Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.271
Filter
1.
BMC Nephrol ; 25(1): 165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755555

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is a malignant disorder characterized by monoclonal differentiated plasma cells. While it is more commonly diagnosed in elderly individuals, it can also affect younger populations, though with a lower incidence. CASE PRESENTATION: Here, we present the case of a 32-year-old woman diagnosed with IgA lambda MM. She presented with fatigue, nausea, acute kidney injury (AKI) with a rapid increase in creatinine, and anemia. A kidney biopsy was done to rule out a rapidly progressive glomerular disease and a diagnosis was thus reached. A genetic workup revealed t(14;16) translocation and an extra copy of TP53. The patient received aggressive intravenous steroids and intravenous fluid resuscitation, resulting in an improvement in renal function. Treatment with daratumumab in combination with bortezomib, thalidomide, and dexamethasone was initiated and well tolerated. Despite the generally poor prognosis of IgA MM, our case emphasizes the importance of considering MM in young patients with unexplained kidney injury. CONCLUSION: Early recognition and prompt intervention are essential in managing MM patients, especially in those with high-risk cytogenetic abnormalities. This case serves as a reminder for clinicians to maintain a high index of suspicion for MM, even in younger populations, when presented with unexplained kidney injury.


Subject(s)
Acute Kidney Injury , Multiple Myeloma , Proteinuria , Translocation, Genetic , Humans , Female , Adult , Multiple Myeloma/complications , Multiple Myeloma/genetics , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Proteinuria/etiology , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Immunoglobulin A , Immunoglobulin lambda-Chains/genetics , Chromosomes, Human, Pair 14/genetics
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731829

ABSTRACT

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Subject(s)
Acute Kidney Injury , Cell Cycle Proteins , Kidney Tubules, Proximal , Mice, Knockout , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Male , Cell Proliferation , Signal Transduction , Hippo Signaling Pathway , Mice, Inbred C57BL , Disease Models, Animal
3.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710691

ABSTRACT

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Subject(s)
Glycogen Synthase Kinase 3 beta , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Rats , S100 Proteins/metabolism , S100 Proteins/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Signal Transduction , Male , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology , Apoptosis , Cell Line , Cell Hypoxia , Mice, Knockout
4.
Nat Commun ; 15(1): 4383, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782909

ABSTRACT

Macrophages (Mφ) autophagy is a pivotal contributor to inflammation-related diseases. However, the mechanistic details of its direct role in acute kidney injury (AKI) were unclear. Here, we show that Mφ promote AKI progression via crosstalk with tubular epithelial cells (TECs), and autophagy of Mφ was activated and then inhibited in cisplatin-induced AKI mice. Mφ-specific depletion of ATG7 (Atg7Δmye) aggravated kidney injury in AKI mice, which was associated with tubulointerstitial inflammation. Moreover, Mφ-derived exosomes from Atg7Δmye mice impaired TEC mitochondria in vitro, which may be attributable to miR-195a-5p enrichment in exosomes and its interaction with SIRT3 in TECs. Consistently, either miR-195a-5p inhibition or SIRT3 overexpression improved mitochondrial bioenergetics and renal function in vivo. Finally, adoptive transfer of Mφ from AKI mice to Mφ-depleted mice promotes the kidney injury response to cisplatin, which is alleviated when Mφ autophagy is activated with trehalose. We conclude that exosomal miR-195a-5p mediate the communication between autophagy-deficient Mφ and TECs, leading to impaired mitochondrial biogenetic in TECs and subsequent exacerbation of kidney injury in AKI mice via miR-195a-5p-SIRT3 axis.


Subject(s)
Acute Kidney Injury , Autophagy , Cisplatin , Macrophages , MicroRNAs , Mitochondria , Sirtuin 3 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cisplatin/adverse effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Autophagy/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Exosomes/metabolism , Mice, Inbred C57BL , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Trehalose/pharmacology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Humans , Kidney/pathology , Kidney/metabolism , Disease Models, Animal
5.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739452

ABSTRACT

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Subject(s)
Acute Kidney Injury , Intercellular Adhesion Molecule-1 , Kidney , MicroRNAs , Rats, Sprague-Dawley , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Kidney/pathology , Kidney/blood supply , Kidney/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Nitric Oxide Synthase Type III/metabolism , Rats , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism
6.
Article in English | MEDLINE | ID: mdl-38780272

ABSTRACT

Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.


Subject(s)
Epithelial Cells , Fatty Acid-Binding Proteins , Ferroptosis , Janus Kinase 2 , Kidney Tubules , Lipopolysaccharides , STAT3 Transcription Factor , Signal Transduction , Humans , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Janus Kinase 2/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Signal Transduction/drug effects , Cell Line , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/chemically induced
7.
Gene ; 916: 148438, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38579905

ABSTRACT

AIM: of the study: This study used network pharmacology and the Gene Expression Omnibus (GEO) database to investigate the therapeutic effects of Corbrin capsules on acute kidney injury (AKI)-COVID-19 (coronavirus disease 2019). MATERIALS AND METHODS: The active constituents and specific molecular targets of Corbrin capsules were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Swiss Target Prediction databases. The targets related to AKI and COVID-19 disease were obtained from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and GEO databases. A protein-protein interaction (PPI) network was constructed by utilizing Cytoscape. To enhance the analysis of pathways associated with the pathogenesis of AKI-COVID-19, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Furthermore, immune infiltration analysis was performed by using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. Molecular docking was used to assess interactions between differentially expressed genes and active ingredients. Verification was performed by utilizing GEO databases and in vivo assays. RESULTS: This study revealed an overlap of 18 significantly differentially expressed genes between the Corbrin capsules group and the AKI-COVID-19 target group. Analysis of the PPI network identified TP53, JAK2, PIK3CA, PTGS2, KEAP1, and MCL1 as the top six core protein targets with the highest degrees. The results obtained from GO and KEGG analyses demonstrated that the target genes were primarily enriched in the apoptosis and JAK-STAT signaling pathways. Moreover, the analysis of immune infiltration revealed a notable disparity in the percentage of quiescent memory CD4 + T cells. Western blot analyses provided compelling evidence suggesting that the dysregulation of 6 core protein targets could be effectively reversed by Corbrin capsules. CONCLUSION: This study revealed the key components, targets, and pathways involved in treating AKI-related COVID-19 using Corbrin capsules. This study also provided a new understanding of the molecular mechanisms underlying this treatment.


Subject(s)
Acute Kidney Injury , COVID-19 Drug Treatment , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Acute Kidney Injury/drug therapy , Acute Kidney Injury/genetics , Protein Interaction Maps/drug effects , Humans , COVID-19/genetics , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Databases, Genetic , Capsules , SARS-CoV-2 , Signal Transduction/drug effects , Rats , Male , Gene Ontology , Medicine, Chinese Traditional/methods
8.
Sci Rep ; 14(1): 9695, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678107

ABSTRACT

High-dose methotrexate (HD-MTX) is a widely used chemotherapy regimen for hematologic malignancies such as lymphomas and acute lymphoblastic leukemia, but its use can lead to adverse effects, including acute kidney injury (AKI), impaired liver function, and mucositis, causing extended hospital stays and delayed subsequent chemotherapy. Our study aimed to investigate the predictive factors for renal toxicities associated with HD-MTX in Thai patients undergoing treatment for hematologic malignancies. We enrolled 80 patients who underwent MTX-containing regimens, analyzing 132 chemotherapy cycles. The most common disease was primary central nervous system lymphoma (33%). Genetic polymorphisms were examined using the MassARRAY® system, identifying 42 polymorphisms in 25 genes. Serum creatinine and MTX levels were measured 24 and 48 h after MTX administration. For the primary outcome, we found that the allele A of MTRR rs1801394 was significantly related to renal toxicity (odds ratio 2.084 (1.001-4.301), p-value 0.047). Patients who exceeded the MTX threshold levels at 24 h after the dose had a significantly higher risk of renal toxicity (OR (95%CI) = 6.818 (2.350-19.782), p < 0.001). Multivariate logistic regression analysis with a generalized estimated equation revealed hypertension and age as independent predictors of increased MTX levels at 24 h after the given dose.


Subject(s)
Hematologic Neoplasms , Methotrexate , Humans , Male , Methotrexate/adverse effects , Methotrexate/administration & dosage , Female , Middle Aged , Thailand/epidemiology , Aged , Adult , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/administration & dosage , Polymorphism, Single Nucleotide , Young Adult , Southeast Asian People
9.
Int Immunopharmacol ; 132: 111779, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581987

ABSTRACT

This study aimed to investigate the molecular mechanism of the effect of PDCD4 on radiotherapy-induced acute kidney injury (AKI) in rectal cancer through the regulation of FGR/NF-κB signaling. Differentially expressed genes were identified using Gene Expression Omnibus (GEO) datasets (GSE90627 for rectal cancer and GSE145085 for AKI) and R software. The human renal tubular epithelial cell line, HK-2, was used to establish an in vitro model of radiotherapy-induced AKI. RT-qPCR and western blotting were used to detect gene and protein expression levels, respectively. Cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. The malondialdehyde and superoxide dismutase levels in the cell culture supernatants were determined. Additionally, an in vivo AKI model was established using BALB/c mice, and kidney tissue morphology, expression of the renal injury molecule KIM-1, apoptosis of renal tubular cells, and TAS and TOS in serum were evaluated. Bioinformatics analysis revealed the upregulated expression of PDCD4 in AKI. In vitro experiments demonstrated that PDCD4 induced apoptosis in renal tubular cells by promoting FGR expression, which activated the NF-κB signaling pathway and triggered an oxidative stress response. In vivo animal experiments confirmed that PDCD4 promoted oxidative stress response and radiotherapy-induced AKI through the activation of the FGR/NF-κB signaling pathway. Silencing PDCD4 attenuated radiotherapy-induced AKI. Our findings suggest that PDCD4 may induce radiotherapy-induced AKI in rectal cancer by promoting FGR expression, activating the NF-κB signaling pathway, and triggering an oxidative stress response.


Subject(s)
Acute Kidney Injury , Apoptosis Regulatory Proteins , Mice, Inbred BALB C , NF-kappa B , Oxidative Stress , RNA-Binding Proteins , Rectal Neoplasms , Signal Transduction , Animals , Humans , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , NF-kappa B/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mice , Rectal Neoplasms/radiotherapy , Rectal Neoplasms/genetics , Apoptosis , Male , Cell Line
10.
Free Radic Biol Med ; 218: 120-131, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583680

ABSTRACT

Sepsis-induced acute kidney injury (S-AKI) is the most common type of acute kidney injury (AKI), accompanied by elevated morbidity and mortality rates. This study investigated the mechanism by which lipid droplets (LDs) degraded via autophagy (lipophagy)required for RAB7 regulated ferroptosis in the pathogenesis of S-AKI. Here, we constructed the S-AKI model in vitro and in vivo to elucidate the potential relationship of lipophagy and ferroptosis, and we first confirmed that the activation of lipophagy promoted renal tubular epithelial cell ferroptosis and renal damage in S-AKI. The results showed that lipopolysaccharide (LPS) induced a marked increase in lipid peroxidation and ferroptosis, which were rescued by ferrstain-1 (Fer-1), an inhibitor of ferroptosis. In addition, LPS induced the remarkable activation of RAB7-mediated lipophagy. Importantly, silencing RAB7 alleviated LPS-induced lipid peroxidation and ferroptosis. Thus, the present study demonstrated the potential significant role of ferroptosis and lipophagy in sepsis-induced AKI, and contributed to better understanding of the pathogenesis and treatment targets of AKI.


Subject(s)
Acute Kidney Injury , Autophagy , Ferroptosis , Lipid Peroxidation , Lipopolysaccharides , Sepsis , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Acute Kidney Injury/etiology , Sepsis/complications , Sepsis/metabolism , Sepsis/pathology , Sepsis/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Ferroptosis/genetics , Animals , Mice , Humans , Male , Lipid Droplets/metabolism , Mice, Inbred C57BL , Disease Models, Animal
11.
Int Immunopharmacol ; 132: 112002, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608473

ABSTRACT

BACKGROUND: Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. METHODS: The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RESULTS: RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. CONCLUSION: Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.


Subject(s)
Fatty Acids , Fibrosis , Kidney , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , Reperfusion Injury , Signal Transduction , Sirtuin 1 , Sp1 Transcription Factor , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Fatty Acids/metabolism , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Mice , Kidney/pathology , Kidney/metabolism , Male , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Humans , Disease Models, Animal
12.
Sci Rep ; 14(1): 9573, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38670993

ABSTRACT

P2X7 receptors mediate immune and endothelial cell responses to extracellular ATP. Acute pharmacological blockade increases renal blood flow and filtration rate, suggesting that receptor activation promotes tonic vasoconstriction. P2X7 expression is increased in kidney disease and blockade/knockout is renoprotective. We generated a P2X7 knockout rat on F344 background, hypothesising enhanced renal blood flow and protection from angiotensin-II-induced renal injury. CRISPR/Cas9 introduced an early stop codon into exon 2 of P2rx7, abolishing P2X7 protein in kidney and reducing P2rx7 mRNA abundance by ~ 60% in bone-marrow derived macrophages. The M1 polarisation response to lipopolysaccharide was unaffected but P2X7 receptor knockout suppressed ATP-induced IL-1ß release. In male knockout rats, acetylcholine-induced dilation of the renal artery ex vivo was diminished but not the response to nitroprusside. Renal function in male and female knockout rats was not different from wild-type. Finally, in male rats infused with angiotensin-II for 6 weeks, P2X7 knockout did not reduce albuminuria, tubular injury, renal macrophage accrual, and renal perivascular fibrosis. Contrary to our hypothesis, global P2X7 knockout had no impact on in vivo renal hemodynamics. Our study does not indicate a major role for P2X7 receptor activation in renal vascular injury.


Subject(s)
Angiotensin II , Kidney , Rats, Inbred F344 , Receptors, Purinergic P2X7 , Animals , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Male , Rats , Kidney/metabolism , Kidney/pathology , Female , Gene Knockout Techniques , Macrophages/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology
13.
Thromb Res ; 237: 112-128, 2024 May.
Article in English | MEDLINE | ID: mdl-38579513

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) in sepsis patients increases patient mortality. Endothelial cells are important players in the pathophysiology of sepsis-associated AKI (SA-AKI), yet knowledge regarding their spatiotemporal involvement in coagulation disbalance and leukocyte recruitment is lacking. This study investigated the identity and kinetics of responses of different microvascular compartments in kidney cortex in response to SA-AKI. METHODS: Laser microdissected arterioles, glomeruli, peritubular capillaries, and postcapillary venules from kidneys of mice subjected to cecal ligation and puncture (CLP) were analyzed using RNA sequencing. Differential expression and pathway enrichment analyses identified genes involved in coagulation and inflammation. A selection of these genes was evaluated by RT-qPCR in microvascular compartments of renal biopsies from patients with SA-AKI. The role of two identified genes in lipopolysaccharide-induced endothelial coagulation and inflammatory activation were determined in vitro in HUVEC using siRNA-based gene silencing. RESULTS: CLP-sepsis in mice induced altered expression of approximately 400 genes in the renal microvasculature, with microvascular compartments exhibiting unique spatiotemporal responses. In mice, changes in gene expression related to coagulation and inflammation were most extensive in glomeruli at early and intermediate time points, with high induction of Plat, Serpine1, Thbd, Icam1, Stat3, and Ifitm3. In human SA-AKI, PROCR and STAT3 were induced in postcapillary venules, while SERPINE1 expression was diminished. IFITM3 was increased in arterioles and glomeruli. In vitro studies revealed that STAT3 and IFITM3 partly control endothelial coagulation and inflammatory activation. CONCLUSION: Renal microvascular compartments in mice and humans exhibited heterogeneous changes in coagulation- and inflammation-related gene expression in response to SA-AKI. Additional research should aim at understanding the functional consequences of the here described heterogeneous microvascular responses to establish the usefulness of identified genes as therapeutic targets in SA-AKI.


Subject(s)
Blood Coagulation , Inflammation , Microvessels , Sepsis , Animals , Sepsis/complications , Sepsis/genetics , Mice , Humans , Inflammation/genetics , Inflammation/pathology , Microvessels/pathology , Microvessels/metabolism , Male , Kidney/metabolism , Kidney/pathology , Kidney/blood supply , Mice, Inbred C57BL , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology
14.
Biomed Pharmacother ; 174: 116502, 2024 May.
Article in English | MEDLINE | ID: mdl-38569273

ABSTRACT

Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.


Subject(s)
Acute Kidney Injury , RNA, Circular , RNA, Circular/genetics , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/therapy , Humans , Animals , Biomarkers/metabolism , RNA/genetics , Oxidative Stress/genetics , Gene Expression Regulation
15.
FASEB J ; 38(7): e23584, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38568836

ABSTRACT

Cisplatin-induced acute kidney injury (AKI) is commonly seen in the clinical practice, and ferroptosis, a type of non-apoptotic cell death, plays a pivotal role in it. Previous studies suggested that protein arginine methyltransferase 4 (PRMT4) was incorporated in various bioprocesses, but its role in renal injuries has not been investigated. Our present study showed that PRMT4 was highly expressed in renal proximal tubular cells, and it was downregulated in cisplatin-induced AKI. Besides, genetic disruption of PRMT4 exacerbated, while its overexpression attenuated, cisplatin-induced redox injuries in renal proximal epithelia. Mechanistically, our work showed that PRMT4 interacted with NCOA4 to inhibit ferritinophagy, a type of selective autophagy favoring lipid peroxidation to accelerate ferroptosis. Taken together, our study demonstrated that PRMT4 interacted with NCOA4 to attenuate ferroptosis in cisplatin-induced AKI, suggesting that PRMT4 might present as a new therapeutic target for cisplatin-related nephropathy.


Subject(s)
Acute Kidney Injury , Cisplatin , Humans , Cisplatin/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Kidney/metabolism , Transcription Factors/metabolism , Autophagy , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism
16.
FASEB J ; 38(7): e23562, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38578557

ABSTRACT

Our recent investigation has indicated that the global deletion of MBD2 can mitigate the progression of AKI induced by VAN. Nevertheless, the role and regulatory mechanisms of proximal tubular MBD2 in this pathophysiological process have yet to be elucidated. Our preceding investigation revealed that autophagy played a crucial role in advancing AKI induced by VAN. Consequently, we postulated that MBD2 present in the proximal tubule could upregulate the autophagic process to expedite the onset of AKI. In the present study, we found for the first time that MBD2 mediated the autophagy production induced by VAN. Through the utilization of miRNA chip analysis, we have mechanistically demonstrated that MBD2 initiates the activation of miR-597-5p through promoter demethylation. This process leads to the suppression of S1PR1, which results in the induction of autophagy and apoptosis in renal tubular cells. Besides, PT-MBD2-KO reduced autophagy to attenuate VAN-induced AKI via regulation of the miR-597-5p/S1PR1 axis, which was reversed by rapamycin. Finally, the overexpression of MBD2 aggravated the diminished VAN-induced AKI in autophagy-deficient mice (PT-Atg7-KO). These data demonstrate that proximal tubular MBD2 facilitated the process of autophagy via the miR-597-5p/S1PR1 axis and subsequently instigated VAN-induced AKI through the induction of apoptosis. The potentiality of MBD2 being a target for AKI was established.


Subject(s)
Acute Kidney Injury , MicroRNAs , Animals , Mice , Vancomycin , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Kidney , MicroRNAs/genetics , Apoptosis/physiology , Autophagy
17.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542516

ABSTRACT

Acute kidney injury (AKI) is a serious health concern with high morbidity and high mortality worldwide. Recently, sexual dimorphism has become increasingly recognized as a factor influencing the severity of the disease. This study explores the gender-specific renoprotective pathways in αMUPA transgenic mice subjected to AKI. αMUPA transgenic male and female mice were subjected to ischemia-reperfusion (I/R)-AKI in the presence or absence of orchiectomy, oophorectomy, and L-NAME administration. Blood samples and kidneys were harvested 48 h following AKI for the biomarkers of kidney function, renal injury, inflammatory response and intracellular pathway sensing of or responding to AKI. Our findings show differing responses to AKI, where female αMUPA mice were remarkably protected against AKI as compared with males, as was evident by the lower SCr and BUN, normal renal histologically and attenuated expression of NGAL and KIM-1. Moreover, αMUPA females did not show a significant change in the renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Interestingly, oophorectomized females eliminated the observed resistance to renal injury, highlighting the central protective role of estrogen. Correspondingly, orchiectomy in αMUPA males mitigated their sensitivity to renal damage, thereby emphasizing the devastating effects of testosterone. Additionally, treatment with L-NAME proved to have significant deleterious impacts on the renal protective mediators, thereby underscoring the involvement of eNOS. In conclusion, gender-specific differences in the response to AKI in αMUPA mice include multifaceted and keen interactions between the sex hormones and key biochemical mediators (such as estrogen, testosterone and eNOS). These novel findings shed light on the renoprotective pathways and mechanisms, which may pave the way for development of therapeutic interventions.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Mice , Male , Female , Animals , Mice, Transgenic , NG-Nitroarginine Methyl Ester , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Kidney/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Estrogens , Testosterone , Mice, Inbred C57BL
18.
Ren Fail ; 46(1): 2325035, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38538321

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) represents a diverse range of conditions characterized by high incidence and mortality rates, and it is mainly associated with immune-mediated mechanisms and mitochondrial metabolism dysfunction. Cuproptosis, a recently identified form of programmed cell death dependent on copper, is closely linked to mitochondrial respiration and contributes to various diseases. Our study aimed to investigate the involvement of cuproptosis-related genes (CRGs) in AKI. METHODS: Identification of CRGs was conducted using differential expression analysis, and subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using human sequencing profiles. Utilizing CIBERSORT algorithm, receiver operating characteristic (ROC) curve analysis, nomogram development, and decision curve analysis (DCA), the association among immune scores, CRGs, and the diagnostic value of these genes was explored. RESULTS: Notably, six CRGs (FDX1, DLD, DLAT, DBT, PDHA1, and ATP7A) were identified as significant differentiators between AKI and non-AKI groups. The ROC curve, based on these six genes, demonstrated an AUC value of 0.917, which was further validated using an additional dataset with an AUC value of 0.902. Nomogram and DCA further confirmed the accuracy of the model in predicting the risk of AKI. CONCLUSION: This study elucidated the role of cuproptosis in AKI and revealed the association between CRGs and infiltrated immune cells through comprehensive bioinformatic techniques. The six-gene cuproptosis-related signature exhibited remarkable predictive efficiency for AKI.


Subject(s)
Acute Kidney Injury , Humans , Acute Kidney Injury/diagnosis , Acute Kidney Injury/genetics , Algorithms , Apoptosis , Computational Biology , Gene Ontology , Copper
19.
Cell Mol Life Sci ; 81(1): 154, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538857

ABSTRACT

Approximately 60% of septic patients developed acute kidney injury (AKI). The mortality rate of septic AKI (SA-AKI) is two to three times higher than that of septic without AKI (SA-non-AKI). The actual functions and mechanisms of CircRNAs in the pathophysiology of SA-AKI remain incompletely understood. Herein, we observed that the mmu_Circ_26986 could be induced by lipopolysaccharide (LPS) and cecum ligation and puncture (CLP) in BUMPT cell line and C57BL/6 mouse kidney, respectively. Functionally, mmu_Circ_26986 suppressed BUMPT cell apoptosis induced by LPS. Mechanistically, mmu_Circ_26986 sponged miRNA-29b-1-5p to upregulate the expression of PAK7. Overexpression of mmu_Circ_26986 ameliorated the progression of CLP-stimulated AKI through miRNA-29b-1-5p/PAK7 axis. In addition, we found that hsa_Circ_0072463, homologous to mmu_Circ_26986, suppressed LPS-induced HK-2 cells apoptosis via regulation of miRNA-29b-1-5p/PAK7 axis. Furthermore, sepsis patients with AKI had a higher level of hsa_Circ_0072463 compared to those without AKI. The sensitivity, specificity and AUC of hsa_Circ_0072463 were 78.8%, 87.9% and 0.866, respectively. Spearman's test indicated a noticeable positive correlation between plasma hsa_Circ_0072463 and serum creatinine in sepsis patients (r = 0.725). In summary, this study reveals that the mmu_Circ_26986/hsa_Circ_0072463 miRNA-29b-1-5p/PAK7 axis mediates septic AKI, and hsa_Circ_0072463 is a potential diagnostic marker for septic AKI.


Subject(s)
Acute Kidney Injury , MicroRNAs , Sepsis , Mice , Animals , Humans , Mice, Inbred C57BL , Lipopolysaccharides/pharmacology , Acute Kidney Injury/genetics , MicroRNAs/genetics , Sepsis/complications , Sepsis/genetics , Apoptosis/genetics , Biomarkers
20.
Am J Physiol Renal Physiol ; 326(5): F827-F838, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482555

ABSTRACT

In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.


Subject(s)
Acute Kidney Injury , Apoptosis , Epithelial Cells , Kidney Tubules, Proximal , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 2/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Signal Transduction , Disease Models, Animal , Mice , Mice, Inbred C57BL , Cell Line , Inflammation/metabolism , Inflammation/pathology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...