Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8014): 1091-1099, 2024 May.
Article in English | MEDLINE | ID: mdl-38750363

ABSTRACT

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.


Subject(s)
Adansonia , Phylogeny , Adansonia/classification , Adansonia/genetics , Biodiversity , Conservation of Natural Resources , Ecology , Endangered Species , Evolution, Molecular , Genome, Plant/genetics , Madagascar , Population Dynamics , Sea Level Rise
2.
Sci Rep ; 10(1): 13174, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764541

ABSTRACT

The African baobab (Adansonia digitata L.), also referred to as the "Tree of Life", is a majestic, long-lived and multipurpose tree of sub-Saharan Africa. Internationally, a growing demand for baobab products in the food, pharmaceutical and cosmetics industries has been observed. Considering this, there is a need for scientific information on the genetics and breeding of A. digitata, including cytogenetics, genetic diversity and reproductive biology. The objectives of our cytogenetic research were to determine the genome size, chromosome number, and organization of ribosomal DNA (45S and 5SrDNA) of A. digitata. Flow cytometry analysis revealed a 2C-DNA value of 3.8 ± 0.6 pg (1Cx monoploid genome size 919.1 ± 62.9 Mbp). Using our improved chromosome preparation technique, we were able to unequivocally count the chromosomes resulting in 2n = 4x = 168, a revised chromosome number for A. digitata. Fluorescent in situ hybridization (FISH) analysis revealed two massively large variants of 45S rDNA and their corresponding nucleolus organizer regions (NOR). The NOR variants were about two to four times larger than the main body of their respective chromosomes. To our knowledge, this is the first report of this phenomenon in a plant species. Furthermore, we found that FISH analysis using the Arabidopsis-type telomere repeat sequence probe clarified and confirmed the new chromosome number and characterized the 45S rDNA structural organization.


Subject(s)
Adansonia/cytology , Adansonia/genetics , Chromosomes, Plant/genetics , DNA, Ribosomal/genetics , In Situ Hybridization, Fluorescence , Repetitive Sequences, Nucleic Acid , Telomere/genetics
3.
Syst Biol ; 69(3): 462-478, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31693158

ABSTRACT

Baobabs (Adansonia) are a cohesive group of tropical trees with a disjunct distribution in Australia, Madagascar, and continental Africa, and diverse flowers associated with two pollination modes. We used custom-targeted sequence capture in conjunction with new and existing phylogenetic comparative methods to explore the evolution of floral traits and pollination systems while allowing for reticulate evolution. Our analyses suggest that relationships in Adansonia are confounded by reticulation, with network inference methods supporting at least one reticulation event. The best supported hypothesis involves introgression between Adansonia rubrostipa and core Longitubae, both of which are hawkmoth pollinated with yellow/red flowers, but there is also some support for introgression between the African lineage and Malagasy Brevitubae, which are both mammal-pollinated with white flowers. New comparative methods for phylogenetic networks were developed that allow maximum-likelihood inference of ancestral states and were applied to study the apparent homoplasy in floral biology and pollination mode seen in Adansonia. This analysis supports a role for introgressive hybridization in morphological evolution even in a clade with highly divergent and geographically widespread species. Our new comparative methods for discrete traits on species networks are implemented in the software PhyloNetworks. [Comparative methods; Hyb-Seq; introgression; network inference; population trees; reticulate evolution; species tree inference; targeted sequence capture.].


Subject(s)
Adansonia/anatomy & histology , Adansonia/classification , Biological Evolution , Flowers/anatomy & histology , Pollination/physiology , Adansonia/genetics , Flowers/genetics , Species Specificity
4.
PLoS One ; 10(4): e0119758, 2015.
Article in English | MEDLINE | ID: mdl-25830225

ABSTRACT

This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.


Subject(s)
Adansonia/genetics , Evolution, Molecular , Linguistics , Adansonia/physiology , Australia , Diffusion , Gene Flow , Humans , Phylogeny , Seed Dispersal
5.
Am J Bot ; 101(9): 1498-507, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25253710

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Adansonia digitata L. is one of the most important indigenous fruit trees of mainland Africa. Despite its significance for subsistence and income generation of local communities, little is known about the genetic and morphological variability of East African populations of A. digitata, including those of Sudan. The aim of the current study, therefore, was to analyze genetic and morphological variability of different baobab populations in Kordofan, Sudan and to estimate the effect of human intervention on genetic differentiation and diversity.• METHODS: A total of 306 trees were randomly sampled from seven spatially separated locations in the Nuba Mountains, Sudan, to cover a wide range of differing environmental gradients and management regimes ('homesteads' and 'wild'). Genetic analyses were conducted using nine microsatellite markers. Because of the tetraploid nature of A. digitata, different approaches were applied to estimate patterns of genetic diversity. Investigations were completed by measurements of dendrometric and fruit morphological characters.• KEY RESULTS: Genetic diversity was balanced and did not differ between locations or management regimes, although tendencies of higher diversity in 'homesteads' were observed. A Bayesian cluster approach detected two distinct gene pools in the sample set, mainly caused by one highly diverse population close to a main road. The variability of tree characters and fruit morphometries was high, and significantly different between locations.• CONCLUSIONS: Results indicated a rather positive effect with human intervention. The observed populations provide a promising gene pool and likely comprise ecotypes well-adapted to environmental conditions at the northern distribution range of the species, which should be considered in conservation and management programs.


Subject(s)
Adansonia/genetics , Environment , Fruit/anatomy & histology , Gene Pool , Genetic Variation , Genotype , Trees/genetics , Adansonia/anatomy & histology , Bayes Theorem , Ecotype , Genetic Drift , Humans , Microsatellite Repeats , Phenotype , Polyploidy , Sudan , Trees/anatomy & histology
6.
Mol Ecol ; 18(8): 1707-15, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19302348

ABSTRACT

The African baobab (Adansonia digitata L.) is an emblematic, culturally important, and physically huge tropical tree species whose natural geographical distribution comprises most of tropical Africa, but also small patches of southern Arabia, and several Atlantic and Indian Ocean islands surrounding the African continent, notably including Madagascar. We analysed the polymerase chain reaction-restriction fragment length polymorphism of five chloroplast DNA fragments obtained from 344 individuals of A. digitata collected from 74 populations covering the entire extant distribution range of the species. Our goal was to reconstruct the phylogeographical history of the species and, if possible, to identify its centre of origin, which has been a subject of controversy for many decades. We identified five haplotypes whose distribution is clearly geographically structured. Using several species of Adansonia and of closely related genera as outgroups, the haplotypes showed a clear phylogeographical pattern of three groups. Two are phylogenetically related to the outgroup taxa, and are distributed in West Africa. The third group is substantially more differentiated genetically from outgroup species, and it corresponds to southern and eastern Africa, Arabia and the Indian Ocean islands, including Madagascar. According to our results, the tetraploid A. digitata, or its diploid progenitor, probably originated in West Africa and migrated subsequently throughout the tropical parts of that continent, and beyond, by natural and human-mediated terrestrial and overseas dispersal.


Subject(s)
Adansonia/genetics , DNA, Chloroplast/genetics , Evolution, Molecular , Phylogeny , Africa, Western , Genetics, Population , Geography , Germination , Haplotypes , Polymorphism, Restriction Fragment Length , Seawater , Seeds/growth & development , Sequence Analysis, DNA
7.
Ann Bot ; 97(5): 819-30, 2006 May.
Article in English | MEDLINE | ID: mdl-16520343

ABSTRACT

BACKGROUND AND AIMS: Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin. METHODS: A total of 137 individuals from six populations were analysed using morphometric data as well as molecular marker data generated using the AFLP technique. KEY RESULTS: Five primer pairs resulted in a total of 217 scored bands with 78.34 % of them being polymorphic. A two-level AMOVA of 137 individuals from six baobab populations revealed 82.37 % of the total variation within populations and 17.63 % among populations (P < 0.001). Analysis of population structure with allele-frequency based F-statistics revealed a global F(ST) of 0.127 +/- 0.072 (P < 0.001). The mean gene diversity within populations (H(S)) and the average gene diversity between populations (D(ST)) were estimated at 0.309 +/- 0.000 and 0.045 +/- 0.072, respectively. Baobabs in the Sudanian and Sudan-Guinean zones of Benin were short and produced the highest yields of pulp, seeds and kernels, in contrast to the ones in the Guinean zone, which were tall and produced only a small number of fruits with a low pulp, seed and kernel productivity. A statistically significant correlation with the observed patterns of genetic diversity was observed for three morphological characteristics: height of the trees, number of branches and thickness of the capsules. CONCLUSIONS: The results indicate some degree of physical isolation of the populations collected in the different climatic zones and suggest a substantial amount of genetic structuring between the analysed populations of baobab. Sampling options of the natural populations are suggested for in or ex situ conservation.


Subject(s)
Adansonia/genetics , Climate , Genetic Variation , Adansonia/anatomy & histology , Benin , Cluster Analysis , DNA Fingerprinting , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL