Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.139
Filter
1.
Luminescence ; 39(6): e4794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887175

ABSTRACT

Various 9-(substituted phenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonates possessing electron-withdrawing substituents have been synthesized. The effect of substituents on the stability of the acridinium esters (AEs) at various temperatures in different buffers and the chemiluminescent properties have been examined. There was little correlation between the chemiluminescent properties of AEs and the pKa values of their associated phenols, but the steric effects of the ortho-substituents in the phenoxy group, as well as their electron-withdrawing natures, seem to play an important role in determining the properties. In general, when two identical substituents are present in the 2- and 6-positions, the compound is significantly more stable than when only a single substituent is present, presumably because of greater steric hindrance from the second group. The exception is the 2,6-difluorophenyl ester, which is less stable than the 2-fluorophenyl ester, presumably because the fluoro group is small. Addition of a third electron-withdrawing substituent at the 4-position, where it has no steric influence, typically increases susceptibility to decomposition. The presence of a nitro group has a significant destabilizing effect on AEs. Of the AEs studied, the 4-chlorophenyl ester showed the greatest chemiluminescent yield, while the 2-iodo-6-(trifluoromethyl)phenyl ester group showed the greatest stability in low pH buffers.


Subject(s)
Acridines , Luminescence , Mesylates , Acridines/chemistry , Acridines/chemical synthesis , Mesylates/chemistry , Molecular Structure , Luminescent Measurements
2.
Chem Biol Interact ; 396: 111042, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38735455

ABSTRACT

Ionic liquids (ILs) are a class of low melting point salts with physicochemical properties suitable for a range of industrial applications such as chemical processing and battery design. Major challenges to the wide-scale adoption of ILs in industry include their eco- and cytotoxic effects, however, this opens up the possibility of the use of ILs use as novel anticancer agents. Understanding the structural features that promote IL cytotoxicity is therefore important. Key structural features that can impact IL cytotoxicity include size and lipophilicity of the cationic head group. In this study, the cytotoxic effects of acridinium-based ILs containing relatively large tri- and tetracyclic cations were evaluated. It was found that 9-phenylacridinium-based ILs are potent cytotoxic agents that reduce the viability of human MDA-MB-231 breast cancer cells with IC50 concentrations in the nanomolar range. In mechanistic studies, it was found that unlike the pyridinium-based analogue, [C16Py][I], acridinium-based ILs did not inhibit oxidative phosphorylation or induce reactive oxygen species formation, and may instead target other mitochondrial processes or components such as mitochondrial DNA.


Subject(s)
Acridines , Ionic Liquids , Reactive Oxygen Species , Humans , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Acridines/chemistry , Acridines/pharmacology , Structure-Activity Relationship , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Oxidative Phosphorylation/drug effects
3.
Molecules ; 29(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38675602

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 µM) with pyrimidone compound 5 (GSK-3ß: IC50 = 3 µM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3ß (GSK-3ß). The optimal compound 18a possessed potent dual AChE/GSK-3ß inhibition (AChE: IC50 = 0.047 ± 0.002 µM, GSK-3ß: IC50 = 0.930 ± 0.080 µM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 µM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Cholinesterase Inhibitors , Drug Design , Glycogen Synthase Kinase 3 beta , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Cell Line, Tumor , Sulfur/chemistry , Structure-Activity Relationship , Acridines/chemistry , Acridines/pharmacology , Acridines/chemical synthesis , Tacrine/chemistry , Tacrine/pharmacology , Tacrine/chemical synthesis , Molecular Structure
4.
Biochem Biophys Res Commun ; 709: 149855, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38579618

ABSTRACT

P-glycoprotein (P-gp) is an ATP-binding cassette transporter known for its roles in expelling xenobiotic compounds from cells and contributing to cellular drug resistance through multidrug efflux. This mechanism is particularly problematic in cancer cells, where it diminishes the therapeutic efficacy of anticancer drugs. P-gp inhibitors, such as elacridar, have been developed to circumvent the decrease in drug efficacy due to P-gp efflux. An earlier study reported the cryo-EM structure of human P-gp-Fab (MRK-16) complex bound by two elacridar molecules, at a resolution of 3.6 Å. In this study, we have obtained a higher resolution (2.5 Å) structure of the P-gp- Fab (UIC2) complex bound by three elacridar molecules. This finding, which exposes a larger space for compound-binding sites than previously acknowledged, has significant implications for the development of more selective inhibitors and enhances our understanding of the compound recognition mechanism of P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Acridines , Tetrahydroisoquinolines , Humans , Acridines/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cryoelectron Microscopy
5.
Biochim Biophys Acta Gen Subj ; 1868(7): 130631, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685534

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF) is overexpressed in most malignant tumors, which has important impact on tumor angiogenesis and development. Its gene promoter i-motif structure formed by C-rich sequence can regulate gene expression, which is a promising new target for anti-tumor therapy. METHODS: We screened various compounds and studied their effects on VEGF through extensive experiments, including SPR, MST, TO displacement, FRET, CD, ESI-MS, NMR, MTT, clone formation, qPCR, Western blot, dual-luciferase reporter assay, immunofluorescence, cell scrape, apoptosis, transwell assay, and animal model. RESULTS: After extensive screening, bisacridine derivative B09 was found to have selective binding and stabilization to VEGF promoter i-motif, which could down-regulate VEGF gene expression. B09 showed potent inhibition on MCF-7 and HGC-27 cell proliferation and metastasis. B09 significantly inhibited tumor growth in xenograft mice model with HGC-27 cells, showing decreased VEGF expression analyzed through immunohistochemistry. CONCLUSION: B09 could specifically regulate VEGF gene expression, possibly through interacting with promoter i-motif structure. As a lead compound, B09 could be further developed for innovative anti-cancer agent targeting VEGF.


Subject(s)
Acridines , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , Vascular Endothelial Growth Factor A , Humans , Animals , Promoter Regions, Genetic/drug effects , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice , Gene Expression Regulation, Neoplastic/drug effects , Acridines/pharmacology , Acridines/chemistry , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , MCF-7 Cells , Mice, Nude , Cell Line, Tumor , Apoptosis/drug effects , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
6.
Int J Biol Macromol ; 266(Pt 1): 131055, 2024 May.
Article in English | MEDLINE | ID: mdl-38522681

ABSTRACT

The B-MYB gene encodes a transcription factor (B-MYB) that regulates cell growth and survival. Abnormal expression of B-MYB is frequently observed in lung cancer and poses challenges for targeted drug therapy. Oncogenes often contain DNA structures called G-quadruplexes (G4s) in their promoter regions, and B-MYB is no exception. These G4s play roles in genetic regulation and are potential cancer treatment targets. In this study, a probe was designed to specifically identify a G4 within the promoter region of the B-MYB gene. This probe combines an acridine derivative ligand with a DNA segment complementary to the target sequence, enabling it to hybridize with the adjacent sequence of the G4 being investigated. Biophysical studies demonstrated that the acridine derivative ligands C5NH2 and C8NH2 not only effectively stabilized the G4 structure but also exhibited moderate affinity. They were capable of altering the G4 topology and exhibited enhanced fluorescence emission in the presence of this quadruplex. Additionally, these ligands increased the number of G4s observed in cellular studies. Through various biophysical studies, the target sequence was shown to form a G4 structure, even with an extra nucleotide tail added to its flanking region. Cellular studies confirmed the co-localization between the target sequence and the developed probe.


Subject(s)
Cell Cycle Proteins , Fluorescent Dyes , G-Quadruplexes , Humans , Fluorescent Dyes/chemistry , Promoter Regions, Genetic , Proto-Oncogene Mas , Ligands , Trans-Activators/genetics , Trans-Activators/metabolism , Trans-Activators/chemistry , Acridines/chemistry , Acridines/pharmacology
7.
Chem Biol Interact ; 394: 110965, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38552767

ABSTRACT

RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.7-6.2 × 104 mol dm-3. The fluorescence and circular dichroism titration assays revealed considerable changes. The most significant results in terms of interpreting the nature of the interactions were the melting temperatures of the RNA samples in complexes with the 1. In the case of poly(rA), denaturation resulted in a self-structure formation; increased stabilization was observed for poly(rAU), while the melting points of the ligand-poly(rUAU) complex showed significant destabilization as a result of the interaction. The principles of molecular mechanics were applied to propose the non-bonded interactions within the binding complex, pentariboadenylic acid and acridine ligand as the study model. Initial molecular docking provided the input structure for advanced simulation techniques. Molecular dynamics simulation and cluster analysis reveal π - π stacking and the hydrogen bonds formation as the main forces that can stabilize the binding complex. Subsequent MM-GBSA calculations showed negative binding enthalpy accompanied the complex formation and proposed the most preferred conformation of the interaction complex.


Subject(s)
Acridines , Circular Dichroism , Molecular Docking Simulation , Poly A , Acridines/chemistry , Acridines/metabolism , Poly A/chemistry , Poly A/metabolism , Thermodynamics , Spectrometry, Fluorescence , RNA/chemistry , RNA/metabolism , Nucleic Acid Conformation
8.
Chem Biodivers ; 21(5): e202301986, 2024 May.
Article in English | MEDLINE | ID: mdl-38478727

ABSTRACT

In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.


Subject(s)
Acridines , Anti-Bacterial Agents , Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Microbial Sensitivity Tests , Molecular Docking Simulation , Acridines/chemistry , Acridines/pharmacology , Acridines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Molecular Dynamics Simulation , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Dose-Response Relationship, Drug , Gram-Positive Bacteria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis
9.
Acta Crystallogr C Struct Chem ; 80(Pt 4): 115-122, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38502537

ABSTRACT

Acridines are a class of bioactive agents which exhibit high biological stability and the ability to intercalate with DNA; they have a wide range of applications. Pyridine derivatives have a wide range of biological activities. To enhance the properties of acridine and 2-amino-3-methylpyridine as the active pharmaceutical ingredient (API), 4-nitrobenzoic acid was chosen as a coformer. In the present study, a mixture of acridine and 4-nitrobenzoic acid forms the salt acridinium 4-nitrobenzoate, C13H10N+·C7H4NO4- (I), whereas a mixture of 2-amino-3-methylpyridine and 4-nitrobenzoic acid forms the salt 2-amino-3-methylpyridinium 4-nitrobenzoate, C6H9N2+·C7H4NO4- (II). In both salts, protonation takes place at the ring N atom. The crystal structure of both salts is predominantly governed by hydrogen-bond interactions. In salt I, C-H...O and N-H...O interactions form an infinite chain in the crystal, whereas in salt II, intermolecular N-H...O interactions form an eight-membered R22(8) ring motif. A theoretical charge-density analysis reveals the charge-density distribution of the inter- and intramolecular interactions of both salts. An in-silico ADME analysis predicts the druglikeness properties of both salts and the results confirm that both salts are potential drug candidates with good bioavailability scores and there is no violation of the Lipinski rules, which supports the druglikeness properties of both salts. However, although both salts exhibit drug-like properties, salt I has higher gastrointestinal absorption than salt II and hence it may be considered a potential drug candidate.


Subject(s)
Aminopyridines , Nitrobenzoates , Picolines , Salts , Crystallography, X-Ray , Salts/chemistry , Hydrogen Bonding , Nitrobenzoates/chemistry , Models, Theoretical , Acridines
10.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473730

ABSTRACT

The G-quadruplex is one of the non-canonical structures formed by nucleic acids, which can be formed by guanine-rich sequences. They became the focus of much research when they were found in several oncogene promoter regions and also in the telomeres. Later on, they were discovered in viruses as well. Various ligands have been developed in order to stabilize DNA G-quadruplexes, which were believed to have an anti-cancer or antiviral effect. We investigated three of these ligands, and whether they can also affect the stability of the G-quadruplex-forming sequences of the RNA genome of SARS-CoV-2. All three investigated oligonucleotides showed the G-quadruplex form. We characterized their stability and measured their thermodynamic parameters using the Förster resonance energy transfer method. The addition of the ligands caused an increase in the unfolding temperature, but this effect was smaller compared to that found earlier in the case of G-quadruplexes of the hepatitis B virus, which has a DNA genome.


Subject(s)
Acridines , COVID-19 , Fused-Ring Compounds , G-Quadruplexes , Porphyrins , Humans , SARS-CoV-2
11.
ChemMedChem ; 19(11): e202300545, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38445815

ABSTRACT

Among the many neglected tropical diseases, leishmaniasis ranks second in mortality rate and prevalence. In a previous study, acridine derivatives were synthesized and tested for their antileishmanial activity against L. chagasi. The most active compound identified in that study (1) showed a single digit IC50 value against the parasite (1.10 µg/mL), but its macromolecular target remained unknown. Aiming to overcome this limitation, this work exploited inverse virtual screening to identify compound 1's putative molecular mechanism of action. In vitro assays confirmed that compound 1 binds to Leishmania chagasi pteridine reductase 1 (LcPTR1), with moderate affinity (Kd=33,1 µM), according to differential scanning fluorimetry assay. Molecular dynamics simulations confirm the stability of LcPTR1-compound 1 complex, supporting a competitive mechanism of action. Therefore, the workflow presented in this work successfully identified PTR1 as a macromolecular target for compound 1, allowing the designing of novel potent antileishmanial compounds.


Subject(s)
Acridines , Enzyme Inhibitors , Oxidoreductases , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Acridines/chemistry , Acridines/pharmacology , Acridines/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Molecular Dynamics Simulation , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug , Leishmania/drug effects , Leishmania/enzymology , Molecular Docking Simulation
12.
Comput Biol Chem ; 109: 108029, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387123

ABSTRACT

Cancer is a global public health problem characterized by deviations in the mechanisms that control cell proliferation, resulting in mutations and variations in the structure of DNA. The mechanisms of action of chemotherapeutic drugs are related to their interactions and binding with DNA; consequently, the development of antineoplastic agents that target DNA has extensively focused on use of acridine, a heterocyclic molecule that binds to deoxyribonucleic acid via intercalation, a process that modifies DNA and makes replication impossible. In this context, this study aimed to computationally investigate how acridine intercalators interact with DNA by evaluating the mechanism of interactions, binding, and interaction energies using quantum mechanics calculations. Molecular electrostatic potential (MEP) analysis revealed that acridine has well- distributed negative charges in the center of the molecule, indicative of a dominant electron-rich region. Acridine exhibits well-defined π orbitals (HOMO and LUMO) on the aromatic rings, suggesting that charge transfer occurs within the molecule and may be responsible for the pharmacological activity of the compound. Structural analysis revealed that acridine interacts with DNA mainly through hydrogen bonds between HAcridine… ODNA with bond lengths ranging from 2.370 Što 3.472 Å. The Binding energy (ΔEBind) showed that acridine interacts with DNA effectively for all complexes and the electronic energy results (E+ZPE) for complexes revealed that the complexes are more stable when the DNA-centered acridine molecule. The Laplacian-analysis topological QTAIM parameter (∇2ρ(r)) and total energy (H(r)) categorized the interactions as being non-covalent in nature. The RGD peak distribution in the NCI analysis reveals the presence of van der Waals interactions, predominantly between the intercalator and DNA. Accordingly, we confirm that acridine/DNA interactions are relevant for understanding how the intercalator acts within nucleic acids.


Subject(s)
Antineoplastic Agents , Intercalating Agents , Intercalating Agents/pharmacology , Intercalating Agents/chemistry , Models, Molecular , Acridines/pharmacology , DNA/chemistry , Antineoplastic Agents/pharmacology
13.
Anal Chim Acta ; 1288: 342170, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220301

ABSTRACT

The dye-doped silica nanoparticles-based electrogenerated chemiluminescence (ECL) has been widely explored for analytical purposes due to its high sensitivity, simplicity and wide dynamic concentration range. However, only a few of dye molecules located at the near surface of nanoparticles can participate in the ECL reaction due to the poor conductivity of silica nano-matrix. In addition, the ECL signal is easy to be affected by environmental interference, which results in poor accuracy. Herein, a ratiometric ECL sensing method is established based on the electrochemically controlled release of lucigenin molecules from silica/chitosan/lucigenin composite nanoparticles (Lu/CS NPs) with the aid of sulfide ions. Firstly, H+ produced from the electrochemical oxidation of HS- ions can combine with SiO- and displace lucigenin from Lu/CS NPs. The released lucigenin molecules react with the reactive oxygen species (ROS) generated from the electroreduction of dissolved oxygen to produce the cathodic ECL signal. In addition, the excited elemental sulfur from the electrooxidation of HS- ions transfers its energy to lucigenin molecules and makes them be excited to produce energy-transfer anodic ECL signal. Based on these findings, a ratiometric ECL sensor is developed taking the anodic ECL intensity of lucigenin as a reference signal for the cathodic ECL of lucigenin. The proposed ratiometric ECL sensor has been successfully applied to the detection of let-7a with a wide linear range of 0.1-9.0 pM, a low detection limit of 28 fM, high selectivity and good reproducibility. Moreover, the developed approach was used to detect let-7a in human serum composite samples with good recoveries.


Subject(s)
Acridines , Chitosan , MicroRNAs , Nanoparticles , Humans , Silicon Dioxide/chemistry , Chitosan/chemistry , Luminescence , Delayed-Action Preparations , Reproducibility of Results , Nanoparticles/chemistry , Ions , Luminescent Measurements/methods
15.
Chemphyschem ; 25(3): e202300776, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38088522

ABSTRACT

Bisacridinyl-bisarginyl porphyrin (BABAP) is a trisintercalating derivative of a tricationic porphyrin, formerly designed and synthesized in order to selectively target and photosensitize the ten-base pair palindromic sequence d(CGGGCGCCCG)2 . We resorted to the previously derived (Far et al., 2004) lowest energy-minimized (EM) structure of the BABAP complex with this sequence as a starting point. We performed polarizable molecular dynamics (MD) on this complex. It showed, over a 150 ns duration, the persistent binding of the Arg side-chain on each BABAP arm to the two G bases upstream from the central porphyrin intercalation site. We subsequently performed progressive shortenings of the connector chain linking the Arg-Gly backbone to the acridine, from n=6 methylenes to 4, followed by removal of the Gly backbone and further connector shortenings, from n=4 to n=1. These resulted into progressive deformations ('kinks') of the DNA backbone. In its most accented kinked structure, the DNA backbone was found to have a close overlap with that of DNA bound to Cre recombinase, with, at the level of one acridine intercalation site, negative roll and positive tilt values consistent with those experimentally found for this DNA at its own kinked dinucleotide sequence. Thus, in addition to their photosensitizing properties, some BABAP derivatives could induce sequence-selective, controlled DNA deformations, which are targets for cleavage by endonucleases or for repair enzymes.


Subject(s)
Molecular Dynamics Simulation , Porphyrins , Porphyrins/chemistry , DNA/chemistry , Oligopeptides , Acridines
16.
Methods ; 221: 65-72, 2024 01.
Article in English | MEDLINE | ID: mdl-38040205

ABSTRACT

In this paper, we discuss how tetrahydrodibenzo[a,j]acridine (4-HA) loses its hydrogen, which makes dibenzo[a,j]acridine (ARM) and also how 4-HA can be synthesized effectively using 2-tetralone in high yield. Dehydrogenative condensation and dehydrogenation are the two processes that make up the overall reaction of this synthetic approach. In addition, the presence of BF3 caused a remarkable fluorescence shift in ARM. Test paper analysis was used for examining the practical usefulness of ARM, which can be seen under UV light, resulting in this unique phenomenon. The fluorescent bio imaging experiment demonstrates that the sensor ARM has the capability to detect BF3 in living HeLa cells.


Subject(s)
Acridines , Fluorescent Dyes , Humans , HeLa Cells , Fluorescence
17.
Int J Biol Macromol ; 254(Pt 3): 127651, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949265

ABSTRACT

Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 µM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.


Subject(s)
Antineoplastic Agents , Topoisomerase Inhibitors , Topoisomerase Inhibitors/pharmacology , Topoisomerase Inhibitors/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Antineoplastic Agents/chemistry , DNA/chemistry , Intercalating Agents/pharmacology , Acridines/pharmacology , Acridines/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Structure
18.
Bioconjug Chem ; 34(10): 1873-1881, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37813818

ABSTRACT

A synthetic platform has been developed that provides access to platinum(IV) prodrugs of highly cytotoxic platinum-acridine anticancer agents and allows them to be incorporated into conjugation-ready prodrug-payloads (PPLs). The PPLs can be conveniently assembled in highly efficient microscale reactions utilizing strain-promoted azide-alkyne cycloaddition chemistry. Model reactions were performed to study the stability of the PPLs in buffers and media and to assess their compatibility with cysteine-maleimide Michael addition chemistry. Amide coupling was a successful strategy to generate a conjugate containing integrin-targeted cyclo[RGDfK] peptide. Reactions with ascorbate were performed to mimic the reductive activation of the PPLs and the latter conjugate, and a cyanine (Cy5) fluorophore-labeled PPL was used to probe the reduction of platinum(IV) in cancer cells by confocal microscopy. The PPL concept introduced here should be evaluated for treating solid tumors with PAs using cancer-targeting vehicles, such as antibody-drug conjugates.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Humans , Prodrugs/pharmacology , Prodrugs/therapeutic use , Platinum/therapeutic use , Acridines/pharmacology , Acridines/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy
19.
Alkaloids Chem Biol ; 90: 97-157, 2023.
Article in English | MEDLINE | ID: mdl-37716797

ABSTRACT

The families of pyridoacridine, pyridoacridone, and pyrroloacridine alkaloids are fascinating classes of natural products that have attracted the attention of chemists for over 80 years. Since the first purification of a brightly colored molecule isolated from the sea anemone Calliactis parasitica in 1940, over 110 examples of these alkaloids have been reported from marine organisms. While the paucity of numbers of protons relative to carbons and nitrogens in these molecules presents challenges in structure solution, the chemist is rewarded by their bright pigmented colors and typically diverse biological activities. In the past, several authors have proposed biosynthetic relationships within the pyridoacridine family of alkaloids, formulating a family tree derived from the reaction of dopaminequinone and kynuramine to tie together over 75 alkaloids. Inclusion of two additional quinones, and one homologous diamine, building blocks, for which there is biomimetic synthesis support, is suggestive of a more expansive connected biogenesis that encompasses not only pyridoacridines, but also pyridoacridone, and pyrroloacridine alkaloids. This review covers the isolation, structure elucidation, and proposed biosynthesis and biogenesis of pyridoacridine, pyridoacridone and pyrroloacridine marine alkaloids published to the end of 2022. Biomimetic or bio-inspired syntheses of the compound classes are described and new biological activities reported since 2004 are updated.


Subject(s)
Alkaloids , Biological Products , Acridines/pharmacology , Alkaloids/pharmacology , Biomimetics
20.
Molecules ; 28(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37764394

ABSTRACT

Derivatives combining acridine, pyrrole, and thiazolidine rings have emerged as promising candidates in the field of antitumor drug discovery. This paper aims to highlight the importance of these three structural motifs in developing potent and selective anticancer agents. The integration of these rings within a single molecule offers the potential for synergistic effects, targeting multiple pathways involved in tumor growth and progression. Spiro derivatives were efficiently synthesized in a two-step process starting from isothiocyanates and 2-cyanoacetohydrazide. The thiourea side chain in spiro derivatives was utilized as a key component for the construction of the thiazolidine-4-one ring through regioselective reactions with bifunctional reagents, namely methyl-bromoacetate, dietyl-acetylenedicarboxylate, ethyl-2-bromopropionate, and ethyl-2-bromovalerate. These reactions resulted in the formation of a single regioisomeric product for each derivative. Advanced spectroscopic techniques, including 1D and 2D NMR, FT-IR, HRMS, and single-crystal analysis, were employed to meticulously characterize the chemical structures of the synthesized derivatives. Furthermore, the influence of these derivatives on the metabolic activity of various cancer cell lines was assessed, with IC50 values determined via MTT assays. Notably, derivatives containing ester functional groups exhibited exceptional activity against all tested cancer cell lines, boasting IC50 values below 10 µM. Particularly striking were the spiro derivatives with methoxy groups at position 3 and nitro groups at position 4 of the phenyl ring. These compounds displayed remarkable selectivity and exhibited heightened activity against HCT-116 and Jurkat cell lines. Additionally, 4-oxo-1,3-thiazolidin-2-ylidene derivatives demonstrated a significant activity against MCF-7 and HCT-116 cancer cell lines.


Subject(s)
Acridines , Antineoplastic Agents , Humans , Pyrroles/pharmacology , Thiazolidines/pharmacology , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , HCT116 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...