Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674120

ABSTRACT

Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute inflammation. However, the effects of captopril on the gastrointestinal (GI) system after TBI are not well known. We used a Göttingen minipig H-ARS model to investigate captopril's effects on the GI following TBI (60Co 1.79 or 1.80 Gy, 0.42-0.48 Gy/min), with endpoints at 6 or 35 days. The vehicle or captopril (0.96 mg/kg) was administered orally twice daily for 12 days, starting 4 h post-irradiation. Ilea were harvested for histological, protein, and RNA analyses. TBI increased congestion and mucosa erosion and hemorrhage, which were modulated by captopril. GPX-4 and SLC7A11 were downregulated post-irradiation, consistent with ferroptosis at 6 and 35 days post-irradiation in all groups. Interestingly, p21/waf1 increased at 6 days in vehicle-treated but not captopril-treated animals. An RT-qPCR analysis showed that radiation increased the gene expression of inflammatory cytokines IL1B, TNFA, CCL2, IL18, and CXCL8, and the inflammasome component NLRP3. Captopril suppressed radiation-induced IL1B and TNFA. Rectal microbiome analysis showed that 1 day of captopril treatment with radiation decreased overall diversity, with increased Proteobacteria phyla and Escherichia genera. By 6 days, captopril increased the relative abundance of Enterococcus, previously associated with improved H-ARS survival in mice. Our data suggest that captopril mitigates senescence, some inflammation, and microbiome alterations, but not ferroptosis markers in the intestine following TBI.


Subject(s)
Acute Radiation Syndrome , Captopril , Disease Models, Animal , Ferroptosis , Gastrointestinal Microbiome , Inflammation , Swine, Miniature , Whole-Body Irradiation , Animals , Acute Radiation Syndrome/drug therapy , Swine , Inflammation/pathology , Captopril/pharmacology , Whole-Body Irradiation/adverse effects , Ferroptosis/drug effects , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Intestines/pathology , Intestines/drug effects , Intestines/radiation effects , Male , Angiotensin-Converting Enzyme Inhibitors/pharmacology
2.
Stem Cell Res Ther ; 15(1): 123, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679747

ABSTRACT

BACKGROUND: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.


Subject(s)
Acute Radiation Syndrome , Bone Marrow , Mice, Inbred C57BL , Thrombopoietin , Animals , Mice , Thrombopoietin/pharmacology , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Bone Marrow/drug effects , Bone Marrow/radiation effects , Bone Marrow/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/radiation effects , Stem Cell Niche/drug effects , Stem Cell Niche/radiation effects , Male , Whole-Body Irradiation
3.
Sci Rep ; 14(1): 5757, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459144

ABSTRACT

Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.


Subject(s)
Acute Radiation Syndrome , Chromans , Medical Countermeasures , Radiation-Protective Agents , Vitamin E/analogs & derivatives , Animals , United States , Humans , Vitamin E/pharmacology , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Disease Models, Animal , Radiation-Protective Agents/pharmacology , Macaca mulatta
4.
Radiat Res ; 201(5): 449-459, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38373011

ABSTRACT

In the current geopolitical climate there is an unmet need to identify and develop prophylactic radiation countermeasures, particularly to ensure the well-being of warfighters and first responders that may be required to perform on radiation-contaminated fields for operational or rescue missions. Currently, no countermeasures have been approved by the U.S. FDA for prophylactic administration. Here we report on the efficacious nature of FSL-1 (toll-like receptor 2/6 agonist) and the protection from acute radiation syndrome (ARS) in a murine total-body irradiation (TBI) model. A single dose of FSL-1 was administered subcutaneously in mice. The safety of the compound was assessed in non-irradiated animals, the efficacy of the compound was assessed in animals exposed to TBI in the AFRRI Co-60 facility, the dose of FSL-1 was optimized, and common hematological parameters [complete blood cell (CBC), cytokines, and bone marrow progenitor cells] were assessed. Animals were monitored up to 60 days after exposure and radiation-induced damage was evaluated. FSL-1 was shown to be non-toxic when administered to non-irradiated mice at doses up to 3 mg/kg. The window of efficacy was determined to be 24 h prior to 24 h after TBI. FSL-1 administration resulted in significantly increased survival when administered either 24 h prior to or 24 h after exposure to supralethal doses of TBI. The optimal dose of FSL-1 administration was determined to be 1.5 mg/kg when administered prior to irradiation. Finally, FSL-1 protected the hematopoietic system (recovery of CBC and bone marrow CFU). Taken together, the effects of increased survival and accelerated recovery of hematological parameters suggests that FSL-1 should be developed as a novel radiation countermeasure for soldiers and civilians, which can be used either before or after irradiation in the aftermath of a radiological or nuclear event.


Subject(s)
Acute Radiation Syndrome , Disease Models, Animal , Whole-Body Irradiation , Animals , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Mice , Whole-Body Irradiation/adverse effects , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Female , Male , Mice, Inbred C57BL
5.
Disaster Med Public Health Prep ; 17: e571, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163973

ABSTRACT

The Food and Drug Administration's (FDA) approval to market drug products for use as medical countermeasures, to prevent or mitigate injury caused by various threat agents, is commonly based on evidence of efficacy obtained in animals. Animal studies are necessary when human studies are not feasible and challenge studies are not ethical. The successful development of countermeasures to radio-nuclear threats that cause Acute Radiation Syndrome (ARS) provides the opportunity to explore potential areas of overlap in the scientific approaches to studies of injuries caused by radiation and sulfur mustard exposures in animals. The aim is to evaluate the available scientific knowledge for radiation threat agents and sulfur mustard for potential analogies of fundamental mechanisms of organ injury and dysfunction. This evaluation is needed to determine the applicability of regulatory strategies for product development and approval adopted by manufacturers of countermeasures for radiation threat agents. Key elements of an efficient development plan based on animal efficacy studies include characterizing the pathophysiology of organ injury and the mechanism of action (MOA) of the countermeasure; modeling the clinical condition in animals to establish the manifestations of the injury caused by various levels of exposures to the threat agent and the response to various doses of the countermeasure candidate; as well as selecting a maximally effective human dose.


Subject(s)
Acute Radiation Syndrome , Mustard Gas , Radiation-Protective Agents , Animals , Humans , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use
6.
Int J Radiat Oncol Biol Phys ; 118(3): 616-625, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37742773

ABSTRACT

PURPOSE: There is currently no gold standard for the management of acute radiation enteritis. We compared the efficacy and safety of Racecadotril, an anti-hypersecretory drug, versus Loperamide, an anti-motility agent, in acute radiation enteritis. METHODS AND MATERIALS: We conducted a randomized, double-masked, non-inferiority trial at a single research institute. Patients receiving curative radiation for pelvic malignancies, who developed grade 2 or 3 diarrhea (as per Common Terminology Criteria for Adverse Events, v 4.0) were included in the study. Patients in the intervention arm received Racecadotril and placebo. Patients in the control arm received Loperamide and placebo. The primary outcome was the resolution of diarrhea, 48 hours after the start of treatment. RESULTS: 162 patients were randomized between 2019 and 2022. On intention-to-treat analysis, 68/81 patients, 84%, (95% CI, 74.1%-91.2%) in the Racecadotril arm and 70/81, 86.4%, (95% CI, 77.0%-93.0%) in the Loperamide arm improved from grade 2 or 3 diarrhea to grade 1 or 0, (P= .66, χ2 test). The difference in proportion was 2.4% (95% CI: -8.5% to 13.4%). Since the upper boundary of the 95% CI crossed our non-inferiority margin of 10% (13.4%) we could not prove the non-inferiority of Racecadotril over Loperamide. Rebound constipation was more in the Loperamide arm compared to Racecadotril (17.3% vs 6.2%; P = .028) CONCLUSIONS: The non-inferiority of Racecadotril to Loperamide in acute radiation enteritis could not be demonstrated. However, Racecadotril can be the preferred drug of choice in acute radiation enteritis because Racecadotril does not affect bowel motility, achieved a high clinical success rate similar to that of Loperamide, and was associated with lesser side effects.


Subject(s)
Acute Radiation Syndrome , Enteritis , Thiorphan , Humans , Acute Disease , Acute Radiation Syndrome/drug therapy , Antidiarrheals/adverse effects , Diarrhea/drug therapy , Diarrhea/etiology , Double-Blind Method , Enteritis/etiology , Enteritis/chemically induced , Loperamide/adverse effects , Thiorphan/analogs & derivatives
7.
Radiat Res ; 201(1): 7-18, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38019093

ABSTRACT

Exposure to high-dose ionizing radiation can lead to life-threatening injuries and mortality. Bone marrow is the most sensitive organ to radiation damage, resulting in the hematopoietic acute radiation syndrome (H-ARS) with the potential sequelae of infection, hemorrhage, anemia, and death if untreated. The development of medical countermeasures (MCMs) to protect or mitigate radiation injury is a medical necessity. In our well-established murine model of H-ARS we have demonstrated that the prostaglandin E2 (PGE2) analog 16,16 dimethyl-PGE2 (dmPGE2) has survival efficacy as both a radioprotectant and radiomitigator. The purpose of this study was to investigate the pharmacokinetics (PK) and biodistribution of dmPGE2 when used as a radioprotector in irradiated and non-irradiated inbred C57BL/6J mice, PK in irradiated and non-irradiated Jackson Diversity Outbred (JDO) mice, and the PK profile of dmPGE2 in non-irradiated non-human primates (NHPs). The C57BL/6J and JDO mice each received a single subcutaneous (SC) dose of 35 ug of dmPGE2 and were randomized to either receive radiation 30 min later or remain non-irradiated. Plasma and tissue PK profiles were established. The NHP were dosed with 0.1 mg/kg by SC administration and the PK profile in plasma was established. The concentration time profiles were analyzed by standard non-compartmental analysis and the metrics of AUC0-Inf, AUC60-480 (AUC from 60-480 min), Cmax, and t1/2 were evaluated. AUC60-480 represents the postirradiation time frame and was used to assess radiation effect. Overall, AUC0-Inf, Cmax, and t1/2 were numerically similar between strains (C57BL/6J and JDO) when combined, regardless of exposure status (AUC0-Inf: 112.50 ng·h/ml and 114.48 ng·h/ml, Cmax: 44.53 ng/ml and 63.96 ng/ml; t1/2: 1.8 h and 1.1 h, respectively). PK metrics were numerically lower in irradiated C57BL/6J mice than in non-irradiated mice [irradiation ratio: irradiated values/non-irradiated values = 0.71 for AUC60-480 (i.e., 29% lower), and 0.6 for t1/2]. In JDO mice, the radiation ratio was 0.53 for AUC60-480 (i.e., 47% lower), and 1.7 h for t1/2. The AUC0-Inf, Cmax, and t1/2 of the NHPs were 29.20 ng·h/ml, 7.68 ng/ml, and 3.26 h, respectively. Despite the numerical differences seen between irradiated and non-irradiated groups in PK parameters, the effect of radiation on PK can be considered minimal based on current data. The biodistribution in C57BL/6J mice showed that dmPGE2 per gram of tissue was highest in the lungs, regardless of exposure status. The radiation ratio for the different tissue AUC60-480 in C57BL/6J mice ranged between 0.5-1.1 (50% lower to 10% higher). Spleen, liver and bone marrow showed close to twice lower exposures after irradiation, whereas heart had a 10% higher exposure. Based on the clearance values from mice and NHP, the estimated allometric scaling coefficient was 0.81 (95% CI: 0.75, 0.86). While slightly higher than the current literature estimates of 0.75, this scaling coefficient can be considered a reasonable estimate and can be used to scale dmPGE2 dosing from animals to humans for future trials.


Subject(s)
Acute Radiation Syndrome , Dinoprostone , Animals , Mice , Acute Radiation Syndrome/drug therapy , Mice, Inbred C57BL , Primates , Tissue Distribution
8.
Drug Discov Today ; 29(2): 103856, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097137

ABSTRACT

Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.


Subject(s)
Acute Radiation Syndrome , Radiation-Protective Agents , United States , Humans , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Androstenediol/pharmacokinetics , Immunity, Innate
9.
Proc Natl Acad Sci U S A ; 120(50): e2122178120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38051771

ABSTRACT

Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.


Subject(s)
Acute Radiation Syndrome , Toll-Like Receptor 2 , Humans , Mice , Animals , Toll-Like Receptor 6 , Ligands , Acute Radiation Syndrome/drug therapy , Primates , Fibroblasts
10.
Expert Rev Proteomics ; 20(10): 221-246, 2023.
Article in English | MEDLINE | ID: mdl-37752078

ABSTRACT

INTRODUCTION: Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED: This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION: The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.


Subject(s)
Acute Radiation Syndrome , Medical Countermeasures , Animals , Humans , Proteomics/methods , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/drug therapy , Mass Spectrometry/methods , Biomarkers
11.
Sci Rep ; 13(1): 15211, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709916

ABSTRACT

Thrombopoietin (TPO) is the primary regulator of platelet generation and a stimulator of multilineage hematopoietic recovery following exposure to total body irradiation (TBI). JNJ­26366821, a novel PEGylated TPO mimetic peptide, stimulates platelet production without developing neutralizing antibodies or causing any adverse effects. Administration of a single dose of JNJ­26366821 demonstrated its efficacy as a prophylactic countermeasure in various mouse strains (males CD2F1, C3H/HeN, and male and female C57BL/6J) exposed to Co-60 gamma TBI. A dose dependent survival efficacy of JNJ­26366821 (- 24 h) was identified in male CD2F1 mice exposed to a supralethal dose of radiation. A single dose of JNJ­26366821 administered 24, 12, or 2 h pre-radiation resulted in 100% survival from a lethal dose of TBI with a dose reduction factor of 1.36. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pre-treated with JNJ­26366821. The drug also increased bone marrow cellularity and megakaryocytes, accelerated multi-lineage hematopoietic recovery, and alleviated radiation-induced soluble markers of bone marrow aplasia and endothelial damage. These results indicate that JNJ­26366821 is a promising prophylactic radiation countermeasure for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.


Subject(s)
Acute Radiation Syndrome , Neutropenia , Female , Male , Animals , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Thrombopoietin/pharmacology , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Polyethylene Glycols/pharmacology
12.
J Radiat Res ; 64(6): 880-892, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37697698

ABSTRACT

On the basis of the previous research, the Traditional Chinese Medicine theory was used to improve the drug composition for gastrointestinal acute radiation syndrome (GI-ARS). The purpose of this study was to study the therapeutic mechanism of Liangxue-Guyuan-Yishen decoction (LGYD) on GI-ARS and to provide a new scheme for the treatment of radiation injury. Here, we investigated the effects of LGYD on intestinal stem cells (ISCs) in a GI-ARS rat model. Rat health and survival and the protective efficacy of LGYD on the intestines were analyzed. The active principles in LGYD were detected using liquid chromatography-mass spectrometry (LC-MS). ISC proliferation, intestinal epithelial tight junction (TJ) protein expression and regulatory pathways were explored using immunohistochemistry, western blotting (WB) and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. Involvement of the WNT and MEK/ERK pathways in intestinal recovery was screened using network pharmacology analysis and validated by WB and RT-qPCR. LGYD administration significantly improved health and survival in GI-ARS rats. Pathological analysis showed that LGYD ameliorated radiation-induced intestinal injury and significantly promoted LGR5+ stem cell regeneration in the intestinal crypts, upregulated TJ protein, and accelerated crypt reconstruction in the irradiated rats. LC-MS revealed ≥13 constituents that might contribute to LGYD's protective effects. Collectively, LGYD can promote crypt cell proliferation and ISCs after radiation damage, the above effect may be related to WNT and MEK/ERK pathway.


Subject(s)
Acute Radiation Syndrome , Rats , Animals , Acute Radiation Syndrome/drug therapy , Intestines/pathology , Stem Cells/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology , Intestinal Mucosa
13.
Expert Opin Drug Saf ; 22(9): 783-788, 2023.
Article in English | MEDLINE | ID: mdl-37594915

ABSTRACT

INTRODUCTION: Nuclear reactor incidents and bioterrorism outbreaks are concerning public health disasters. Little is known about US Food and Drug Administration (FDA)-approved agents that can mitigate consequences of these events. We review FDA data supporting regulatory approvals of these agents. AREAS COVERED: We reviewed pharmaceutical products approved to treat Hematopoietic Acute Radiation Syndrome (H-ARS) and to treat or prevent pulmonary infections following Bacillus anthracis (anthrax) exposure. Four drugs were approved for H-ARS: granulocyte-colony stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor, pegylated G-CSF, and romiplostim. For bioterrorism-associated anthrax, the FDA approved five antibiotics (doxycycline, penicillin-G, levofloxacin, moxifloxacin, and ciprofloxacin), two monoclonal antibodies (obiltoxaximab and raxibacumab), one polyclonal antitoxin (Anthrax Immune Globulin Intravenous) and two vaccines (Anthrax Vaccine Adsorbed and Anthrax Vaccine Adsorbed with an adjuvant). A national stockpile system ensures that communities have ready access to these agents. Our literature search was based on data included in drugs@FDA (2001-2023). EXPERT OPINION: Two potential mass public health disasters are aerosolized anthrax dissemination and radiological incidents. Five agents authorized for anthrax emergencies only have FDA approval for this indication, five antibiotics have FDA approvals as antibiotics for common infections and for bacillus anthrax, and four agents have regulatory approvals for supportive care for cancer and for radiological incidents.


Subject(s)
Acute Radiation Syndrome , Anthrax Vaccines , Anthrax , Bacillus anthracis , Humans , United States , Anthrax/drug therapy , Anthrax/prevention & control , Anthrax Vaccines/therapeutic use , Bioterrorism/prevention & control , Explosions , Anti-Bacterial Agents , Acute Radiation Syndrome/drug therapy , Nuclear Reactors , Granulocyte Colony-Stimulating Factor/therapeutic use
14.
Animal Model Exp Med ; 6(4): 329-336, 2023 08.
Article in English | MEDLINE | ID: mdl-37642199

ABSTRACT

The risk of internal and external exposure to ionizing radiation (IR) has increased alongside the development and implementation of nuclear technology. Therefore, serious security issues have emerged globally, and there has been an increase in the number of studies focusing on radiological prevention and medical countermeasures. Radioprotective drugs are particularly important components of emergency medical preparedness strategies for the clinical management of IR-induced injuries. However, a few drugs have been approved to date to treat such injuries, and the related mechanisms are not entirely understood. Thus, the aim of the present review was to provide a brief overview of the World Health Organization's updated list of essential medicines for 2023 for the proper management of national stockpiles and the treatment of radiological emergencies. This review also discusses the types of radiation-induced health injuries and the related mechanisms, as well as the development of various radioprotective agents, including Chinese herbal medicines, for which significant survival benefits have been demonstrated in animal models of acute radiation syndrome.


Subject(s)
Acute Radiation Syndrome , Civil Defense , Drugs, Essential , Medical Countermeasures , Radiation-Protective Agents , Animals , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Radiation, Ionizing , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use
15.
Biomolecules ; 13(5)2023 05 15.
Article in English | MEDLINE | ID: mdl-37238707

ABSTRACT

In cases of accidental high-dose total-body irradiation (TBI), acute radiation syndrome (ARS) can cause death. We reported that the thrombopoietin receptor agonist romiplostim (RP) has the potential to completely rescue mice exposed to lethal TBI. Extracellular vesicles (EVs) are involved in cell-to-cell communication, and the mechanism of RP action may be related to EVs that reflect the radio-mitigative information. We investigated the radio-mitigative effects of EVs on mice with severe ARS. C57BL/6 mice exposed to lethal TBI were treated with RP, and the EVs were isolated from the serum and intraperitoneally injected into other mice with severe ARS. The 30-day survival rate of lethal TBI mice drastically improved by 50-100% with the administration of EVs in the sera collected weekly from the mice in which radiation damage was alleviated and mortality was avoided by the administration of RP. Four responsive miRNAs, namely, miR-144-5p, miR-3620-5p, miR-6354, and miR-7686-5p showed significant expression changes in an array analysis. In particular, miR-144-5p was expressed only in the EVs of RP-treated TBI mice. Specific EVs may exist in the circulating blood of mice that escaped mortality with an ARS mitigator, and their membrane surface and endogenous molecules may be the key to the survival of mice with severe ARS.


Subject(s)
Acute Radiation Syndrome , Extracellular Vesicles , MicroRNAs , Mice , Animals , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/metabolism , Mice, Inbred C57BL , Radiation, Ionizing , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism
16.
BMC Genomics ; 24(1): 274, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217865

ABSTRACT

The risk of exposure of the general public or military personnel to high levels of ionizing radiation from nuclear weapons or radiological accidents is a dire national security matter. The development of advanced molecular biodosimetry methods, those that measure biological response, such as transcriptomics, to screen large populations of radiation-exposed victims is key to improving survival outcomes during radiological mass casualty scenarios. In this study, nonhuman primates were exposed to either 12.0 Gy cobalt-60 gamma (total-body irradiation, TBI) or X-ray (partial-body irradiation, PBI) 24 h after administration of a potential radiation medical countermeasure, gamma-tocotrienol (GT3). Changes in the jejunal transcriptomic profiles in GT3-treated and irradiated animals were compared to healthy controls to assess the extent of radiation damage. No major effect of GT3 on radiation-induced transcriptome at this radiation dose was identified. About 80% of the pathways with a known activation or repression state were commonly observed between both exposures. Several common pathways activated due to irradiation include FAK signaling, CREB signaling in the neurons, phagosome formation, and G-protein coupled signaling pathway. Sex-specific differences associated with excessive mortality among irradiated females were identified in this study, including Estrogen receptor signaling. Differential pathway activation was also identified across PBI and TBI, pointing towards altered molecular response for different degrees of bone marrow sparing and radiation doses. This study provides insight into radiation-induced changes in jejunal transcriptional profiles, supporting the investigation for the identification of biomarkers for radiation injury and countermeasure efficacy.


Subject(s)
Acute Radiation Syndrome , Transcriptome , Male , Animals , Female , Acute Radiation Syndrome/drug therapy , Jejunum , Radiation, Ionizing , Primates
17.
Expert Opin Drug Discov ; 18(7): 797-814, 2023 07.
Article in English | MEDLINE | ID: mdl-37073409

ABSTRACT

BACKGROUND: Animal models are vital for the development of radiation medical countermeasures for the prophylaxis or treatment of acute radiation syndrome and for the delayed effects of acute radiation exposure. Nonhuman primates (NHPs) play an important role in the regulatory approval of such agents by the United States Food and Drug Administration following the Animal Rule. Reliance on such animal models requires that such models are well characterized. METHODS: Data gathered from both male and female animals under the same conditions and gathered concurrently are limited; therefore, the authors compared and contrasted here the radiosensitivity of both male and female NHPs provided different levels of clinical support over a range of acute, total-body gamma irradiation, as well as the influence of age and body weight. RESULTS: Under matched experimental conditions, the authors observed only marginal, but clearly evident differences between acutely irradiated male and female NHPs relative to the measured response endpoints (rates of survival, blood cell changes, and cytokine fluctuations). These differences appeared to be accentuated by the level of exposure as well as by the nature of clinical support. CONCLUSION: Additional studies with both sexes under various experimental conditions and different radiation qualities run concurrently are needed.


Subject(s)
Acute Radiation Syndrome , Radiation Injuries, Experimental , Animals , United States , Male , Female , Radiation Tolerance , Disease Models, Animal , Acute Radiation Syndrome/drug therapy , Macaca mulatta
18.
Radiat Res ; 199(5): 468-489, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37014943

ABSTRACT

Survivors of acute radiation exposure suffer from the delayed effects of acute radiation exposure (DEARE), a chronic condition affecting multiple organs, including lung, kidney, heart, gastrointestinal tract, eyes, and brain, and often causing cancer. While effective medical countermeasures (MCM) for the hematopoietic-acute radiation syndrome (H-ARS) have been identified and approved by the FDA, development of MCM for DEARE has not yet been successful. We previously documented residual bone marrow damage (RBMD) and progressive renal and cardiovascular DEARE in murine survivors of H-ARS, and significant survival efficacy of 16,16-dimethyl prostaglandin E2 (dmPGE2) given as a radioprotectant or radiomitigator for H-ARS. We now describe additional DEARE (physiological and neural function, progressive fur graying, ocular inflammation, and malignancy) developing after sub-threshold doses in our H-ARS model, and detailed analysis of the effects of dmPGE2 administered before (PGE-pre) or after (PGE-post) lethal total-body irradiation (TBI) on these DEARE. Administration of PGE-pre normalized the twofold reduction of white blood cells (WBC) and lymphocytes seen in vehicle-treated survivors (Veh), and increased the number of bone marrow (BM) cells, splenocytes, thymocytes, and phenotypically defined hematopoietic progenitor cells (HPC) and hematopoietic stem cells (HSC) to levels equivalent to those in non-irradiated age-matched controls. PGE-pre significantly protected HPC colony formation ex vivo by >twofold, long term-HSC in vivo engraftment potential up to ninefold, and significantly blunted TBI-induced myeloid skewing. Secondary transplantation documented continued production of LT-HSC with normal lineage differentiation. PGE-pre reduced development of DEARE cardiovascular pathologies and renal damage; prevented coronary artery rarefication, blunted progressive loss of coronary artery endothelia, reduced inflammation and coronary early senescence, and blunted radiation-induced increase in blood urea nitrogen (BUN). Ocular monocytes were significantly lower in PGE-pre mice, as was TBI-induced fur graying. Increased body weight and decreased frailty in male mice, and reduced incidence of thymic lymphoma were documented in PGE-pre mice. In assays measuring behavioral and cognitive functions, PGE-pre reduced anxiety in females, significantly blunted shock flinch response, and increased exploratory behavior in males. No effect of TBI was observed on memory in any group. PGE-post, despite significantly increasing 30-day survival in H-ARS and WBC and hematopoietic recovery, was not effective in reducing TBI-induced RBMD or any other DEARE. In summary, dmPGE2 administered as an H-ARS MCM before lethal TBI significantly increased 30-day survival and ameliorated RBMD and multi-organ and cognitive/behavioral DEARE to at least 12 months after TBI, whereas given after TBI, dmPGE2 enhances survival from H-ARS but has little impact on RBMD or other DEARE.


Subject(s)
Acute Radiation Syndrome , Hematopoietic Stem Cell Transplantation , Female , Male , Animals , Mice , Dinoprostone/pharmacology , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/etiology , Bone Marrow/radiation effects , Disease Models, Animal , Hematopoietic Stem Cell Transplantation/adverse effects , Inflammation/pathology , Whole-Body Irradiation/adverse effects , Mice, Inbred C57BL
19.
Expert Opin Investig Drugs ; 32(1): 25-35, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36655861

ABSTRACT

INTRODUCTION: The possibility of exposure to high doses of total- or partial-body ionizing radiation at a high dose rate due to radiological/nuclear accidents or terrorist attacks is increasing. Despite research and development during the last six decades, there is a shortage of nontoxic, safe, and effective radiation medical countermeasures (MCMs) for radiological and nuclear emergencies. To date, the US Food and Drug Administration (US FDA) has approved only four agents for the mitigation of hematopoietic acute radiation syndrome (H-ARS). AREA COVERED: We present the current status of a promising radiation countermeasure, gamma-tocotrienol (GT3; a component of vitamin E) as a radiation MCM that has been investigated in murine and nonhuman primate models of H-ARS. There is significant work with this agent using various omic platforms during the last few years to identify its efficacy biomarkers. EXPERT OPINION: GT3 is a newer type of radioprotector having significant injury-countering potential and is currently under advanced development for H-ARS. As a pre-exposure drug, it requires only single doses, lacks significant toxicity, and has minimal, ambient temperature storage requirements; thus, GT3 appears to be an ideal MCM for military and first responders as well as for storage in the Strategic National Stockpile.


Subject(s)
Acute Radiation Syndrome , Medical Countermeasures , Radiation-Protective Agents , Humans , Mice , Animals , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Radiation-Protective Agents/adverse effects , Vitamin E/adverse effects
20.
Radiat Res ; 199(3): 294-300, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36689635

ABSTRACT

Acute exposure to high dose radiation can cause acute radiation syndrome (ARS), a potentially life-threatening illness. Individuals that survive ARS are at risk of developing the delayed effects of acute radiation exposure, with the lungs being particularly susceptible (DEARE-lung). For individuals at risk of radiation exposure, there are no Food and Drug Administration-approved medical countermeasures (MCMs) for prophylactic or post-exposure use that can prevent or mitigate DEARE-lung. BIO 300 is a novel formulation of synthetic genistein that has been extensively studied as a prophylactic MCM for the hematopoietic subsyndrome of ARS (H-ARS). Here, we used a C57L/J mouse model of total-body irradiation (TBI) to investigate whether prophylactic administration of BIO 300 is able to prevent animals from developing DEARE-lung. Oral and parenteral formulations of BIO 300 administered prior to TBI were compared against standard of care, PEGfilgrastim, administered shortly after radiation exposure, and the combination of oral BIO 300 administered prior to TBI and with PEGfilgrastim administered post-exposure. All animals were exposed to 7.75 Gy cobalt-60 gamma-radiation and the primary endpoint was lung histopathology at 180 days post-TBI. Animals treated with BIO 300 had a significant reduction in the incidence of interstitial lung inflammation compared to vehicle groups for both the oral (0% vs. 47%) and parenteral (13% vs. 44%) routes of administration. Similar results were obtained for the incidence and severity of pulmonary fibrosis in animals treated with oral BIO 300 (incidence, 47% vs. 100% and mean severity score, 0.53 vs. 1.3) and parenteral BIO 300 (incidence, 63% vs. 100% and mean severity score, 0.69 vs. 1.7). PEGfilgrastim alone had no significant effect in reducing the incidence of inflammation or fibrosis compared to vehicle. The combination of oral BIO 300 and PEGfilgrastim significantly reduced the incidence of interstitial inflammation (13% vs. 46%) and the severity of pulmonary fibrosis (mean severity score, 0.93 vs. 1.6). Results in the C57L/J mice were compared to those in CD2F1 mice, which are less prone to lung injury following total-body irradiation. Taken together, these studies indicate that BIO 300 is a promising MCM that is able to prophylactically protect against DEARE-lung.


Subject(s)
Acute Radiation Syndrome , Lung Injury , Pulmonary Fibrosis , Mice , Animals , Lung/radiation effects , Lung Injury/etiology , Lung Injury/prevention & control , Lung Injury/drug therapy , Mice, Inbred Strains , Inflammation/pathology , Whole-Body Irradiation/adverse effects , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...