid Ceramidase/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Pseudomonas Infections/etiology , Pseudomonas Infections/prevention & control , Animals , Cystic Fibrosis/physiopathology , Gene Expression Regulation, Bacterial , Humans , Mice , Models, Animal , Pseudomonas aeruginosa/drug effects , Virulence/genetics
5.
Oncotarget ; 8(15): 24753-24761, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28445970

ABSTRACT

Pediatric brain tumors are the most common solid tumors in children and are also a leading culprit of cancer-related fatalities in children. Pediatric brain tumors remain hard to treat. In this study, we demonstrated that medulloblastoma, pediatric glioblastoma, and atypical teratoid rhabdoid tumors express significant levels of acid ceramidase, where levels are highest in the radioresistant tumors, suggesting that acid ceramidase may confer radioresistance. More importantly, we also showed that acid ceramidase inhibitors are highly effective at targeting these pediatric brain tumors with low IC50 values (4.6-50 µM). This data suggests acid ceramidase as a novel drug target for adjuvant pediatric brain tumor therapies. Of these acid ceramidase inhibitors, carmofur has seen clinical use in Japan since 1981 for colorectal cancers and is a promising drug to undergo further animal studies and subsequently a clinical trial as a treatment for pediatric patients with brain tumors.


Subject(s)
Acid Ceramidase/therapeutic use , Brain Neoplasms/drug therapy , Acid Ceramidase/pharmacology , Animals , Brain Neoplasms/pathology , Child , Humans , Mice
6.
Biochim Biophys Acta ; 1862(9): 1459-71, 2016 09.
Article in English | MEDLINE | ID: mdl-27155573

ABSTRACT

Ceramides are a diverse group of sphingolipids that play important roles in many biological processes. Acid ceramidase (AC) is one key enzyme that regulates ceramide metabolism. Early research on AC focused on the fact that it is the enzyme deficient in the rare genetic disorder, Farber Lipogranulomatosis. Recent research has revealed that deficiency of the same enzyme is responsible for a rare form of spinal muscular atrophy associated with myoclonic epilepsy (SMA-PME). Due to their diverse role in biology, accumulation of ceramides also has been implicated in the pathobiology of many other common diseases, including infectious lung diseases, diabetes, cancers and others. This has revealed the potential of AC as a therapy for many of these diseases. This review will focus on the biology of AC and the potential role of this enzyme in the treatment of human disease.


Subject(s)
Acid Ceramidase/therapeutic use , Ceramides/metabolism , Enzyme Replacement Therapy , Farber Lipogranulomatosis/drug therapy , Farber Lipogranulomatosis/metabolism , Acid Ceramidase/genetics , Animals , Arthritis/drug therapy , Arthritis/metabolism , Bacterial Infections/drug therapy , Bacterial Infections/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Disease Models, Animal , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/metabolism , Farber Lipogranulomatosis/genetics , Humans , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Mice , Mice, Knockout , Muscular Atrophy, Spinal/complications , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/metabolism , Sphingolipidoses/drug therapy , Sphingolipidoses/genetics , Sphingolipidoses/metabolism
7.
Mol Genet Metab ; 95(3): 133-41, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18805722

ABSTRACT

Farber disease is a rare lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (AC) activity and subsequent accumulation of ceramide. Currently, there is no treatment for Farber disease beyond palliative care and most patients succumb to the disorder at a very young age. Previously, our group showed that gene therapy using oncoretroviral vectors (RV) could restore enzyme activity in Farber patient cells. The studies described here employ novel RV and lentiviral (LV) vectors that engineer co-expression of AC and a cell surface marking transgene product, human CD25 (huCD25). Transduction of Farber patient fibroblasts and B cells with these vectors resulted in overexpression of AC and led to a 90% and 50% reduction in the accumulation of ceramide, respectively. Vectors were also evaluated in human hematopoietic stem/progenitor cells (HSPCs) and by direct in vivo delivery in mouse models. In a xenotransplantation model using NOD/SCID mice, we found that transduced CD34(+) cells could repopulate irradiated recipient animals, as measured by CD25 expression. When virus was injected intravenously into mice, soluble CD25 was detected in the plasma and increased AC activity was present in the liver up to 14 weeks post-injection. These findings suggest that vector and transgene expression can persist long-term and offer the potential of a lasting cure. To our knowledge, this is the first report of in vivo testing of direct gene therapy strategies for Farber disease.


Subject(s)
Acid Ceramidase/therapeutic use , Cord Blood Stem Cell Transplantation/methods , Farber Lipogranulomatosis/genetics , Farber Lipogranulomatosis/therapy , Genetic Therapy/methods , Lentivirus/genetics , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Animals , Cell Line , Cells, Cultured , Ceramides/metabolism , Fibroblasts/metabolism , Fibroblasts/virology , Genetic Vectors/genetics , Genetic Vectors/metabolism , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/virology , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Lentivirus/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID
SELECTION OF CITATIONS
SEARCH DETAIL
...