Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Int J Biol Macromol ; 266(Pt 2): 131239, 2024 May.
Article in English | MEDLINE | ID: mdl-38569992

ABSTRACT

We present the design, synthesis, computational analysis, and biological assessment of several acrylonitrile derived imidazo[4,5-b]pyridines, which were evaluated for their anticancer and antioxidant properties. Our aim was to explore how the number of hydroxy groups and the nature of nitrogen substituents influence their biological activity. The prepared derivatives exhibited robust and selective antiproliferative effects against several pancreatic adenocarcinoma cells, most markedly targeting Capan-1 cells (IC50 1.2-5.3 µM), while their selectivity was probed relative to normal PBMC cells. Notably, compound 55, featuring dihydroxy and bromo substituents, emerged as a promising lead molecule. It displayed the most prominent antiproliferative activity without any adverse impact on the viability of normal cells. Furthermore, the majority of studied derivatives also exhibited significant antioxidative activity within the FRAP assay, even surpassing the reference molecule BHT. Computational analysis rationalized the results by highlighting the dominance of the electron ionization for the antioxidant features with the trend in the computed ionization energies well matching the observed activities. Still, in trihydroxy derivatives, their ability to release hydrogen atoms and form a stable O-H⋯O•⋯H-O fragment upon the H• abstraction prevails, promoting them as excellent antioxidants in DPPH• assays as well.


Subject(s)
Acrylonitrile , Antineoplastic Agents , Antioxidants , Cell Proliferation , Pancreatic Neoplasms , Pyridines , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Acrylonitrile/chemistry , Acrylonitrile/pharmacology , Acrylonitrile/analogs & derivatives , Cell Proliferation/drug effects , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Pyridines/chemistry , Pyridines/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Structure-Activity Relationship , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis
2.
Bioorg Chem ; 147: 107326, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653153

ABSTRACT

Continuing our research into the anticancer properties of acrylonitriles, we present a study involving the design, synthesis, computational analysis, and biological assessment of novel acrylonitriles derived from methoxy, hydroxy, and N-substituted benzazole. Our aim was to examine how varying the number of methoxy and hydroxy groups, as well as the N-substituents on the benzimidazole core, influences their biological activity. The newly synthesized acrylonitriles exhibited strong and selective antiproliferative effects against the Capan-1 pancreatic adenocarcinoma cell line, with IC50 values ranging from 1.2 to 5.3 µM. Consequently, these compounds were further evaluated in three other pancreatic adenocarcinoma cell lines, while their impact on normal PBMC cells was also investigated to determine selectivity. Among these compounds, the monohydroxy-substituted benzimidazole derivative 27 emerged with the most profound and broad-spectrum anticancer antiproliferative activity being emerged as a promising lead candidate. Moreover, a majority of the acrylonitriles in this series exhibited significant antioxidative activity, surpassing that of the reference molecule BHT, as demonstrated by the FRAP assay (ranging from 3200 to 5235 mmolFe2+/mmolC). Computational analysis highlighted the prevalence of electron ionization in conferring antioxidant properties, with computed ionization energies correlating well with observed activities.


Subject(s)
Acrylonitrile , Antineoplastic Agents , Antioxidants , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Pancreatic Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Humans , Acrylonitrile/chemistry , Acrylonitrile/pharmacology , Acrylonitrile/analogs & derivatives , Acrylonitrile/chemical synthesis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Structure-Activity Relationship , Molecular Structure , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Cell Line, Tumor , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis
3.
Int J Parasitol Drugs Drug Resist ; 24: 100531, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484645

ABSTRACT

Leishmaniasis and Chagas disease are parasitic infections that affect millions of people worldwide, producing thousands of deaths per year. The current treatments against these pathologies are not totally effective and produce some side effects in the patients. Acrylonitrile derivatives are a group of compounds that have shown activity against these two diseases. In this work, four novels synthetic acrylonitriles were evaluated against the intracellular form and extracellular forms of L. amazonensis and T. cruzi. The compounds 2 and 3 demonstrate to have good selectivity indexes against both parasites, specifically the compound 3 against the amastigote form (SI = 6 against L. amazonensis and SI = 7.4 against T. cruzi). In addition, the parasites treated with these two compounds demonstrate to produce a programmed cell death, since they were positive for the events studied related to this type of death, including chromatin condensation, accumulation of reactive oxygen species and alteration of the mitochondrial membrane potential. In conclusion, this work confirms that acrylonitriles is a source of possible new compounds against kinetoplastids, however, more studies are needed to corroborate this activity.


Subject(s)
Acrylonitrile , Antiprotozoal Agents , Chagas Disease , Leishmania mexicana , Trypanosoma cruzi , Humans , Antiprotozoal Agents/pharmacology , Acrylonitrile/pharmacology , Acrylonitrile/therapeutic use , Chagas Disease/drug therapy , Cell Death
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279241

ABSTRACT

We previously discovered WS-6 as a new antidepressant in correlation to its function of stimulating neurogenesis. Herein, several different scaffolds (stilbene, 1,3-diphenyl 1-propene, 1,3-diphenyl 2-propene, 1,2-diphenyl acrylo-1-nitrile, 1,2-diphenyl acrylo-2-nitrile, 1,3-diphenyl trimethylamine), further varied through substitutions of twelve amide substituents plus the addition of a methylene unit and an inverted amide, were examined to elucidate the SARs for promoting adult rat neurogenesis. Most of the compounds could stimulate proliferation of progenitors, but just a few chemicals possessing a specific structural profile, exemplified by diphenyl acrylonitrile 29b, 32a, and 32b, showed better activity than the clinical drug NSI-189 in promoting newborn cells differentiation into mature neurons. The most potent diphenyl acrylonitrile 32b had an excellent brain AUC to plasma AUC ratio (B/P = 1.6), suggesting its potential for further development as a new lead.


Subject(s)
Acrylonitrile , Alkenes , Biphenyl Compounds , Rats , Animals , Acrylonitrile/pharmacology , Neurogenesis , Hippocampus , Nitriles/pharmacology , Amides
5.
Sci Rep ; 13(1): 22486, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38110432

ABSTRACT

A novel series of α-cyano indolylchalcones was prepared, and their chemical structures were confirmed based on the different spectral data. Among them, compound 7f was observed to be the most effective bioactive chalcone with distinguished potency and selectivity against colorectal carcinoma (HCT116) with IC50 value (6.76 µg/mL) relative to the positive control (5 FU) (77.15 µg/mL). In a preliminary action study, the acrylonitrile chalcone 7f was found to enhance apoptotic action via different mechanisms like inhibition of some anti-apoptotic protein expression, regulation of some apoptotic proteins, production of caspases, and cell cycle arrest. All mechanisms suggested that compound 7f could act as a professional chemotherapeutic agent. Also, a molecular docking study was achieved on some selected proteins implicated in cancer (Caspase 9, XIAP, P53 mutant Y220C, and MDM2) which showed variable interactions with compound 7f with good Gibbs free energy scores.


Subject(s)
Acrylonitrile , Antineoplastic Agents , Carcinoma , Chalcones , Colonic Neoplasms , Humans , Tumor Suppressor Protein p53/metabolism , Acrylonitrile/pharmacology , Molecular Docking Simulation , Chalcones/pharmacology , Chalcones/chemistry , HCT116 Cells , Apoptosis , Colonic Neoplasms/drug therapy , Indoles/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation
6.
Sci Rep ; 13(1): 6209, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069316

ABSTRACT

In this work, five acrylonitrile adducts were screened for antibacterial activity against Gram-positive Bacillus subtilis, Microbial Type Culture Collection and Gene Bank (MTCC 1305) and Gram-negative Escherichia coli (MTCC 443). Synthesis was followed by aza-Michael addition reaction, where the acrylonitrile accepts an electron pair from the respective amines and results in the formation of n-alkyliminobis-propionitrile and n-alkyliminopropionitrile under microwave irradiation. Characterization of the compounds were performed using Fourier Transform Infrared (FTIR), Proton Nuclear Magnetic Resonance (1H NMR) and Electrospray Ionisation Mass Spectrometry (ESI-MS). The particle size characterization was done by Dynamic Light Scattering (DLS) technique. The antibacterial study showed higher inhibition rate for both Gram-positive and Gram-negative bacteria. The antibacterial ability was found to be dose dependent. The minimum inhibitory concentration against both bacteria were found to be 1, 3, 0.4, 1, 3 µl/ml for E. coli and 6, 6, 0.9, 0.5, 5 µl/ml for B. subtilis. Time-kill kinetics evaluation showed that the adducts possess bacteriostatic action. Further it was evaluated for high-throughput in vitro assays to determine the compatibility of the adducts for drug delivery. The haemolytic and thrombolytic activity was analysed against normal mouse erythrocytes. The haemolytic activity showed prominent results, and thereby projecting this acrylonitrile adducts as potent antimicrobial and haemolytic agent.


Subject(s)
Acrylonitrile , Anti-Infective Agents , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Acrylonitrile/pharmacology , Fibrinolytic Agents , Escherichia coli , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Bacillus subtilis
7.
J Enzyme Inhib Med Chem ; 37(1): 2223-2240, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35979600

ABSTRACT

Introduction: Colchicine-binding site inhibitors are some of the most interesting ligands belonging to the wider family of microtubule-destabilising agents.Results: A novel series of 4'-fluoro-substituted ligands (5-13) was synthesised. The antiproliferative activity assays resulted in nM values for the new benzotriazole-acrylonitrile derivatives. Compound 5, the hit compound, showed an evident blockade of HeLa cell cycle in the G2-M phase, but also a pro-apoptotic potential, and an increase of early and late apoptotic cells in HeLa and MCF-7 cell cycle analysis. Confocal microscopy analysis showed a segmented shape and a collapse of the cytoskeleton, as well as a consistent cell shrinkage after administration of 5 at 100 nM. Derivative 5 was also proved to compete with colchicine at colchicine-binding site, lowering its activity against tubulin polymerisation. In addition, co-administration of 5 and doxorubicin in drug-resistant A375 melanoma cell line highlighted a synergic potential in terms of inhibition of cell viability.Discussion: The 4'-fluoro substitution of benzotriazole-acrylonitrile scaffold brought us a step forward in the optimisation process to obtain compound 5 as promising MDA antiproliferative agent at nanomolar concentration.


Subject(s)
Acrylonitrile , Antineoplastic Agents , Acrylonitrile/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Colchicine/chemistry , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Ligands , Microtubules/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Triazoles , Tubulin/metabolism , Tubulin Modulators
8.
Bioorg Chem ; 124: 105872, 2022 07.
Article in English | MEDLINE | ID: mdl-35597192

ABSTRACT

Leishmaniasis produces approximately-one million of new cases annually, making it one of the most important tropical diseases. As current treatments are not fully effective and are toxic, it is necessary to develop new therapies that are more effective and less toxic, and cause a controlled cell death, with which we can avoid the immunological problems caused by necrosis. In this work 32 acrylonitriles were studied in vitro against Leishmania amazonensis. Three compounds Q20 (12.41), Q29 (11.2) and Q31 (11.56) had better selectivity than the reference compound, miltefosine (11.14) against promastigotes of these parasites, for this reason they were selected to determine their mechanism of action to know the cell death type of they produce. The results of the mechanisms of action show that these three acrylonitriles tested produce chromatin condensation, decreased mitochondrial membrane potential, altered plasma permeability and production of reactive oxygen species. All these characteristic events seem to indicate programmed cell death. Therefore, this study demonstrates the activity of acrylonitriles derivatives as possible leishmanicidal agents.


Subject(s)
Acrylonitrile , Antiprotozoal Agents , Leishmania mexicana , Acrylonitrile/metabolism , Acrylonitrile/pharmacology , Animals , Antiprotozoal Agents/metabolism , Cell Death , Macrophages , Mice , Mice, Inbred BALB C
9.
Toxicol Ind Health ; 37(11): 695-704, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34643460

ABSTRACT

Acrylonitrile (AN) is a known animal carcinogen and suspected human carcinogen. Recently, occupational exposure to AN has considerably increased. Previously, we demonstrated that streptozotocin-induced diabetes potentiates AN-induced acute toxicity in rats and that the induced cytochrome P450 2E1 (CYP2E1) is responsible for this effect. In the present study, we examined whether induction of CYP2E1 is also the underlying mechanism for the potentiation of AN-induced acute toxicity in type 2 diabetes in db/db mice. The effect of phenethyl isothiocyanate (PEITC) in reducing potentiation was also investigated. The mice were randomly divided into the normal control, diabetic control, AN, diabetes + AN, PEITC + AN, and diabetes + PEITC + AN groups. PEITC (40 mg/kg) was orally administered to rats for 3 days, and 1 h after the last PEITC gavage, 45 mg/kg AN was intraperitoneally injected. Time to death was observed. The CYP2E1 level and enzymatic activity, cytochrome c oxidase (CCO) activity, and reactive oxygen species (ROS) levels were measured. The survival rate was decreased in AN-treated db/db mice compared with that in AN-treated wild-type mice. The hepatic CYP2E1 level and enzymatic activity remained unaltered in db/db mice. Phenethyl isothiocyanate alleviated AN-induced acute toxicity in db/db mice as evident in the increased survival rate, restored CCO activity, and decreased ROS level in both the liver and brain. The study results suggested that CYP2E1 may not be responsible for the sensitivity to AN-induced acute toxicity in db/db mice and that PEITC reduced the potentiation of AN-induced acute toxicity in db/db mice.


Subject(s)
Acrylonitrile/pharmacology , Diabetes Mellitus, Type 2/metabolism , Animals , Cytochrome P-450 CYP2E1/analysis , Isothiocyanates , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species , Survival Rate
10.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071193

ABSTRACT

Cutaneous melanoma represents one of the deadliest types of skin cancer. The prognosis strongly depends on the disease stage, thus early detection is crucial. New therapies, including BRAF and MEK inhibitors and immunotherapies, have significantly improved the survival of patients in the last decade. However, intrinsic and acquired resistance is still a challenge. In this review, we discuss two major aspects that contribute to the aggressiveness of melanoma, namely, the embryonic origin of melanocytes and melanoma cells and cellular plasticity. First, we summarize the physiological function of epidermal melanocytes and their development from precursor cells that originate from the neural crest (NC). Next, we discuss the concepts of intratumoral heterogeneity, cellular plasticity, and phenotype switching that enable melanoma to adapt to changes in the tumor microenvironment and promote disease progression and drug resistance. Finally, we further dissect the connection of these two aspects by focusing on the transcriptional regulators MSX1, MITF, SOX10, PAX3, and FOXD3. These factors play a key role in NC initiation, NC cell migration, and melanocyte formation, and we discuss how they contribute to cellular plasticity and drug resistance in melanoma.


Subject(s)
Cell Plasticity/physiology , Drug Resistance, Neoplasm/physiology , Melanoma/metabolism , Neural Crest/metabolism , Skin Neoplasms/metabolism , Acrylonitrile/analogs & derivatives , Acrylonitrile/pharmacology , Aniline Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Differentiation , Cell Movement , Drug Resistance, Neoplasm/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/drug effects , MSX1 Transcription Factor/genetics , Melanocytes/metabolism , Melanoma/drug therapy , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , PAX3 Transcription Factor/genetics , Phenotype , Pyrimidinones/pharmacology , SOXE Transcription Factors/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology
11.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34156985

ABSTRACT

Gorham-Stout disease (GSD) is a sporadically occurring lymphatic disorder. Patients with GSD develop ectopic lymphatics in bone, gradually lose bone, and can have life-threatening complications, such as chylothorax. The etiology of GSD is poorly understood, and current treatments for this disease are inadequate for most patients. To explore the pathogenesis of GSD, we performed targeted high-throughput sequencing with samples from a patient with GSD and identified an activating somatic mutation in KRAS (p.G12V). To characterize the effect of hyperactive KRAS signaling on lymphatic development, we expressed an active form of KRAS (p.G12D) in murine lymphatics (iLECKras mice). We found that iLECKras mice developed lymphatics in bone, which is a hallmark of GSD. We also found that lymphatic valve development and maintenance was altered in iLECKras mice. Because most iLECKras mice developed chylothorax and died before they had significant bone disease, we analyzed the effect of trametinib (an FDA-approved MEK1/2 inhibitor) on lymphatic valve regression in iLECKras mice. Notably, we found that trametinib suppressed this phenotype in iLECKras mice. Together, our results demonstrate that somatic activating mutations in KRAS can be associated with GSD and reveal that hyperactive KRAS signaling stimulates the formation of lymphatics in bone and impairs the development of lymphatic valves. These findings provide insight into the pathogenesis of GSD and suggest that trametinib could be an effective treatment for GSD.


Subject(s)
Bone and Bones/pathology , Lymphatic Vessels , Osteolysis, Essential , Proto-Oncogene Proteins p21(ras)/genetics , Pyridones/pharmacology , Pyrimidinones/pharmacology , Acrylonitrile/analogs & derivatives , Acrylonitrile/pharmacology , Aniline Compounds/pharmacology , Animals , Disease Models, Animal , Gain of Function Mutation , High-Throughput Nucleotide Sequencing/methods , Humans , Lymphangiogenesis/genetics , Lymphatic Vessels/abnormalities , Lymphatic Vessels/pathology , Mice , Osteolysis, Essential/genetics , Osteolysis, Essential/pathology , Signal Transduction , Tertiary Lymphoid Structures/genetics , Tertiary Lymphoid Structures/pathology
12.
Eur J Med Chem ; 222: 113590, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34139625

ABSTRACT

Microtubules (MTs) are the principal target for drugs acting against mitosis. These compounds, called microtubule targeting agents (MTAs), cause a mitotic arrest during G2/M phase, subsequently inducing cell apoptosis. MTAs could be classified in two groups: microtubule stabilising agents (MSAs) and microtubule destabilising agents (MDAs). In this paper we present a new series of (E) (Z)-2-(5,6-difluoro-(1H)2H-benzo[d] [1,2,3]triazol-1(2)-yl)-3-(R)acrylonitrile (9a-j, 10e, 11a,b) and (E)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-3-(R)acrylonitrile derivatives (13d,j), which were recognised to act as MTAs agents. They were rationally designed, synthesised, characterised and subjected to different biological assessments. Computational docking was carried out in order to investigate the potential binding to the colchicine-binding site on tubulin. From this first prediction, the di-fluoro substitution seemed to be beneficial for the binding affinity with tubulin. The new fluorine derivatives, here presented, showed an improved antiproliferative activity when compared to the previously reported compounds. The biological evaluation included a preliminary antiproliferative screening on NCI60 cancer cells panel (1-10 µM). Compound 9a was selected as lead compound of the new series of derivatives. The in vitro XTT assay, flow cytometry analysis and immunostaining performed on HeLa cells treated with 9a showed a considerable antiproliferative effect, (IC50 = 3.2 µM), an increased number of cells in G2/M-phase, followed by an enhancement in cell division defects. Moreover, ß-tubulin staining confirmed 9a as a MDA triggering tubulin disassembly, whereas colchicine-9a competition assay suggested that compound 9a compete with colchicine for the binding site on tubulin. Then, the co-administration of compound 9a and an extrusion pump inhibitor (EPI) was investigated: the association resulted beneficial for the antiproliferative activity and compound 9a showed to be client of extrusion pumps. Finally, structural superimposition of different colchicine binding site inhibitors (CBIs) in clinical trial and our MDA, provided an additional confirmation of the targeting to the predicted binding site. Physicochemical, pharmacokinetic and druglikeness predictions were also conducted and all the newly synthesised derivatives showed to be drug-like molecules.


Subject(s)
Acrylonitrile/pharmacology , Antineoplastic Agents/pharmacology , Microtubules/drug effects , Triazoles/pharmacology , Acrylonitrile/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Mitosis/drug effects , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Triazoles/chemistry
13.
J Comput Aided Mol Des ; 35(5): 613-628, 2021 05.
Article in English | MEDLINE | ID: mdl-33945106

ABSTRACT

The Arylhydrocarbon Receptor (AhR), a member of the Per-ARNT-SIM transcription factor family, has been as a potential new target to treat breast cancer sufferers. A series of 2-phenylacrylonitriles targeting AhR has been developed that have shown promising and selective activity against cancerous cell lines while sparing normal non-cancerous cells. A quantitative structure-activity relationship (QSAR) modeling approach was pursued in order to generate a predictive model for cytotoxicity to support ongoing synthetic activities and provide important structure-activity information for new structure design. Recent work conducted by us has identified a number of compounds that exhibited false positive cytotoxicity values in the standard MTT assay. This work describes a good quality model that not only predicts the activity of compounds in the MCF-7 breast cancer cell line, but was also able to identify structures that subsequently gave false positive values in the MTT assay by identifying compounds with aberrant biological behavior. This work not only allows the design of future breast cancer cytotoxic activity in vitro, but allows the avoidance of the synthesis of those compounds anticipated to result in anomalous cytotoxic behavior, greatly enhancing the design of such compounds.


Subject(s)
Acrylonitrile/analogs & derivatives , Acrylonitrile/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Survival/drug effects , Drug Design , Female , Humans , MCF-7 Cells , Quantitative Structure-Activity Relationship , Receptors, Aryl Hydrocarbon/metabolism
14.
Inflammopharmacology ; 29(3): 617-640, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34002330

ABSTRACT

Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.


Subject(s)
Acrylonitrile/analogs & derivatives , Aniline Compounds/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Intracellular Fluid/drug effects , Janus Kinase Inhibitors/therapeutic use , MTOR Inhibitors/therapeutic use , Signal Transduction/drug effects , Acrylonitrile/pharmacology , Acrylonitrile/therapeutic use , Aniline Compounds/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Crohn Disease/drug therapy , Crohn Disease/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Intracellular Fluid/metabolism , Janus Kinase Inhibitors/pharmacology , MTOR Inhibitors/pharmacology , STAT Transcription Factors/antagonists & inhibitors , Signal Transduction/physiology
15.
Melanoma Res ; 31(3): 197-207, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33904516

ABSTRACT

Melanoma remains the most aggressive and fatal form of skin cancer, despite several FDA-approved targeted chemotherapies and immunotherapies for use in advanced disease. Of the 100 350 new patients diagnosed with melanoma in 2020 in the US, more than half will develop metastatic disease leading to a 5-year survival rate <30%, with a majority of these developing drug-resistance within the first year of treatment. These statistics underscore the critical need in the field to develop more durable therapeutics as well as those that can overcome chemotherapy-induced drug resistance from currently approved agents. Fortunately, several of the drug-resistance pathways in melanoma, including the proteins in those pathways, rely in part on Hsp90 chaperone function. This presents a unique and novel opportunity to simultaneously target multiple proteins and drug-resistant pathways in this disease via molecular chaperone inhibition. Taken together, we hypothesize that our novel C-terminal Hsp90 inhibitor, KU758, in combination with the current standard of care targeted therapies (e.g. vemurafenib and cobimetinib) can both synergize melanoma treatment efficacy in BRAF-mutant tumors, as well as target and overcome several major resistance pathways in this disease. Using in vitro proliferation and protein-based Western Blot analyses, our novel inhibitor, KU758, potently inhibited melanoma cell proliferation (without induction of the heat shock response) in vitro and synergized with both BRAF and MEK inhibitors in inhibition of cell migration and protein expression from resistance pathways. Overall, our work provides early support for further translation of C-terminal Hsp90 inhibitor and mitogen-activated protein kinase pathway inhibitor combinations as a novel therapeutic strategy for BRAF-mutant melanomas.


Subject(s)
Acrylonitrile/analogs & derivatives , Aniline Compounds/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Acrylonitrile/pharmacology , Acrylonitrile/therapeutic use , Aniline Compounds/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm , Humans , Melanoma/mortality , Melanoma/pathology , Survival Analysis
16.
Eur J Med Chem ; 211: 113003, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33248847

ABSTRACT

We present the design, synthesis and biological activity of novel N-substituted benzimidazole based acrylonitriles as potential tubulin polymerization inhibitors. Their synthesis was achieved using classical linear organic and microwave assisted techniques, starting from aromatic aldehydes and N-substituted-2-cyanomethylbenzimidazoles. All newly prepared compounds were tested for their antiproliferative activity in vitro on eight human cancer cell lines and one reference non-cancerous assay. N,N-dimethylamino substituted acrylonitriles 30 and 41, bearing N-isobutyl and cyano substituents placed on the benzimidazole nuclei, showed strong and selective antiproliferative activity in the submicromolar range of inhibitory concentrations (IC50 0.2-0.6 µM), while being significantly less toxic than reference systems docetaxel and staurosporine, thus promoting them as lead compounds. Mechanism of action studies demonstrated that two most active compounds inhibited tubulin polymerization. Computational analysis confirmed the suitability of the employed benzimidazole-acrylonitrile skeleton for the binding within the colchicine binding site in tubulin, thus rationalizing the observed antitumor activities, and demonstrated that E-isomers are active substances. It also provided structural determinants affecting both the binding position and the matching affinities, identifying the attached NMe2 group as the most dominant in promoting the binding, which allows ligands to optimize favourable cation∙∙∙π and hydrogen bonding interactions with Lys352.


Subject(s)
Acrylonitrile/pharmacology , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Density Functional Theory , Tubulin/metabolism , Acrylonitrile/chemical synthesis , Acrylonitrile/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Tumor Cells, Cultured
17.
Inflammation ; 44(3): 899-907, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33236262

ABSTRACT

Morita-Baylis-Hillman adducts (MBHA) are synthetic molecules with several biological actions already described in the literature. It has been previously described that adduct 2-(3-hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) has anticancer potential in leukemic cells. Inflammation is often associated with the development and progression of cancer. Therefore, to better understand the effect of ISACN, this study aimed to evaluate the anti-inflammatory potential of ISACN both in vitro and in vivo. Results demonstrated that ISACN negatively modulated the production of inflammatory cytokines IL-1ß, TNF-α, and IL-6 by cultured macrophages. In vivo, ISACN 6 and 24 mg/kg treatment promoted reduced leukocyte migration, especially neutrophils, to the peritoneal cavity of zymosan-challenged animals. ISACN displays no anti-edematogenic activity, but it was able to promote a significant reduction in the production of inflammatory cytokines in the peritoneal cavity. These data show, for the first time, that MBHA ISACN negatively modulates several aspects of the inflammatory response, such as cell migration and cytokine production in vivo and in vitro, thus having an anti-inflammatory potential.


Subject(s)
Acrylonitrile/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation Mediators/metabolism , Macrophages, Peritoneal/drug effects , Peritonitis/prevention & control , Acrylonitrile/analogs & derivatives , Animals , Cell Movement/drug effects , Cells, Cultured , Disease Models, Animal , Female , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Mice , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Peritonitis/chemically induced , Peritonitis/immunology , Peritonitis/metabolism , Zymosan
18.
J Mol Recognit ; 34(4): e2880, 2021 04.
Article in English | MEDLINE | ID: mdl-33166010

ABSTRACT

In this work, seven acrylonitrile derivatives were selected as potential inhibitors of fat and obesity-related proteins (FTO) by the aid of fluorescence spectroscopy, ultraviolet visible spectroscopy, molecular docking, and cytotoxicity methods. Results show that the interaction between 3-amino-2-(4-chlorophenyl)-3-phenylacrylonitrile (1a) and FTO was the strongest among these derivatives. Thermodynamic analysis and molecular modeling show that the main force between 1a and FTO is hydrophobic interaction. The cytotoxicity test showed that the IC50 value of 1a was 46.64 µmol/L, which indicated 1a had the smallest IC50 value and had the best inhibitory effect on the proliferation of leukemia K562 cells among the seven derivatives. Both our previous results and this work show that chlorine atoms play important role in the binding of small molecules and FTO. This work brings new information for the study of FTO inhibitors.


Subject(s)
Acrylonitrile/chemistry , Acrylonitrile/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Chlorine/chemistry , Acrylonitrile/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Fluorescence , Humans , K562 Cells , Models, Molecular , Spectrometry, Fluorescence/methods , Spectrophotometry, Ultraviolet , Thermodynamics
19.
Cancer Immunol Res ; 8(9): 1114-1121, 2020 09.
Article in English | MEDLINE | ID: mdl-32661093

ABSTRACT

Concurrent MEK and CDK4/6 inhibition shows promise in clinical trials for patients with advanced-stage mutant BRAF/NRAS solid tumors. The effects of CDK4/6 inhibitor (CDK4/6i) in combination with BRAF/MEK-targeting agents on the tumor immune microenvironment are unclear, especially in melanoma, for which immune checkpoint inhibitors are effective in approximately 50% of patients. Here, we show that patients progressing on CDK4/6i/MEK pathway inhibitor combinations exhibit T-cell exclusion. We found that MEK and CDK4/6 targeting was more effective at delaying regrowth of mutant BRAF melanoma in immunocompetent versus immune-deficient mice. Although MEK inhibitor (MEKi) treatment increased tumor immunogenicity and intratumoral recruitment of CD8+ T cells, the main effect of CDK4/6i alone and in combination with MEKi was increased expression of CD137L, a T-cell costimulatory molecule on immune cells. Depletion of CD8+ T cells or blockade of the CD137 ligand-receptor interaction reduced time to regrowth of melanomas in the context of treatment with CDK4/6i plus MEKi treatment in vivo Together, our data outline an antitumor immune-based mechanism and show the efficacy of targeting both the MEK pathway and CDK4/6.


Subject(s)
Acrylonitrile/analogs & derivatives , Aniline Compounds/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Acrylonitrile/pharmacology , Acrylonitrile/therapeutic use , Aniline Compounds/pharmacology , Animals , Humans , Male , Mice
20.
Insect Biochem Mol Biol ; 123: 103410, 2020 08.
Article in English | MEDLINE | ID: mdl-32442626

ABSTRACT

The acaricides cyflumetofen, cyenopyrafen, and pyflubumide act as inhibitors of the mitochondrial electron transport system at complex II (succinate dehydrogenase; SDH), a new mode of action in arthropods. The development and mechanisms of low-level resistance against cyenopyrafen and cyflumetofen have been previously reported in Tetranychus urticae. In the present study, we investigated high levels of resistance against three SDH inhibitors in T. urticae field populations and clarify the genetic basis of resistance using quantitative trait locus (QTL) analysis. First, we constructed a microsatellite linkage map comprising 64 markers assembled into three linkage groups (LGs) with total length of 683.8 cM and average marker spacing of 11.03 cM. We then used the linkage map to perform QTL mapping, and identified significant QTLs contributing to resistance to cyflumetofen (one QTL on LG1), cyenopyrafen (one QTL on LG3), and pyflubumide (two QTLs on LG1 and LG3). The QTL peaks on LG1 for cyflumetofen and pyflubumide overlapped and included the SdhB locus. For cyenopyrafen resistance, the QTLs on LG3 included the SdhC locus. For cyflumetofen resistance, we found an I260T mutation in SdhB. For pyflubumide and cyenopyrafen resistance, we detected I260V and S56L substitutions in SdhB and SdhC, respectively, by direct sequencing. Both I260 in SdhB and S56 in SdhC were present in highly conserved regions of the ubiquinone binding site formed at the interface among SdhB, SdhC, and SdhD. Mutations at these positions have been implicated in resistance against fungicides that act as Sdh inhibitors in various pathogens. Therefore, we consider these mutations to be target-site resistance mutations for these acaricidal SDH inhibitors.


Subject(s)
Acaricides/pharmacology , Chromosome Mapping/methods , Drug Resistance/genetics , Succinate Dehydrogenase/antagonists & inhibitors , Tetranychidae , Acrylonitrile/analogs & derivatives , Acrylonitrile/pharmacology , Animals , Arthropod Proteins/antagonists & inhibitors , Arthropod Proteins/drug effects , Arthropod Proteins/metabolism , Genetic Linkage , Genome, Insect , Microsatellite Repeats , Mutation , Propionates/pharmacology , Pyrazoles/pharmacology , Quantitative Trait Loci , RNA-Seq , Succinate Dehydrogenase/drug effects , Succinate Dehydrogenase/metabolism , Tetranychidae/drug effects , Tetranychidae/genetics , Tetranychidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...