Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 119: 105543, 2022 02.
Article in English | MEDLINE | ID: mdl-34929515

ABSTRACT

Previously, an array of N-substituted acridone derivatives have been reported as potent topoisomerase II (topo II) inhibitors, and preliminary structure-activity relationship (SAR) outcomes revealed that the linker between 1-NH and N-methyl piperazine motif of the tricyclic acridone scaffold significantly affected their anti-proliferative potencies. To further explore the SARs of acridone-derived topo II inhibitors, a wider range of novel acridone derivatives were herein synthesized via two rounds of structural optimizations on two validated hits, E17 and E24. Initially, the linker length was optimized, and then influences of N-methyl piperazinyl moiety and disposition of three N atoms on the bioactivity were investigated. As a result, a newly developed topo II inhibitor 6 h was found to be more potent than E17 and E24, thereby serving as a tool compound for the follow-up mechanistic study. Compound 6 h functioned as a strong topo IIα/ß inhibitor, caused obvious DNA damage, and induced apoptosis by triggering the loss of mitochondrial membrane potential (Δψm). Further molecular docking and MD study illustrated the favorable interactions of 6 h with both topo IIα and topo IIß subtypes.


Subject(s)
Acridones/pharmacology , Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , Topoisomerase II Inhibitors/pharmacology , Acridones/chemical synthesis , Acridones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Membrane Potential, Mitochondrial/drug effects , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Tumor Cells, Cultured
2.
Molecules ; 26(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673146

ABSTRACT

9H-Xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones and acridones, respectively, by a simple photo-oxidation procedure carried out using molecular oxygen as oxidant under the irradiation of visible blue light and in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or quantitative.


Subject(s)
Acridones/chemical synthesis , Oxygen/chemistry , Thioxanthenes/chemical synthesis , Xanthones/chemical synthesis , Acridones/chemistry , Acridones/radiation effects , Light , Metals/chemistry , Oxidants, Photochemical/chemistry , Oxidants, Photochemical/pharmacology , Oxidation-Reduction/radiation effects , Thioxanthenes/chemistry , Thioxanthenes/radiation effects , Xanthones/chemistry , Xanthones/radiation effects
3.
Bioorg Med Chem ; 29: 115868, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33191085

ABSTRACT

Unlike other DNA topoisomerase II (topo II) inhibitors, our recently identified acridone derivative E17 exerted strong cytotoxic activity by inhibiting topo II without causing topo II degradation and DNA damage, which promoted us to explore more analogues of E17 by expanding its chemical diversification and enrich the structure-activity relationship (SAR) outcomes of acridone-oriented chemotypes. To achieve this goal, 42 novel acridone derivatives were synthesized and evaluated for their antiproliferative efficacies. SAR investigations revealed that orientation and spatial topology of R3 substituents make greater contributions to the bioactivity, exemplified by compounds E24, E25 and E27, which has provided valuable information for guiding further development of acridone derivatives as promising drug candidates.


Subject(s)
Acridones/pharmacology , Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , Topoisomerase II Inhibitors/pharmacology , Acridones/chemical synthesis , Acridones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Tumor Cells, Cultured
4.
Bioorg Med Chem ; 28(9): 115426, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32201193

ABSTRACT

Eleven novel acridone derivatives were synthesized and evaluated for their anticancer activity against 60 human cancer cell lines. Five compounds 8b, 8d, 8g, 8h, and 8k displayed very good in vitro antiproliferative activities well over 95% of the panels. The most active compound is 8k (5, 7-dibromo-3-phenyl-3,4-dihydroacridin-1 (2H)-one). In addition, 8k was the most sensitive agent in all 9 panels starting with prostate (0.075 µm), leukemia (0.116 µm), non-small cell lung cancer (0.164 µm), colon cancer (0.193 µm), CNS cancer (0.264 µm), melanoma (0.317 µm), renal cancer (0.403 µm), ovarian cancer (0.410 µm), and breast cancer (0.608 µm). Virtual screening studies also revealed that nine of the eleven compounds formed good binding interaction with the active site ATPase domain of human topoisomerase IIα (PDB: 1zxm). All nine derivatives exhibited binding affinities that ranged in values from -8.5 to -7.9 kcal/mol, indicating that they could be catalytic inhibitors of the nuclear enzyme, topoisomerase.


Subject(s)
Acridones/pharmacology , Antineoplastic Agents/pharmacology , Acridones/chemical synthesis , Acridones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
5.
Carbohydr Res ; 491: 107977, 2020 May.
Article in English | MEDLINE | ID: mdl-32169593

ABSTRACT

Based on structure analyses of butyrylcholinesterase (BChE), a series of 21 acridone glycosides were designed, synthesized and evaluated in vitro for their BChE and acetylcholinesterase (AChE) inhibitory activities. d-ribose derivative 6f exhibited the greatest inhibitory activity on BChE (IC50 = 6.95 µM), and was the most selective inhibitor of BChE with the IC50 ratio of AChE/BChE was 20.59. d-glucose and d-galactose derivatives 6a and 6b showed inhibitory activities against both AChE and BChE. Moreover, compounds 6a, 6b, 6f and 5t were found nontoxic on SHSY5Y neuroblastoma and HepG2 cell and exhibited remarkable neuroprotective activity. Besides, compound 6f showed mixed-type inhibition against BChE (Ki = 1.76 µM), which renders 6f a potential agent for the treatment of Alzheimer's disease. These novel acridone hybrids might be used as efficient probes to reveal the relationship between ligands and BChE and pave the way for developing selective BChE inhibitors to further study the pathogenesis of alzheimer's disease.


Subject(s)
Acridones/pharmacology , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Drug Design , Glycosides/pharmacology , Neuroprotective Agents/pharmacology , Acetylcholinesterase/metabolism , Acridones/chemical synthesis , Acridones/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Electrophorus , Glycosides/chemical synthesis , Glycosides/chemistry , Hep G2 Cells , Horses , Humans , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Structure-Activity Relationship
6.
Molecules ; 25(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973202

ABSTRACT

Aiming to design blue fluorescent emitters with high photoluminescence quantum yields in solid-state, nitrogen-containing heteroaromatic 9,9-dimethylacridine was refined by tetraphenylethene and triphenylethene. Six tetra-/triphenylethene-substituted 9,9-dimethylacridines were synthesized by the Buchwald-Hartwig method with relatively high yields. Showing effects of substitution patterns, all emitters demonstrated high fluorescence quantum yields of 26-53% in non-doped films and 52-88% in doped films due to the aggregation induced/enhanced emission (AIE/AIEE) phenomena. In solid-state, the emitters emitted blue (451-481 nm) without doping and deep-blue (438-445 nm) with doping while greenish-yellow emission was detected for two compounds with additionally attached cyano-groups. The ionization potentials of the derivatives were found to be in the relatively wide range of 5.43-5.81 eV since cyano-groups were used in their design. Possible applications of the emitters were demonstrated in non-doped and doped organic light-emitting diodes with up to 2.3 % external quantum efficiencies for simple fluorescent devices. In the best case, deep-blue electroluminescence with chromaticity coordinates of (0.16, 0.10) was close to blue color standard (0.14, 0.08) of the National Television System Committee.


Subject(s)
Acridones/chemistry , Luminescence , Acridones/chemical synthesis , Calorimetry, Differential Scanning , Electricity , Electrochemistry , Furans/chemistry , Spectrophotometry, Ultraviolet , Temperature , Toluene/chemistry
7.
Bioorg Chem ; 95: 103556, 2020 01.
Article in English | MEDLINE | ID: mdl-31927317

ABSTRACT

STING (Stimulator of Interferon Genes) has become a focal point in immunology research and a target in drug discovery. The discovery of a potent human-STING agonist is expected to revolutionize current anti-virus or cancer immunotherapy. Inspired by the structure and function of murine STING-specific agonists (DMXAA and CMA), we rationally designed and synthesized four series of novel compounds for the enhancement of human sensitivity. In the cell-based assay, we identified six compounds from all the synthetic small molecules: 2g, 9g, and 12b are STING agonists that are efficacious across species, and all have the skeleton of acridone; 1b, 1c, and 12c just function in the murine STING pathway. Notably, 12b exhibits the best activity among the six agonists, and its inductions of both human and murine STING-dependent signalling are similar to that of 2'3'-cGAMP, which is a well-known STING inducer. While a protein assay indicated that 2 g, 9 g, and 12b could activate the pathway by directly binding human STING, 12b also displayed the strongest binding affinity. Additionally, our studies show that 12b can induce faster, more powerful, and more durable responses of assorted cytokines in a native system than 2'3'-cGAMP. Consequently, our team is the first to successfully modify murine STING agonists to obtain human sensitivity, and these results suggest that 12b is a potent direct-human-STING agonist. Additionally, the acridone analogues demonstrate tremendous potential in the treatment of tumours or viral infections.


Subject(s)
Acridones/chemistry , Acridones/pharmacology , Drug Design , Membrane Proteins/antagonists & inhibitors , Acridones/chemical synthesis , Animals , Membrane Proteins/genetics , Mice
8.
Talanta ; 209: 120517, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31892092

ABSTRACT

Sulfide plays an important role in many important life processes, and abnormal levels of sulfide that may cause diseases. Sulfide is also essential in industrial production and food processing, and it is well concerned for environmental issues and food safety. In order to study the physiological and pathological effects of sulfide and the impact on the environment, it is still urgent to develop a convenient and effective sulfide detection technology. Here, we developed a ratiometric fluorescent probe 7-Nitro-1,2,3-benzoxoxadiazole-Acridoneacetylpiperazine (NBD-AAP) which is based on the fluorescence resonance energy transfer (FRET) between acridone and NBD fluorophores. The NBD-AAP probe could produce a ratiometric response to micromolar sulfide in buffer (pH = 7.4), exhibiting a significant enhancement in fluorescent emission ratio (F427/F552) and obvious visual phenomenon (orange to pink under visible light and yellow to blue under UV light). At the same time, this NBD-AAP probe also has excellent properties including high selectivity and low detection limit (0.19 µM). In addition, this probe has been successfully used for detecting the sulfide in actual samples (monosodium glutamate, beer, environmental water) and imaging in Daphnia magna. These results indicate that NBD-AAP has broad application prospects in sulfide detection and in vivo imaging studies.


Subject(s)
4-Chloro-7-nitrobenzofurazan/analogs & derivatives , Acridones/chemistry , Fluorescent Dyes/chemistry , Sulfides/analysis , 4-Chloro-7-nitrobenzofurazan/chemical synthesis , Acridones/chemical synthesis , Animals , Beer/analysis , Daphnia , Density Functional Theory , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemical synthesis , Food Contamination/analysis , Limit of Detection , Microscopy, Confocal , Models, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis
9.
J Appl Microbiol ; 127(5): 1362-1372, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31297951

ABSTRACT

AIM: The increase in the number of fungal infections worldwide, coupled with the limitations of current antifungal chemotherapy, demand the development of safe and effective new antifungals. Here, we presented the synthesis of a novel acridone (M14) and its antifungal properties against Candida and dermatophytes species. METHODS AND RESULTS: A series of 17 acridones was designed, synthesized and tested for its antifungal activity. The minimum inhibitory concentration (MIC) was determined by the broth microdilution method. Only the acridone M14 showed growth-inhibitory activity against reference strains and clinical isolates of Candida and dermatophytes, with MIC range of 7·81-31·25 µg ml-1 . Moreover, M14 exhibited fungicidal activity and prevented biofilm formation by C. albicans as well as reduced the viability of preformed biofilms, even at sub-MICs. The confocal laser scanning microscopy analysis revealed that C. albicans hyphal growth was completely inhibited in the presence of M14. Similarly, there was a severe inhibition on hyphal growth of Trichophyton rubrum. We also found that M14 has relatively low toxicity to human fibroblasts. CONCLUSIONS: The new acridone M14 has antifungal properties against Candida spp. and dermatophytes, and antibiofilm activity against C. albicans. In addition, M14 is relatively selective to fungal cells compared to human normal cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of its in vitro antifungal activity, anti-Candida biofilm effect and moderate cytotoxicity towards normal human cell, M14 may serve as a valuable lead compound to develop a new antifungal agent.


Subject(s)
Acridones/pharmacology , Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Biofilms/drug effects , Candida/drug effects , Acridones/chemical synthesis , Antifungal Agents/chemical synthesis , Biofilms/growth & development , Candida/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Cell Survival , Humans , Hyphae/drug effects , Hyphae/growth & development , Microbial Sensitivity Tests , Trichophyton/drug effects , Trichophyton/growth & development
10.
Bioorg Chem ; 90: 103047, 2019 09.
Article in English | MEDLINE | ID: mdl-31234130

ABSTRACT

A potent Nonsterodial Anti-inflammatory Drug (NSAID) candidates has been conceived and built by an assembly of a hydrophilic, fluorescent and COX-2 inhibiting units in the same molecule. The isatinimino-acridinedione core (TM-7) was achieved in a simple three step synthetic procedure viz (i) a multicomponent reaction between dimedone, aldehyde and amine to furnish the nitroacridinedione (4), (ii) reduction step and (iii) schiff's-base condensation with isatin. The excellent anti-inflammatory pharmacological efficiency of the drug was established by in vivo biological experiments. Accordingly, it was found that the treatment with the synthesized isatinimino analogues (dosage: 30 mg/kg) inhibited protein expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) as well as production of prostaglandin E2 (PGE2), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß), and interleukin-6 (IL-6) levels induced by carrageenan. Further, a comparative molecular modeling analysis of TM-7 carried out with the crystal structure of aspirin acetylated human COX-2 suggested effectively binding and efficient accommodation inside the active site's gorge.


Subject(s)
Acridones/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cyclooxygenase 2 Inhibitors/therapeutic use , Inflammation/drug therapy , Isatin/analogs & derivatives , Isatin/therapeutic use , Acridones/chemical synthesis , Acridones/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Catalytic Domain , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/metabolism , Cytokines/metabolism , Edema/drug therapy , Humans , Indomethacin/therapeutic use , Isatin/metabolism , Male , Molecular Docking Simulation , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Protein Binding , Rats, Wistar , Signal Transduction/drug effects
11.
Phys Chem Chem Phys ; 21(14): 7685-7696, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30912774

ABSTRACT

A fluorescence study of N1-(ß-d-glucopyranosyl)-N4-[2-acridin-9(10H)-onyl]-cytosine (GLAC), the first fluorescent potent inhibitor of glycogen phosphorylase (GP), in neutral aqueous solution, is presented herein. Quantum chemistry (TD-DFT) calculations show the existence of several conformers both in the ground and first excited states. They result from rotations of the acridone and cytosine moieties around an NH bridge which may lead to the formation of non-emitting charge-transfer states. The fingerprints of various conformers have been detected by time-resolved fluorescence spectroscopy (fluorescence upconversion and time-correlated single photon counting) and identified using as criteria their energy, polarization and relative population resulting from computations. Such an analysis should contribute to the design of new GP inhibitors with better fluorescence properties, suitable for imaging applications.


Subject(s)
Enzyme Inhibitors/metabolism , Glycogen Phosphorylase/metabolism , Quantum Theory , Acridones/chemical synthesis , Acridones/chemistry , Acridones/metabolism , Benzoates/chemical synthesis , Benzoates/chemistry , Benzoates/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glycogen Phosphorylase/antagonists & inhibitors , Spectrometry, Fluorescence , Thermodynamics
12.
Bioorg Med Chem Lett ; 29(1): 32-35, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30446310
13.
Med Chem ; 15(7): 729-737, 2019.
Article in English | MEDLINE | ID: mdl-30324889

ABSTRACT

BACKGROUND: The lack of efficacious therapy for advanced melanoma and neuroblastoma makes new approaches necessary. Therefore, many scientists seek new, more effective, more selective and less toxic anticancer drugs. OBJECTIVE: We propose the synthesis of the new functionalized analogs of 1-nitroacridine/4- nitroacridone connected to tuftsin/retro-tuftsin derivatives as potential anticancer agents. METHODS: Acridine and acridone analogues were prepared by Ullmann condensation and then cyclization reaction. As a result of nucleophilic substitution reaction 1-nitro-9-phenoxyacridine or 1- chloro-4-nitro-9(10H)-acridone with the corresponding peptides, the planned acridine derivatives (10a-c, 12, 17-a-d, 19) have been obtained. The cytotoxic activity of the newly obtained analogs were evaluated against melanotic (Ma) and amelanotic (Ab) melanoma cell lines and neuroblastoma SH-SY5Y by using the XTT method. Apoptosis and cell cycle were analyzed by flow cytometry. RESULTS: Among the investigated analogs compound 12 exhibited the highest potency comparable to dacarbazine action for amelanotic Ab melanoma cells. FLICA test (flurochrome-labeled inhibitors of caspases) showed that this analog significantly increased the content of cells with activated caspases (C+) among both neuroblastoma lines and only Ab melanoma line. Using phosphatidylserine (PS) externalization assay, 12 induced changes in the Ab melanoma plasma membrane structure as the externalization of phosphatidylserine (An+ cells). These changes in neuroblastoma cells were less pronounced. CONCLUSION: Analog 12 could be proposed as the new potential chemotherapeutic against amelanotic melanoma form especially.


Subject(s)
Acridines/pharmacology , Acridones/pharmacology , Antineoplastic Agents/pharmacology , Melanoma/drug therapy , Acridines/chemical synthesis , Acridines/chemistry , Acridones/chemical synthesis , Acridones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Melanoma/pathology , Molecular Structure , Structure-Activity Relationship
14.
Chem Commun (Camb) ; 54(16): 2036-2039, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29411851
15.
J Gen Virol ; 98(7): 1693-1701, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28699869

ABSTRACT

Hepatitis C virus (HCV) affects about 170 million people worldwide. The current treatment has a high cost and variable response rates according to the virus genotype. Acridones, a group of compounds extracted from natural sources, showed potential antiviral actions against HCV. Thus, this study aimed to evaluate the effect of a panel of 14 synthetic acridones on the HCV life cycle. The compounds were screened using an Huh7.5 cell line stably harbouring the HCV genotype 2a subgenomic replicon SGR-Feo-JFH-1. Cells were incubated in the presence or absence of compounds for 72 h and cell viability and replication levels were assessed by MTT and luciferase assays, respectively. At a concentration of 5 µM the acridone Fac4 exhibited a >90 % inhibition of HCV replication with no effect on cell viability. The effects of Fac4 on virus replication, entry and release steps were evaluated in Huh7.5 cells infected with the JFH-1 isolate of HCV (HCVcc). Fac4 inhibited JFH-1 replication to approximately 70 %, while no effect was observed on virus entry. The antiviral activity of Fac4 was also observed on viral release, with almost 80 % of inhibition. No inhibitory effect was observed against genotype 3 replication. Fac4 was able to intercalate into dsRNA, however did not inhibit NS5B polymerase activity or translation driven by the HCV IRES. Although its mode of action is partly understood, Fac4 presents significant inhibition of HCV replication and can therefore be considered as a candidate for the development of a future anti-HCV treatment.


Subject(s)
Acridones/pharmacology , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/physiology , Virus Replication/drug effects , Acridones/chemical synthesis , Antiviral Agents/chemical synthesis , Genome, Viral/drug effects , Hepacivirus/genetics , Hepatitis C/virology , Humans , Replicon/drug effects , Virus Internalization/drug effects
16.
Eur J Med Chem ; 129: 337-348, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28237663

ABSTRACT

Sorafenib was the only small-molecule drug approved by FDA for treatment of the advanced hepatocellular carcinoma (HCC). Recent study indicated that YM155 was a promising agent for HCC cells with high survivin expression, however, the antitumor activity needs to be further improved. Based on molecular docking and rational design method, a series of multi-substituted benzyl acridone derivatives were designed and synthesized. MTT assay indicated that some of the synthesized compounds displayed better antiproliferative activity against HepG2 cells than YM155. Later study indicated that the representive compound 8u may directly interact with survivin protein and induce HepG2 cells apoptosis, which is different from YM155. In addition, ADME property was predicted in silico, and it performed well. Moreover, in vivo preliminary experiments showed that 8u may be a good lead compound in the treatment of HCC.


Subject(s)
Acridones/chemical synthesis , Antineoplastic Agents/chemical synthesis , Carcinoma, Hepatocellular/drug therapy , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Liver Neoplasms/drug therapy , Acridones/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Design , Hep G2 Cells , Humans , Survivin
17.
Sci Rep ; 7: 39753, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059104

ABSTRACT

A serious Mosquito borne yellow fever is one of the grave diseases which affect the major population. Since there is no specific treatment for yellow fever, there is a necessity to develop an effective agent. The series of acridinone analogues 3 to 5 were synthesized with help of non-conventional microwave heating and confirmed by respective spectral characterization. 5c and 3b showed highest activity to kill 90% of larvae against A. aegypti and C. quinquefasciatus, respectively. Also the active products were treated to check the mortality of non-target aquatic species. Through the reports of the larvicidal bioassay, compounds 3b against C. quinquefasciatus whereas 5c against A. aegypti were found to be more active. By keeping this as a platform, further extension of the work can be done to find out a valuable drug for controlling disease vectors.


Subject(s)
Aedes , Culex , Acetic Acid/chemical synthesis , Acridones/chemical synthesis , Animals , Aquatic Organisms , Hot Temperature , Hydrazines/chemical synthesis , Insecticides , Larva , Metal Nanoparticles , Microwaves , Mosquito Control , Mosquito Vectors , Plant Extracts , Plant Leaves
18.
Bioorg Chem ; 64: 51-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26657603

ABSTRACT

A series of nitric oxide donating acridone derivatives are synthesized and evaluated for in vitro cytotoxic activity against different sensitive and resistant cancer cell lines MCF7/Wt, MCF7/Mr (BCRP overexpression) and MCF7/Dx (P-gp expression). The results showed that NO-donating acridones are potent against both the sensitive and resistant cells. Structure activity relationship indicate that the nitric oxide donating moiety connected through a butyl chain at N(10) position as well as morpholino moiety linkage through an amide bridge on the acridone ring system at C-2 position, are required to exert a good cytotoxic effect. Further, good correlations were observed when cytotoxic properties were compared with in vitro nitric oxide release rate, nitric oxide donating group potentiated the cytotoxic effect of the acridone derivatives. Exogenous release of nitric oxide by NO donating acridones enhanced the accumulation of doxorubicin in MCF7/Dx cell lines when it was coadministered with doxorubicin, which inhibited the efflux process of doxorubicin. In summary, a nitric oxide donating group can potentiate the anti-MDR property of acridones.


Subject(s)
Acridones/pharmacology , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Nitric Oxide Donors/pharmacology , Acridones/chemical synthesis , Acridones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Drug Resistance, Neoplasm/drug effects , Humans , MCF-7 Cells , Mitoxantrone/pharmacology , Molecular Docking Simulation , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry
19.
Angew Chem Int Ed Engl ; 54(49): 14960-4, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26478001

ABSTRACT

A palladium-catalyzed regiodivergent C1 insertion multicomponent reaction involving aryne, CO, and 2-iodoaniline is established to construct the scaffolds of phenanthridinone and acridone alkaloids. Regioselective control is achieved under the guidance of selective ligands. The phenanthridinones are solely obtained under ligand-free condition. In comparison, application of the electron-abundant bidentate ligand dppm afforded the acridones with high efficiency. The release rate of the aryne from the precursor assists the regioselectivity of insertion as well, which was revealed through interval NMR tracking. A plausible mechanism was suggested based on the control experiments. Representative natural products and two types of natural product analogues were synthesized divergently through this tunable method.


Subject(s)
Acridones/chemical synthesis , Alkaloids/chemistry , Alkynes/chemistry , Phenanthrenes/chemical synthesis , Acridones/chemistry , Catalysis , Ligands , Molecular Structure , Palladium/chemistry , Phenanthrenes/chemistry , Stereoisomerism
20.
Chem Biol Drug Des ; 86(6): 1425-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26077890

ABSTRACT

In this study, novel acridone-1,2,4-oxadiazole-1,2,3-triazole hybrids were designed, synthesized, and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activity. Among various synthesized compounds, 10-((1-((3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)acridin-9(10H)-one 10b showed the most potent anti-acetylcholinesterase activity (IC50  = 11.55 µm) being as potent as rivastigmine. Also docking outcomes were in good agreement with in vitro results confirming the dual binding inhibitory activity of compound 10b.


Subject(s)
Acridones/chemical synthesis , Acridones/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/chemistry , Acridones/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Drug Design , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Humans , Hydrogen Bonding , Molecular Docking Simulation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...