Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 202: 105950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879305

ABSTRACT

Hypoaconitine (HA), a major secondary metabolite of aconite (a plant-derived rodenticide), is a highly toxic di-ester alkaloidal constituent. The toxicity of HA is intense with a low LD50. However, studies on its toxicity mechanism have mainly focused on cardiotoxicity, with few reports on the mechanism of hepatotoxicity. In this study, we combined metabolomics and network toxicology to investigate the effects of HA on the liver and analyzed the mechanisms by which it causes hepatotoxicity. The results of metabolomics studies indicated diethylphosphate, sphingosine-1-phosphate, glycerophosphorylcholine, 2,8-quinolinediol, guanidinosuccinic acid, and D-proline as differential metabolites after HA exposure. These metabolites are involved in eight metabolic pathways including arginine and proline metabolism, ether lipid metabolism, ß-alanine metabolism, sphingolipid metabolism, glutathione metabolism, and glycerophospholipid metabolism. Network toxicology analysis of HA may affect the HIF-1 signaling pathway, IL-17 signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and so on by regulating the targets of ALB, HSP90AA1, MMP9, CASP3, and so on. Integrating the results of metabolomics and network toxicology, it was concluded that HA may induce hepatotoxicity by triggering physiological processes such as oxidative stress, inflammatory response, and inducing apoptosis in hepatocytes.


Subject(s)
Aconitine , Liver , Metabolomics , Animals , Mice , Male , Aconitine/analogs & derivatives , Aconitine/toxicity , Liver/metabolism , Liver/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Signal Transduction/drug effects
2.
Phytochem Anal ; 35(6): 1399-1417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837823

ABSTRACT

BACKGROUND: Radix Aconiti Lateralis (Fuzi), a mono-herbal preparation of Aconitum herbs in the genus Aconitum, is commonly used in traditional Chinese medicine (TCM) to treat critical illnesses. The curative effect of Fuzi is remarkable. However, the toxic effects of Fuzi are still a key clinical focus, and the substances inducing nephrotoxicity are still unclear. Therefore, this study proposes a research model combining "in vitro and in vivo component mining-virtual multi-target screening-active component prediction-literature verification" to screen potential nephrotoxic substances rapidly. METHOD: The UHPLC-Q-Exactive-Orbitrap MS analysis method was used for the correlation analysis of Fuzi's in vitro-in vivo chemical substance groups. On this basis, the key targets of nephrotoxicity were screened by combining online disease databases and a protein-protein interaction (PPI) network. The computer screening technique was used to verify the binding mode and affinity of Fuzi's components with nephrotoxic targets. Finally, the potential material basis of Fuzi-induced nephrotoxicity was screened. RESULTS: Eighty-one Fuzi components were identified. Among them, 35 components were absorbed into the blood. Based on the network biology method, 21 important chemical components and three potential key targets were screened. Computer virtual screening revealed that mesaconine, benzoylaconine, aconitine, deoxyaconitine, hypaconitine, benzoylhypaconine, benzoylmesaconine, and hypaconitine may be potential nephrotoxic substances of Fuzi. CONCLUSIONS: Fuzi may interact with multiple components and targets in the process of inducing nephrotoxicity. In the future, experiments can be designed to explore further. This study provides a reference for screening Fuzi nephrotoxic components and has certain significance for the safe use of Fuzi.


Subject(s)
Aconitum , Drugs, Chinese Herbal , Kidney , Mass Spectrometry , Aconitum/chemistry , Kidney/drug effects , Animals , Drugs, Chinese Herbal/toxicity , Drugs, Chinese Herbal/chemistry , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Aconitine/analogs & derivatives , Aconitine/toxicity , Protein Interaction Maps/drug effects , Molecular Docking Simulation , Diterpenes
3.
J Appl Toxicol ; 44(7): 978-989, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38448046

ABSTRACT

Fuzi, an effective common herb, is often combined with Gancao to treat disease in clinical practice with enhancing its efficacy and alleviating its toxicity. The major toxic and bioactive compounds in Fuzi and Gancao are aconitine (AC) and glycyrrhizic acid (GL), respectively. This study aims to elucidate detoxification mechanism between AC and GL from pharmacokinetic perspective using physiologically based pharmacokinetic (PBPK) model. In vitro experiments exhibited that AC was mainly metabolized by CYP3A1/2 in rat liver microsomes and transported by P-glycoprotein (P-gp) in Caco-2 cells. Kinetics assays showed that the Km and Vmax of AC towards CYP3A1/2 were 2.38 µM and 57.3 pmol/min/mg, respectively, whereas that of AC towards P-gp was 11.26 µM and 147.1 pmol/min/mg, respectively. GL markedly induced the mRNA expressions of CYP3A1/2 and MDR1a/b in rat primary hepatocytes. In vivo studies suggested that the intragastric and intravenous administration of GL significantly reduced systemic exposure of AC by 27% and 33%, respectively. Drug-drug interaction (DDI) model of PBPK predicted that co-administration of GL would decrease the exposure of AC by 39% and 45% in intragastric and intravenous dosing group, respectively. The consistency between predicted data and observed data confirmed that the upregulation of CYP3A1/2 and P-gp was the crucial detoxification mechanism between AC and GL. Thus, this study provides a demonstration for elucidating the compatibility mechanisms of herbal formula using PBPK modeling and gives support for the clinical co-medication of Fuzi and Gancao.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Aconitine , Cytochrome P-450 CYP3A , Glycyrrhizic Acid , Microsomes, Liver , Animals , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Aconitine/pharmacokinetics , Aconitine/analogs & derivatives , Aconitine/toxicity , Glycyrrhizic Acid/pharmacokinetics , Glycyrrhizic Acid/pharmacology , Humans , Caco-2 Cells , Male , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Rats , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Rats, Sprague-Dawley , Models, Biological , Inactivation, Metabolic
SELECTION OF CITATIONS
SEARCH DETAIL