Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.008
Filter
1.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653754

ABSTRACT

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Nucleus , SOX9 Transcription Factor , Transcription Factors , YAP-Signaling Proteins , Humans , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Active Transport, Cell Nucleus/genetics , Mice , Cell Line, Tumor , Animals , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Nat Commun ; 15(1): 1516, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374070

ABSTRACT

Mitochondrial and lysosomal activities are crucial to maintain cellular homeostasis: optimal coordination is achieved at their membrane contact sites where distinct protein machineries regulate organelle network dynamics, ions and metabolites exchange. Here we describe a genetically encoded SPLICS reporter for short- and long- juxtapositions between mitochondria and lysosomes. We report the existence of narrow and wide lysosome-mitochondria contacts differently modulated by mitophagy, autophagy and genetic manipulation of tethering factors. The overexpression of α-synuclein (α-syn) reduces the apposition of mitochondria/lysosomes membranes and affects their privileged Ca2+ transfer, impinging on TFEB nuclear translocation. We observe enhanced TFEB nuclear translocation in α-syn-overexpressing cells. We propose that α-syn, by interfering with mitochondria/lysosomes tethering impacts on local Ca2+ regulated pathways, among which TFEB mediated signaling, and in turn mitochondrial and lysosomal function. Defects in mitochondria and lysosome represent a common hallmark of neurodegenerative diseases: targeting their communication could open therapeutic avenues.


Subject(s)
Lysosomes , Mitochondria , Mitochondrial Membranes , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitophagy/genetics , alpha-Synuclein/metabolism , Active Transport, Cell Nucleus/genetics
3.
Vet Microbiol ; 291: 110026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364467

ABSTRACT

This study demonstrates for the first time that the matrix (M) protein of BEFV is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm in a transcription-, carrier-, and energy-dependent manner. Experiments performed in both intact cells and digitonin-permeabilized cells revealed that M protein targets the nucleolus and requires carrier, cytosolic factors or energy input. By employing sequence and mutagenesis analyses, we have determined both nuclear localization signal (NLS) 6KKGKSK11 and nuclear export signal (NES) 98LIITSYL TI106 of M protein that are important for the nucleocytoplasmic shuttling of M protein. Furthermore, we found that both lamin A/C and chromosome maintenance region 1 (CRM-1) proteins could be coimmunoprecipitated and colocalized with the BEFV M protein. Knockdown of lamin A/C by shRNA and inhibition of CRM-1 by leptomycin B significantly reduced virus yield. Collectively, this study provides novel insights into nucleocytoplasmic shuttling of the BEFV M protein modulated by lamin A/C and CRM-1 and by a transcription- and carrier- and energy-dependent pathway.


Subject(s)
Active Transport, Cell Nucleus , Ephemeral Fever Virus, Bovine , Lamin Type A , Nuclear Localization Signals , Animals , Active Transport, Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromosomes/metabolism , Cytoplasm/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Ephemeral Fever Virus, Bovine/metabolism , Viral Structural Proteins/metabolism
4.
PLoS Genet ; 19(11): e1011026, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37948444

ABSTRACT

The meiotic recombination checkpoint reinforces the order of events during meiotic prophase I, ensuring the accurate distribution of chromosomes to the gametes. The AAA+ ATPase Pch2 remodels the Hop1 axial protein enabling adequate levels of Hop1-T318 phosphorylation to support the ensuing checkpoint response. While these events are localized at chromosome axes, the checkpoint activating function of Pch2 relies on its cytoplasmic population. In contrast, forced nuclear accumulation of Pch2 leads to checkpoint inactivation. Here, we reveal the mechanism by which Pch2 travels from the cell nucleus to the cytoplasm to maintain Pch2 cellular homeostasis. Leptomycin B treatment provokes the nuclear accumulation of Pch2, indicating that its nucleocytoplasmic transport is mediated by the Crm1 exportin recognizing proteins containing Nuclear Export Signals (NESs). Consistently, leptomycin B leads to checkpoint inactivation and impaired Hop1 axial localization. Pch2 nucleocytoplasmic traffic is independent of its association with Zip1 and Orc1. We also identify a functional NES in the non-catalytic N-terminal domain of Pch2 that is required for its nucleocytoplasmic trafficking and proper checkpoint activity. In sum, we unveil another layer of control of Pch2 function during meiosis involving nuclear export via the exportin pathway that is crucial to maintain the critical balance of Pch2 distribution among different cellular compartments.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/genetics , Meiosis/genetics , Saccharomyces cerevisiae/genetics , Active Transport, Cell Nucleus/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , DNA-Binding Proteins/genetics , Karyopherins/genetics , Karyopherins/metabolism , Homeostasis
5.
Signal Transduct Target Ther ; 8(1): 425, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37945593

ABSTRACT

Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.


Subject(s)
Neoplasms , Receptors, Cytoplasmic and Nuclear , Humans , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/therapeutic use , Active Transport, Cell Nucleus/genetics , Karyopherins/genetics , Karyopherins/metabolism , Karyopherins/therapeutic use , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Neoplasms/metabolism , ran GTP-Binding Protein
6.
Dev Cell ; 58(21): 2275-2291.e6, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37865085

ABSTRACT

Dysregulation of factors in nucleocytoplasmic transport is closely linked to neural developmental diseases. Mutation in Hikeshi, encoding a nonconventional nuclear import carrier of heat shock protein 70 family (HSP70s), leads to inherited leukodystrophy; however, the pathological mechanisms remain elusive. Here, we showed that Hikeshi is essential for central nervous system (CNS) myelination. Deficiency of Hikeshi, which is observed in inherited leukodystrophy patients, resulted in murine oligodendrocyte maturation arrest. Hikeshi is required for nuclear translocation of HSP70s upon differentiation. Nuclear-localized HSP70 promotes murine oligodendrocyte differentiation and remyelination after white matter injury. Mechanistically, HSP70s interacted with SOX10 in the nucleus and protected it from E3 ligase FBXW7-mediated ubiquitination degradation. Importantly, we discovered that Hikeshi-dependent hyperthermia therapy, which induces nuclear import of HSP70s, promoted oligodendrocyte differentiation and remyelination following in vivo demyelinating injury. Overall, these findings demonstrate that Hikeshi-mediated nuclear translocation of HSP70s is essential for myelinogenesis and provide insights into pathological mechanisms of Hikeshi-related leukodystrophy.


Subject(s)
Carrier Proteins , Heat-Shock Response , Animals , Humans , Mice , Active Transport, Cell Nucleus/genetics , Carrier Proteins/metabolism , Cell Differentiation , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism
7.
Microbiol Mol Biol Rev ; 87(4): e0004822, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37750702

ABSTRACT

The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.


Subject(s)
HIV Infections , HIV-1 , Humans , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , HIV-1/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Active Transport, Cell Nucleus/genetics
8.
PLoS Genet ; 19(6): e1010804, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37384599

ABSTRACT

Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.


Subject(s)
RNA, Viral , Retroelements , Male , Female , Animals , Retroelements/genetics , Caenorhabditis elegans/genetics , Active Transport, Cell Nucleus/genetics , Semen , Genomics , Cytokines , RNA, Messenger
9.
Nat Commun ; 14(1): 3782, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355754

ABSTRACT

The movement of viruses and other large macromolecular cargo through nuclear pore complexes (NPCs) is poorly understood. The human immunodeficiency virus type 1 (HIV-1) provides an attractive model to interrogate this process. HIV-1 capsid (CA), the chief structural component of the viral core, is a critical determinant in nuclear transport of the virus. HIV-1 interactions with NPCs are dependent on CA, which makes direct contact with nucleoporins (Nups). Here we identify Nup35, Nup153, and POM121 to coordinately support HIV-1 nuclear entry. For Nup35 and POM121, this dependence was dependent cyclophilin A (CypA) interaction with CA. Mutation of CA or removal of soluble host factors changed the interaction with the NPC. Nup35 and POM121 make direct interactions with HIV-1 CA via regions containing phenylalanine glycine motifs (FG-motifs). Collectively, these findings provide additional evidence that the HIV-1 CA core functions as a macromolecular nuclear transport receptor (NTR) that exploits soluble host factors to modulate NPC requirements during nuclear invasion.


Subject(s)
HIV-1 , Humans , Active Transport, Cell Nucleus/genetics , HIV-1/genetics , Capsid/metabolism , Cell Line , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Nuclear Pore/metabolism , Membrane Glycoproteins/metabolism
10.
Clin Transl Med ; 13(5): e1260, 2023 05.
Article in English | MEDLINE | ID: mdl-37151195

ABSTRACT

BACKGROUND: During the tumourigenesis and development of colorectal cancer (CRC), the inactivation of tumour suppressor genes is closely involved, although detailed molecular mechanisms remain elusive. Accumulating studies, including ours, have demonstrated that basic leucine zipper transcription factor ATF (activating transcription factor)-like 2 (BATF2) is a capable tumour suppressor that localises in the nucleus. However, its different subcellular localisation, potential functions and underlying mechanisms are unclear. METHODS: The translocation of BATF2 and its clinical relevance were detected using CRC samples, cell lines and xenograft nude mice. Candidate BATF2-binding proteins were screened using co-immunoprecipitation, quantitative label-free liquid chromatography-tandem mass spectrometry proteomic analysis, Western blotting and immunofluorescence. Recombinant plasmids, point mutations and siRNAs were applied to clarify the binding sites between BATF2 and chromosome region maintenance 1 (CRM1). RESULTS: The present study found that BATF2 was mainly localised in the cytoplasm, rather than nucleus, of CRC cells in vitro and in vivo, while cytoplasmic BATF2 expression was inversely correlated with the prognosis of CRC patients. Furthermore, we identified the nuclear export and subsequent ubiquitin-mediated degradation of BATF2 in CRC cells. Mechanistically, a functional nuclear export sequence (any amino acid) was characterised in BATF2 protein, through which BATF2 bound to CRM1 and translocated out of nucleus, ultimately enhancing CRC growth via inducing activator protein 1 (AP-1)/cyclin D1/phosphorylated retinoblastoma protein (pRb) signalling pathway. Additionally, nuclear export of BATF2 can be retarded by the mutation of NES in BATF2 or the knockdown of CRM1, whereas CRM1 expression was negatively associated with nuclear BATF2 expression and the prognosis of CRC patients. CONCLUSION: These findings revealed the biological effects and underlying mechanisms of cytoplasmic localisation of BATF2. Furthermore, suppressing nuclear export of BATF2 via mutating its NES region or inhibiting CRM1 expression may serve as a promising therapeutic strategy against CRC.


Subject(s)
Colorectal Neoplasms , Karyopherins , Animals , Humans , Mice , Active Transport, Cell Nucleus/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Karyopherins/genetics , Karyopherins/chemistry , Karyopherins/metabolism , Mice, Nude , Proteomics , Exportin 1 Protein
11.
Methods Mol Biol ; 2666: 115-136, 2023.
Article in English | MEDLINE | ID: mdl-37166661

ABSTRACT

tRNAs are small noncoding RNAs that are predominantly known for their roles in protein synthesis and also participate in numerous other functions ranging from retroviral replication to apoptosis. In eukaryotic cells, all tRNAs move bidirectionally, shuttling between the nucleus and the cytoplasm. Bidirectional nuclear-cytoplasmic tRNA trafficking requires a complex set of conserved proteins. Here, we describe an in vivo biochemical methodology in Saccharomyces cerevisiae to assess the ability of proteins implicated in tRNA nuclear export to form nuclear export complexes with tRNAs. This method employs tagged putative tRNA nuclear exporter proteins and co-immunoprecipitation of tRNA-exporter complexes using antibody-conjugated magnetic beads. Because the interaction between nuclear exporters and tRNAs may be transient, this methodology employs strategies to effectively trap tRNA-protein complexes in vivo. This pull-down method can be used to verify and characterize candidate proteins and their potential interactors implicated in tRNA nuclear-cytoplasmic trafficking.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Active Transport, Cell Nucleus/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , RNA, Transfer/genetics , Cell Nucleus/metabolism , Nuclear Proteins/metabolism
12.
Sci Rep ; 13(1): 8035, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198214

ABSTRACT

Nuclear pore proteins (Nups) prominently are among the few genes linked to speciation from hybrid incompatibility in Drosophila. These studies have focused on coding sequence evolution of Nup96 and Nup160 and shown evidence of positive selection driving nucleoporin evolution. Intriguingly, channel Nup54 functionality is required for neuronal wiring underlying the female post-mating response induced by male-derived sex-peptide. A region of rapid evolution in the core promoter of Nup54 suggests a critical role for general transcriptional regulatory elements at the onset of speciation, but whether this is a general feature of Nup genes has not been determined. Consistent with findings for Nup54, additional channel Nup58 and Nup62 promoters also rapidly accumulate insertions/deletions (indels). Comprehensive examination of Nup upstream regions reveals that core Nup complex gene promoters accumulate indels rapidly. Since changes in promoters can drive changes in expression, these results indicate an evolutionary mechanism driven by indel accumulation in core Nup promoters. Compensation of such gene expression changes could lead to altered neuronal wiring, rapid fixation of traits caused by promoter changes and subsequently the rise of new species. Hence, the nuclear pore complex may act as a nexus for species-specific changes via nucleo-cytoplasmic transport regulated gene expression.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Male , Female , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/genetics , Nuclear Pore/metabolism , Active Transport, Cell Nucleus/genetics , Drosophila/genetics , Drosophila/metabolism , INDEL Mutation
13.
Nat Commun ; 14(1): 2304, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085480

ABSTRACT

Nuclear export of influenza A virus (IAV) mRNAs occurs through the nuclear pore complex (NPC). Using the Auxin-Induced Degron (AID) system to rapidly degrade proteins, we show that among the nucleoporins localized at the nucleoplasmic side of the NPC, TPR is the key nucleoporin required for nuclear export of influenza virus mRNAs. TPR recruits the TRanscription and EXport complex (TREX)-2 to the NPC for exporting a subset of cellular mRNAs. By degrading components of the TREX-2 complex (GANP, Germinal-center Associated Nuclear Protein; PCID2, PCI domain containing 2), we show that influenza mRNAs require the TREX-2 complex for nuclear export and replication. Furthermore, we found that cellular mRNAs whose export is dependent on GANP have a small number of exons, a high mean exon length, long 3' UTR, and low GC content. Some of these features are shared by influenza virus mRNAs. Additionally, we identified a 45 nucleotide RNA signal from influenza virus HA mRNA that is sufficient to mediate GANP-dependent mRNA export. Thus, we report a role for the TREX-2 complex in nuclear export of influenza mRNAs and identified RNA determinants associated with the TREX-2-dependent mRNA export.


Subject(s)
Active Transport, Cell Nucleus , Influenza, Human , Orthomyxoviridae , RNA Transport , Humans , Active Transport, Cell Nucleus/genetics , Cell Nucleus/metabolism , Influenza, Human/metabolism , Nuclear Pore/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/metabolism , Orthomyxoviridae/genetics , RNA Transport/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
J Virol ; 97(3): e0197722, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36815839

ABSTRACT

African swine fever (ASF) is an acute and severe infectious disease caused by the ASF virus (ASFV). The mortality rate of ASF in pigs can reach 100%, causing huge economic losses to the pig industry. Here, we found that ASFV protein MGF505-7R inhibited the beta interferon (IFN-ß)-mediated Janus-activated kinase-signal transducer and activation of transcription (JAK-STAT) signaling. Our results demonstrate that MGF505-7R inhibited interferon-stimulated gene factor 3 (ISGF3)-mediated IFN-stimulated response element (ISRE) promoter activity. Importantly, we observed that MGF505-7R inhibits ISGF3 heterotrimer formation by interacting with interferon regulatory factor 9 (IRF9) and inhibits the nuclear translocation of ISGF3. Moreover, to demonstrate the role of MGF505-7R in IFN-I signal transduction during ASFV infection, we constructed and evaluated ASFV-ΔMGF505-7R recombinant viruses. ASFV-ΔMGF505-7R restored STAT2 and STAT1 phosphorylation, alleviated the inhibition of ISGF3 nuclear translocation, and showed increased susceptibility to IFN-ß, unlike the parental GZ201801 strain. In conclusion, our study shows that ASFV protein MGF505-7R plays a key role in evading IFN-I-mediated innate immunity, revealing a new mode of evasion for ASFV. IMPORTANCE ASF, caused by ASFV, is currently prevalent in Eurasia, with mortality rates reaching 100% in pigs. At present, there are no safe or effective vaccines against ASFV. In this study, we found that the ASFV protein MGF505-7R hinders IFN-ß signaling by interacting with IRF9 and inhibiting the formation of ISGF3 heterotrimers. Of note, we demonstrated that MGF505-7R plays a role in the immune evasion of ASFV in infected hosts and that recombinant viruses alleviated the effect on type I IFN (IFN-I) signaling and exhibited increased susceptibility to IFN-ß. This study provides a theoretical basis for developing vaccines against ASFV using strains with MGF505-7R gene deletions.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Interferon-Stimulated Gene Factor 3, gamma Subunit , Virus Replication , Animals , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , Immunity, Innate , Interferon Type I/immunology , Interferon-Stimulated Gene Factor 3, gamma Subunit/immunology , Signal Transduction , Swine , Viral Proteins/genetics , Viral Proteins/immunology , Virus Replication/physiology , Active Transport, Cell Nucleus/genetics , Immune Evasion/genetics
15.
Nat Struct Mol Biol ; 30(4): 425-435, 2023 04.
Article in English | MEDLINE | ID: mdl-36807645

ABSTRACT

Delivering the virus genome into the host nucleus through the nuclear pore complex (NPC) is pivotal in human immunodeficiency virus 1 (HIV-1) infection. The mechanism of this process remains mysterious owing to the NPC complexity and the labyrinth of molecular interactions involved. Here we built a suite of NPC mimics-DNA-origami-corralled nucleoporins with programmable arrangements-to model HIV-1 nuclear entry. Using this system, we determined that multiple cytoplasm-facing Nup358 molecules provide avid binding for capsid docking to the NPC. The nucleoplasm-facing Nup153 preferentially attaches to high-curvature regions of the capsid, positioning it for tip-leading NPC insertion. Differential capsid binding strengths of Nup358 and Nup153 constitute an affinity gradient that drives capsid penetration. Nup62 in the NPC central channel forms a barrier that viruses must overcome during nuclear import. Our study thus provides a wealth of mechanistic insight and a transformative toolset for elucidating how viruses like HIV-1 enter the nucleus.


Subject(s)
HIV-1 , Nuclear Pore Complex Proteins , Humans , Nuclear Pore Complex Proteins/metabolism , HIV-1/metabolism , Cell Line , Active Transport, Cell Nucleus/genetics , Capsid Proteins/metabolism , DNA/metabolism , Nuclear Pore/metabolism
16.
J Mol Biol ; 435(6): 167972, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36690069

ABSTRACT

Deficient nucleocytoplasmic transport is emerging as a pathogenic feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), including in ALS caused by mutations in Fused in Sarcoma (FUS). Recently, both wild-type and ALS-linked mutant FUS were shown to directly interact with the phenylalanine-glycine (FG)-rich nucleoporin 62 (Nup62) protein, where FUS WT/ Nup62 interactions were enriched within the nucleus but ALS-linked mutant FUS/ Nup62 interactions were enriched within the cytoplasm of cells. Nup62 is a central channel Nup that has a prominent role in forming the selectivity filter within the nuclear pore complex and in regulating effective nucleocytoplasmic transport. Under conditions where FUS phase separates into liquid droplets in vitro, the addition of Nup62 caused the synergistic formation of amorphous assemblies containing both FUS and Nup62. Here, we examined the molecular determinants of this process using recombinant FUS and Nup62 proteins and biochemical approaches. We demonstrate that the structured C-terminal domain of Nup62 containing an alpha-helical coiled-coil region plays a dominant role in binding FUS and is sufficient for inducing the formation of FUS/Nup62 amorphous assemblies. In contrast, the natively unstructured, F/G repeat-rich N-terminal domain of Nup62 modestly contributed to FUS/Nup62 phase separation behavior. Expression of individual Nup62 domain constructs in human cells confirmed that the Nup62 C-terminal domain is essential for localization of the protein to the nuclear envelope. Our results raise the possibility that interactions between FUS and the C-terminal domain of Nup62 can influence the function of Nup62 under physiological and/or pathological conditions.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Membrane Glycoproteins , Nuclear Pore Complex Proteins , Protein Interaction Domains and Motifs , RNA-Binding Protein FUS , Humans , Active Transport, Cell Nucleus/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Cytoplasm/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Mutation , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/metabolism , Membrane Glycoproteins/metabolism , Nuclear Pore Complex Proteins/metabolism
17.
J Biol Chem ; 299(3): 102932, 2023 03.
Article in English | MEDLINE | ID: mdl-36690276

ABSTRACT

The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/ß. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (-ß, -7, -ß/7, -13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.


Subject(s)
Ubiquitin-Protein Ligases , beta Karyopherins , Active Transport, Cell Nucleus/genetics , HeLa Cells , Humans , Protein Binding , Nitric Oxide Synthase Type III/metabolism , Proteome , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , beta Karyopherins/metabolism
18.
Nat Commun ; 13(1): 5881, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202822

ABSTRACT

The changes occurring in mRNA organization during nucleo-cytoplasmic transport and export, are not well understood. Moreover, directionality of mRNA passage through the nuclear pore complex (NPC) has not been examined within individual NPCs. Here we find that an mRNP is compact during nucleoplasmic travels compared to a more open structure after transcription and at the nuclear periphery. Compaction levels of nuclear transcripts can be modulated by varying levels of SR proteins and by changing genome organization. Nuclear mRNPs are mostly rod-shaped with distant 5'/3'-ends, although for some, the ends are in proximity. The latter is more abundant in the cytoplasm and can be modified by translation inhibition. mRNAs and lncRNAs exiting the NPC exhibit predominant 5'-first export. In some cases, several adjacent NPCs are engaged in export of the same mRNA suggesting 'gene gating'. Altogether, we show that the mRNP is a flexible structure during travels, with 5'-directionality during export.


Subject(s)
Nuclear Pore , RNA, Long Noncoding , Active Transport, Cell Nucleus/genetics , Cell Nucleus/metabolism , DEAD-box RNA Helicases/metabolism , Nuclear Pore/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , RNA Transport , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Nucleic Acids Res ; 50(17): 10140-10152, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36099418

ABSTRACT

tRNAs that are transcribed in the nucleus are exported to the cytoplasm to perform their iterative essential function in translation. However, the complex set of tRNA post-transcriptional processing and subcellular trafficking steps are not completely understood. In particular, proteins involved in tRNA nuclear export remain unknown since the canonical tRNA nuclear exportin, Los1/Exportin-t, is unessential in all tested organisms. We previously reported that budding yeast Mex67-Mtr2, a mRNA nuclear exporter, co-functions with Los1 in tRNA nuclear export. Here we employed in vivo co-purification of tRNAs with endogenously expressed nuclear exporters to document that Crm1 also is a bona fide tRNA nuclear exporter. We document that Los1, Mex67-Mtr2 and Crm1 possess individual tRNA preferences for forming nuclear export complexes with members of the 10 families of intron-containing pre-tRNAs. Remarkably, Mex67-Mtr2, but not Los1 or Crm1, is error-prone, delivering tRNAs to the cytoplasm prior to 5' leader removal. tRNA retrograde nuclear import functions to monitor the aberrant leader-containing spliced tRNAs, returning them to the nucleus where they are degraded by 3' to 5' exonucleases. Overall, our work identifies a new tRNA nuclear exporter, uncovers exporter preferences for specific tRNA families, and documents contribution of tRNA nuclear import to tRNA quality control.


Subject(s)
RNA, Transfer , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Active Transport, Cell Nucleus/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Exonucleases/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
20.
mBio ; 13(5): e0181522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36040030

ABSTRACT

Twenty years since the publication of the Plasmodium falciparum and P. berghei genomes one-third of their protein-coding genes still lack functional annotation. In the absence of sequence and structural homology, protein-protein interactions can facilitate functional prediction of such orphan genes by mapping protein complexes in their natural cellular environment. The Plasmodium nuclear pore complex (NPC) is a case in point: it remains poorly defined; its constituents lack conservation with the 30+ proteins described in the NPC of many opisthokonts, a clade of eukaryotes that includes fungi and animals, but not Plasmodium. Here, we developed a labeling methodology based on TurboID fusion proteins, which allows visualization of the P. berghei NPC and facilitates the identification of its components. Following affinity purification and mass spectrometry, we identified 4 known nucleoporins (Nups) (138, 205, 221, and the bait 313), and verify interaction with the putative phenylalanine-glycine (FG) Nup637; we assigned 5 proteins lacking annotation (and therefore meaningful homology with proteins outside the genus) to the NPC, which is confirmed by green fluorescent protein (GFP) tagging. Based on gene deletion attempts, all new Nups - Nup176, 269, 335, 390, and 434 - are essential to parasite survival. They lack primary sequence homology with proteins outside the Plasmodium genus; albeit 2 incorporate short domains with structural homology to human Nup155 and yeast Nup157, and the condensin SMC (Structural Maintenance Of Chromosomes 4). The protocols developed here showcase the power of proximity labeling for elucidating protein complex composition and annotation of taxonomically restricted genes in Plasmodium. It opens the door to exploring the function of the Plasmodium NPC and understanding its evolutionary position. IMPORTANCE The nuclear pore complex (NPC) is a platform for constant evolution and has been used to study the evolutionary patterns of early-branching eukaryotes. The Plasmodium NPC is poorly defined due to its evolutionary divergent nature making it impossible to characterize it via homology searches. Although 2 decades have passed since the publication of the Plasmodium genome, 30% of the genes still lack functional annotation. Our study demonstrates the ability of proximity labeling using TurboID to assign function to orphan proteins in the malaria parasite. We have identified a total of 10 Nups that will allow further study of NPC dynamics, structural elements, involvement in nucleocytoplasmic transport, and unique non-transport functions of nucleoporins that provide adaptability to this malaria parasite.


Subject(s)
Malaria , Nuclear Pore , Humans , Active Transport, Cell Nucleus/genetics , Glycine/metabolism , Green Fluorescent Proteins/analysis , Malaria/metabolism , Nuclear Pore/chemistry , Nuclear Pore/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Phenylalanine/chemistry , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...