Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.464
Filter
1.
Antivir Ther ; 29(2): 13596535241248282, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38725258

ABSTRACT

BACKGROUND: Darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) fixed-dose combination (FDC) was developed as a once-daily, complete antiretroviral (ARV) regimen therapy to address the need for simplified protease inhibitor-based ARV regimens. This study assessed the swallowability and acceptability for long-term use of scored placebo tablets matching the D/C/F/TAF FDC tablets in children living with HIV-1. METHODS: This study (NCT04006704) was a Phase 1, open-label, randomized, single-dose, 2-period, 2-sequence crossover study in children living with HIV-1, aged ≥6 to <12 years and weighing ≥25 to <40 kg, on a stable ARV regimen for ≥3 months. Participants were asked to swallow whole (size, 21 × 11 × 7 mm) and split matching placebo D/C/F/TAF tablets. Swallowability of the matching placebo D/C/F/TAF tablets (primary endpoint) was assessed by observers. Acceptability of taking matching placebo D/C/F/TAF tablets and current ARVs was evaluated by participants using a 3-point questionnaire. Participants rated the acceptability for long-term daily use of the placebo D/C/F/TAF tablets, and observers assessed how easily caregivers could split a scored tablet by hand, using 3-point questionnaires. RESULTS: Among the 24 participants who enrolled and completed the study, 95.8% (23/24) were able to swallow the whole and split matching placebo D/C/F/TAF tablets after 1 or 2 attempts. Most participants (>70%) rated the acceptability of tablets for long-term daily use as acceptable or good to take. Breaking the tablets was considered easy or OK by 79.2% (19/24) of caregivers. CONCLUSION: Scored D/C/F/TAF FDC tablets are swallowable - with whole favoured over split - and considered at least acceptable for long-term daily intake in children living with HIV-1 aged ≥6 to <12 years. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04006704.


Subject(s)
Anti-HIV Agents , Cobicistat , Darunavir , Drug Combinations , Emtricitabine , HIV Infections , HIV-1 , Tablets , Tenofovir , Humans , Male , HIV Infections/drug therapy , Female , Cobicistat/administration & dosage , Cobicistat/therapeutic use , Child , Emtricitabine/administration & dosage , Emtricitabine/therapeutic use , HIV-1/drug effects , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/therapeutic use , Tenofovir/administration & dosage , Tenofovir/therapeutic use , Tenofovir/analogs & derivatives , Darunavir/administration & dosage , Darunavir/therapeutic use , Alanine/administration & dosage , Alanine/therapeutic use , Cross-Over Studies , Deglutition , Adenine/analogs & derivatives , Adenine/administration & dosage , Adenine/therapeutic use
3.
PLoS One ; 19(4): e0289902, 2024.
Article in English | MEDLINE | ID: mdl-38683834

ABSTRACT

Mantle cell lymphoma (MCL) has a poor prognosis and high relapse rates despite current therapies, necessitating novel treatment regimens. Inhibition of SRC-3 show effectiveness in vivo and in vitro in other B cell lymphomas. Additionally, previous studies have shown that SRC-3 is highly expressed in the lymph nodes of B cell non-Hodgkin's lymphoma patients, suggesting SRC-3 may play a role in the progression of B cell lymphoma. This study aimed to investigate novel SRC-3 inhibitors, SI-10 and SI-12, in mantle cell lymphoma. The cytotoxic effects of SI-10 and SI-12 were evaluated in vitro and demonstrated dose-dependent cytotoxicity in a panel of MCL cell lines. The in vivo efficacy of SI-10 was confirmed in two ibrutinib-resistant models: an immunocompetent disseminated A20 mouse model of B-cell lymphoma and a human PDX model of MCL. Notably, SI-10 treatment also resulted in a significant extension of survival in vivo with low toxicity in both ibrutinib-resistant murine models. We have investigated SI-10 as a novel anti-lymphoma compound via the inhibition of SRC-3 activity. These findings indicate that targeting SRC-3 should be investigated in combination with current clinical therapeutics as a novel strategy to expand the therapeutic index and to improve lymphoma outcomes.


Subject(s)
Adenine/analogs & derivatives , Lymphoma, Mantle-Cell , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/pathology , Animals , Humans , Mice , Cell Line, Tumor , Adenine/pharmacology , Adenine/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Drug Resistance, Neoplasm/drug effects , Xenograft Model Antitumor Assays , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Female
4.
J Med Chem ; 67(9): 7245-7259, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38635563

ABSTRACT

Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Pyrophosphatases , Humans , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Structure-Activity Relationship , Crystallography, X-Ray , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/chemical synthesis , Drug Discovery , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Adenine/metabolism , Models, Molecular , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
5.
Nat Commun ; 15(1): 3481, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664417

ABSTRACT

Viral myocarditis, an inflammatory disease of the myocardium, is a significant cause of sudden death in children and young adults. The current coronavirus disease 19 pandemic emphasizes the need to understand the pathogenesis mechanisms and potential treatment strategies for viral myocarditis. Here, we found that TRIM29 was highly induced by cardiotropic viruses and promoted protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated endoplasmic reticulum (ER) stress, apoptosis, and reactive oxygen species (ROS) responses that promote viral replication in cardiomyocytes in vitro. TRIM29 deficiency protected mice from viral myocarditis by promoting cardiac antiviral functions and reducing PERK-mediated inflammation and immunosuppressive monocytic myeloid-derived suppressor cells (mMDSC) in vivo. Mechanistically, TRIM29 interacted with PERK to promote SUMOylation of PERK to maintain its stability, thereby promoting PERK-mediated signaling pathways. Finally, we demonstrated that the PERK inhibitor GSK2656157 mitigated viral myocarditis by disrupting the TRIM29-PERK connection, thereby bolstering cardiac function, enhancing cardiac antiviral responses, and curbing inflammation and immunosuppressive mMDSC in vivo. Our findings offer insight into how cardiotropic viruses exploit TRIM29-regulated PERK signaling pathways to instigate viral myocarditis, suggesting that targeting the TRIM29-PERK axis could mitigate disease severity.


Subject(s)
Adenine , Endoplasmic Reticulum Stress , Indoles , Myocarditis , Myocytes, Cardiac , eIF-2 Kinase , Animals , Humans , Male , Mice , Adenine/analogs & derivatives , Apoptosis , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocarditis/virology , Myocarditis/metabolism , Myocarditis/pathology , Myocardium/pathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Virus Replication
6.
Life Sci ; 346: 122644, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614300

ABSTRACT

Fibrosis is a pathological phenomenon characterized by the aberrant accumulation of extracellular matrix (ECM) in tissues. Fibrosis is a universally age-related disease involving that many organs and is the final stage of many chronic inflammatory diseases, which often threaten the patient's health. Undoubtedly, fibrosis has become a serious economic and health burden worldwide, However, the pathogenesis of fibrosis is complex. Further, the key molecules still remain to be unraveled. Hence, so far, there have been no effective treatments designed against the key targets of fibrosis. The methylation modification on the nitrogen atom at position 6 of adenine (m6A) is the most common mRNA modification in mammals. There is increasing evidence that m6A is actively involved in the pathogenesis of fibrosis. This review aims to highlight m6A-associated mechanisms and functions in several organic fibrosis, which implies that m6A is universal and critical for fibrosis and summarize the outlook of m6A in the treatment of fibrosis. This may light up the unknown aspects of this condition for researchers interested to explore fibrosis further.


Subject(s)
Fibrosis , Humans , Fibrosis/metabolism , Methylation , Animals , Extracellular Matrix/metabolism , Adenosine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adenine/metabolism , Adenine/analogs & derivatives , RNA/genetics , RNA/metabolism , RNA Methylation
7.
Blood ; 143(16): 1558-1559, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635254
8.
Am J Manag Care ; 30(4): 193-196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603534

ABSTRACT

The Inflation Reduction Act of 2022 (IRA) allows the Medicare program to negotiate drug prices beginning in 2024. Based on the guidance in the statute, CMS has selected specific data items to use to adjust initial price offers for 10 drugs in the decision-making process. Although much of the data are publicly available, some of these data items will need to be collected directly from drug companies. A 2019 US House of Representatives Committee on Oversight and Accountability investigative report collected a wide range of data from manufacturers of 12 high-revenue drugs that show what is available from the drug companies, including development costs, marketing, pricing, competition, and patent status. This article focuses on the data obtained for ibrutinib, an oral medication for treating hematologic malignancies, which is one of the only drugs reviewed by the committee that also has been selected for Medicare price negotiation. We examine data that can be obtained only from the drug manufacturer that the IRA has explicitly identified as being used to determine the price and suggest potential negotiation strategies for CMS in response.


Subject(s)
Adenine/analogs & derivatives , Drug Costs , Medicare , Piperidines , Aged , Humans , United States , Economic Competition , Drug Industry
9.
Cell Biochem Funct ; 42(3): e3996, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561942

ABSTRACT

Breast cancer (BC) poses a persistent global health challenge, particularly in countries with elevated human development indices linked to factors such as increased life expectancy, education, and wealth. Despite therapeutic progress, challenges persist, and the role of epitranscriptomic RNA modifications in BC remains inadequately understood. The epitranscriptome, comprising diverse posttranscriptional modifications on RNA molecules, holds the potential to intricately modulate RNA function and regulation, implicating dysregulation in various diseases, including BC. Noncoding RNAs (ncRNAs), acting as posttranscriptional regulators, influence physiological and pathological processes, including cancer. RNA modifications in long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) add an extra layer to gene expression control. This review delves into recent insights into epitranscriptomic RNA modifications, such as N-6-methyladenosine (m6A), adenine-to-inosine (A-to-I) editing, and 5-methylcytosine (m5C), specifically in the context of lncRNA and miRNAs in BC, highlighting their potential implications in BC development and progression. Understanding this intricate regulatory landscape is vital for deciphering the molecular mechanisms underlying BC and identifying potential therapeutic targets.


Subject(s)
Adenine/analogs & derivatives , Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology
10.
Acta Neuropathol Commun ; 12(1): 56, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589905

ABSTRACT

In malignant glioma, cytotoxic drugs are often inhibited from accessing the tumor site due to the blood-tumor barrier (BTB). Ibrutinib, FDA-approved lymphoma agent, inhibits Bruton tyrosine kinase (BTK) and has previously been shown to independently impair aortic endothelial adhesion and increase rodent glioma model survival in combination with cytotoxic therapy. Yet additional research is required to understand ibrutinib's effect on BTB function. In this study, we detail baseline BTK expression in glioma cells and its surrounding vasculature, then measure endothelial junctional expression/function changes with varied ibrutinib doses in vitro. Rat glioma cells and rodent glioma models were treated with ibrutinib alone (1-10 µM and 25 mg/kg) and in combination with doxil (10-100 µM and 3 mg/kg) to assess additive effects on viability, drug concentrations, tumor volume, endothelial junctional expression and survival. We found that ibrutinib, in a dose-dependent manner, decreased brain endothelial cell-cell adhesion over 24 h, without affecting endothelial cell viability (p < 0.005). Expression of tight junction gene and protein expression was decreased maximally 4 h after administration, along with inhibition of efflux transporter, ABCB1, activity. We demonstrated an additive effect of ibrutinib with doxil on rat glioma cells, as seen by a significant reduction in cell viability (p < 0.001) and increased CNS doxil concentration in the brain (56 ng/mL doxil alone vs. 74.6 ng/mL combination, p < 0.05). Finally, Ibrutinib, combined with doxil, prolonged median survival in rodent glioma models (27 vs. 16 days, p < 0.0001) with brain imaging showing a - 53% versus - 75% volume change with doxil alone versus combination therapy (p < 0.05). These findings indicate ibrutinib's ability to increase brain endothelial permeability via junctional disruption and efflux inhibition, to increase BTB drug entry and prolong rodent glioma model survival. Our results motivate the need to identify other BTB modifiers, all with the intent of improving survival and reducing systemic toxicities.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents , Doxorubicin/analogs & derivatives , Glioma , Piperidines , Rats , Animals , Rodentia , Glioma/pathology , Antineoplastic Agents/therapeutic use , Blood-Brain Barrier/pathology , Polyethylene Glycols
11.
Discov Med ; 36(183): 753-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665024

ABSTRACT

BACKGROUND: Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. METHODS: C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. RESULTS: In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. CONCLUSIONS: The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.


Subject(s)
Calcium , Dietary Supplements , Fluorosis, Dental , Animals , Male , Mice , Activating Transcription Factor 6/metabolism , Adenine/analogs & derivatives , Ameloblasts/metabolism , Ameloblasts/pathology , Ameloblasts/drug effects , Anoctamin-1/metabolism , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/genetics , Calcium/metabolism , Disease Models, Animal , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Fluorides/toxicity , Fluorides/adverse effects , Fluorosis, Dental/pathology , Fluorosis, Dental/metabolism , Fluorosis, Dental/etiology , Indoles , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors
12.
Discov Med ; 36(183): 816-826, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665029

ABSTRACT

BACKGROUND: Pneumonia is a prevalent respiratory ailment involving complex physiological and pathological mechanisms. The tripartite motif containing 27 (TRIM27) plays a crucial role in regulating inflammation mechanisms. Therefore, the purpose of this study is to further explore the therapeutic potential of TRIM27 in pneumonia, based on its regulatory mechanisms in inflammation and autophagy. METHODS: This study established a mouse pneumonia animal model through lipopolysaccharide (LPS) administration, designating it as the LPS model group. Subsequently, adenovirus-mediated TRIM27 overexpression was implemented in the animals of the LPS model group, creating the TRIM27 treatment group. After a 7-day treatment period, lung tissues from the mice were collected. Various techniques, including immunohistochemistry, quantitative reverse transcription PCR (RT-qPCR), western blot, enzyme-linked immunosorbent assay (ELISA), and electron microscopy were utilized to analyze the impact of TRIM27 overexpression on inflammatory factors, oxidative stress, autophagy, and inflammatory processes in pulmonary tissues. Finally, an in vitro LPS cell model was established, and the effects of TRIM27 overexpression and autophagy inhibition on inflammatory cytokines and autophagosomes in LPS-induced inflammatory cells were examined through RT-qPCR and immunofluorescence techniques. RESULTS: The research findings demonstrate a significant reduction in the elevated levels of interleukin-6 (IL-6), IL-1ß, and Tumor necrosis factor-alpha (TNF-α) induced by LPS with TRIM27 overexpression (p < 0.01). Conversely, the autophagy inhibitor 3-Methyladenine (3-MA) diminished the effects induced by TRIM27 overexpression. Moreover, TRIM27 overexpression enhanced the expression of Microtubule-associated protein 1A/1B light chain 3 (LC3) II/I and Beclin-1 proteins in mice subjected to LPS stimulation (p < 0.01), while reducing the expression of the p62 protein (p < 0.01). The addition of 3-MA, however, decreased Beclin-1 expression and inhibited autophagy (p < 0.01). Additionally, TRIM27 overexpression decreased the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved caspase-1, IL-1ß, and Gasdermin D N-terminal fragment (GSDMD-N) proteins in LPS-stimulated mice (p < 0.05). TRIM27 overexpression also decreased the levels of malondialdehyde (MDA), Activating Transcription Factor 6 (ATF6), and C/EBP-homologous protein (CHOP), while increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in mice exposed to LPS (p < 0.01). CONCLUSION: The induction of TRIM27 overexpression emerges as a potential and effective pneumonia treatment. The underlying mechanism may involve inducing protective autophagy, thereby reducing oxidative stress and cell pyroptosis.


Subject(s)
Autophagy , Pneumonia , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Male , Mice , Adenine/analogs & derivatives , Adenine/pharmacology , Autophagy/drug effects , Autophagy/genetics , Beclin-1/metabolism , Beclin-1/genetics , Disease Models, Animal , DNA-Binding Proteins , Lipopolysaccharides/toxicity , Lung/pathology , Lung/metabolism , Mice, Inbred C57BL , Oxidative Stress/drug effects , Pneumonia/pathology , Pneumonia/metabolism
13.
J Antimicrob Chemother ; 79(5): 1153-1156, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38558010

ABSTRACT

OBJECTIVES: The in vivo selection of E157Q plus R263K has not been reported in patients treated with coformulated bictegravir/emtricitabine/tenofovir alafenamide (BIC/FTC/TAF). To the best of our knowledge, we hereby report the first case of high-grade INSTI resistance associated with the presence of these aminoacidic substitutions in a treatment-experienced HIV patient treated with BIC/FTC/TAF. METHODS: Clinical case report and review of the literature. RESULTS: A heavily treatment-experienced patient was switched to BIC/FTC/TAF due to drug-drug interactions after being diagnosed with disseminated Mycobacterium avium-intracellulare disease. He had been treated before with raltegravir with poor adherence. No mutations in the integrase gene were detected 1 year after finishing treatment with raltegravir. Months after being switched to BIC/FTC/TAF, and again with poor adherence documented, virological failure (VF) was detected. The polymorphic substitution E157Q and the resistance mutation R263K in the integrase gene were detected, as well as M184V, among other mutations in the reverse transcriptase gene. The patient is currently being treated with dolutegravir q12h plus boosted darunavir along with directly observed treatment, and for the first time in 20 years, plasmatic viral load values are below 100 copies/mL. CONCLUSIONS: This case illustrates that the combination of E157Q and R263K plus M184V can be selected in vivo in a clinical scenario of poor adherence with BIC/FTC/TAF, although it is a very rare phenomenon. Previous VF with first-generation integrase strand transfer inhibitors (INSTIs) should be kept in mind when switching patients to second-generation INSTIs.


Subject(s)
Amides , Drug Resistance, Viral , Emtricitabine , HIV Infections , Heterocyclic Compounds, 3-Ring , Heterocyclic Compounds, 4 or More Rings , Piperazines , Pyridones , Tenofovir , Humans , Male , Adenine/analogs & derivatives , Adenine/therapeutic use , Alanine/therapeutic use , Amides/therapeutic use , Amino Acid Substitution , Anti-HIV Agents/therapeutic use , Drug Combinations , Drug Resistance, Viral/genetics , Emtricitabine/therapeutic use , Heterocyclic Compounds, 3-Ring/therapeutic use , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Heterocyclic Compounds, 4 or More Rings/administration & dosage , HIV Infections/drug therapy , HIV Infections/complications , HIV Integrase/genetics , HIV Integrase Inhibitors/therapeutic use , Mutation, Missense , Piperazines/therapeutic use , Pyridones/therapeutic use , Tenofovir/therapeutic use , Tenofovir/analogs & derivatives
14.
Lancet HIV ; 11(5): e300-e308, 2024 May.
Article in English | MEDLINE | ID: mdl-38621393

ABSTRACT

BACKGROUND: Coformulated bictegravir, emtricitabine, and tenofovir alafenamide is a single-tablet regimen and was efficacious and well tolerated in children and adolescents with HIV (aged 6 years to <18 years) in a 48-week phase 2/3 trial. In this study, we report data from children aged at least 2 years and weighing 14 kg to less than 25 kg. METHODS: We conducted this open-label, multicentre, multicohort, single-arm study in South Africa, Thailand, Uganda, and the USA. Participants were virologically suppressed children with HIV, aged at least 2 years, weighing 14 kg to less than 25 kg. Participants received bictegravir (30 mg), emtricitabine (120 mg), and tenofovir alafenamide (15 mg) once daily, switching to bictegravir (50 mg), emtricitabine (200 mg), and tenofovir alafenamide (25 mg) upon attaining a bodyweight of at least 25 kg. The study included pharmacokinetic evaluation at week 2 to confirm the dose of coformulated bictegravir, emtricitabine, and tenofovir alafenamide for this weight band by comparing with previous adult data. Primary outcomes were bictegravir area under the curve over the dosing interval (AUCtau) and concentration at the end of the dosing interval (Ctau) at week 2, and incidence of treatment-emergent adverse events and laboratory abnormalities until the end of week 24 in all participants who received at least one dose of bictegravir, emtricitabine, and tenofovir alafenamide. This study is registered with ClinicalTrials.gov, NCT02881320. FINDINGS: Overall, 22 participants were screened (from Nov 14, 2018, to Jan 11, 2020), completed treatment with bictegravir, emtricitabine, and tenofovir alafenamide (until week 48), and entered an extension phase. The geometric least squares mean (GLSM) ratio for AUCtau for bictegravir was 7·6% higher than adults (GLSM ratio 107·6%, 90% CI 96·7-119·7); Ctau was 34·6% lower than adults (65·4%, 49·1-87·2). Both parameters were within the target exposure range previously found in adults, children, or both". Grade 3-4 laboratory abnormalities occurred in four (18%) participants by the end week 24 and six (27%) by the end of week 48. Drug-related adverse events occurred in three participants (14%) by the end of week 24 and week 48; none were severe. No Grade 3-4 adverse events, serious adverse events, or adverse events leading to discontinuation occurred by the end of week 24 and week 48. INTERPRETATION: Data support the use of single-tablet coformulated bictegravir (30 mg), emtricitabine (120 mg), and tenofovir alafenamide (15 mg) for treatment of HIV in children aged at least 2 years and weighing 14 kg to less than 25 kg. FUNDING: Gilead Sciences.


Subject(s)
Adenine , Alanine , Amides , Anti-HIV Agents , Emtricitabine , HIV Infections , Heterocyclic Compounds, 3-Ring , Heterocyclic Compounds, 4 or More Rings , Piperazines , Pyridones , Tenofovir , Tenofovir/analogs & derivatives , Humans , Emtricitabine/pharmacokinetics , Emtricitabine/administration & dosage , Emtricitabine/therapeutic use , Emtricitabine/adverse effects , HIV Infections/drug therapy , HIV Infections/virology , Tenofovir/pharmacokinetics , Tenofovir/administration & dosage , Tenofovir/adverse effects , Tenofovir/therapeutic use , Child , Male , Female , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/adverse effects , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/therapeutic use , Child, Preschool , Alanine/pharmacokinetics , Alanine/adverse effects , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/adverse effects , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Amides/pharmacokinetics , Adolescent , Pyridones/pharmacokinetics , Pyridones/adverse effects , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/adverse effects , Heterocyclic Compounds, 3-Ring/administration & dosage , Piperazines/adverse effects , Piperazines/pharmacokinetics , Adenine/analogs & derivatives , Adenine/pharmacokinetics , Adenine/adverse effects , Adenine/administration & dosage , Adenine/therapeutic use , Thailand , United States , South Africa , Drug Combinations , Uganda , Viral Load/drug effects
15.
J Am Chem Soc ; 146(15): 10381-10392, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573229

ABSTRACT

DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.


Subject(s)
Adenine/analogs & derivatives , Dioxygenases , Ketoglutaric Acids , Humans , Dioxygenases/metabolism , DNA/chemistry , DNA Repair , Ferrous Compounds , DNA Adducts , AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase/metabolism
16.
Int Immunopharmacol ; 132: 111903, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38579561

ABSTRACT

Bruton's Tyrosine kinase (BTK) plays a pivotal role as the key mediator in B cell signaling. Recent research has revealed that it is also expressed in cells critical to asthma development, such as T cells, and eosinophils. This study aims to investigate the potential of BTK inhibitor in eosinophilic asthma mouse model. BALB/c mice were sensitized with ovalbumin (OVA) via intraperitoneal injections and followed by OVA nebulizations. The mice were treated with 250 µg/ml or 500 µg/ml of ibrutinib before the second intraperitoneal injection and the first nebulization. Two days after the last OVA challenge, airway hyperresponsiveness (AHR) was assessed with methacholine, and differential cell count in bronchoalveolar lavage fluid (BALF) was performed. The cytokines were measured in BALF, and serum OVA-specific IgE and IgG antibody levels were evaluated by ELISA. The inhibitory effect of ibrutinib was also evaluated in splenic mononuclear cells, mast cells, eosinophils, and T cells in vitro. Treatment with ibrutinib significantly attenuated AHR and airway inflammation, compared to the OVA-induced positive control. The treatment also reduced IL-4, IL-5, IL-13 and IFN-γ cytokine levels and suppressed OVA-specific IgE and IgG production compared to the OVA-induced positive control. Additionally, ibrutinib decreased beta-hexosaminidase release from mast cells, type 2 cytokine productions from mononuclear cells and T cells, and eosinophilic activation markers in vitro. The results of this study suggest that ibrutinib treatment could exert anti-allergic effects by inactivating B cells and other BTK-expressing cells. Further studies are needed to investigate the potential therapeutic effect of ibrutinib on allergic diseases.


Subject(s)
Adenine , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Asthma , Cytokines , Disease Models, Animal , Eosinophils , Immunoglobulin E , Mice, Inbred BALB C , Ovalbumin , Piperidines , Protein Kinase Inhibitors , Animals , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Asthma/drug therapy , Asthma/immunology , Piperidines/therapeutic use , Piperidines/pharmacology , Ovalbumin/immunology , Adenine/therapeutic use , Adenine/pharmacology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Cytokines/metabolism , Eosinophils/immunology , Eosinophils/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mice , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Female , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Immunoglobulin G/blood , Anti-Asthmatic Agents/therapeutic use , Anti-Asthmatic Agents/pharmacology , Cells, Cultured , Humans , Mast Cells/drug effects , Mast Cells/immunology
17.
J Chem Inf Model ; 64(8): 3488-3502, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38546820

ABSTRACT

Covalent inhibitors represent a promising class of therapeutic compounds. Nonetheless, rationally designing covalent inhibitors to achieve a right balance between selectivity and reactivity remains extremely challenging. To better understand the covalent binding mechanism, a computational study is carried out using the irreversible covalent inhibitor of Bruton tyrosine kinase (BTK) ibrutinib as an example. A multi-µs classical molecular dynamics trajectory of the unlinked inhibitor is generated to explore the fluctuations of the compound associated with the kinase binding pocket. Then, the reaction pathway leading to the formation of the covalent bond with the cysteine residue at position 481 via a Michael addition is determined using the string method in collective variables on the basis of hybrid quantum mechanical-molecular mechanical (QM/MM) simulations. The reaction pathway shows a strong correlation between the covalent bond formation and the protonation/deprotonation events taking place sequentially in the covalent inhibition reaction, consistent with a 3-step reaction with transient thiolate and enolates intermediate states. Two possible atomistic mechanisms affecting deprotonation/protonation events from the thiolate to the enolate intermediate were observed: a highly correlated direct pathway involving proton transfer to the Cα of the acrylamide warhead from the cysteine involving one or a few water molecules and a more indirect pathway involving a long-lived enolate intermediate state following the escape of the proton to the bulk solution. The results are compared with experiments by simulating the long-time kinetics of the reaction using kinetic modeling.


Subject(s)
Adenine , Molecular Dynamics Simulation , Piperidines , Protein-Tyrosine Kinases , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/chemistry , Piperidines/chemistry , Piperidines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Quantum Theory
18.
Blood Adv ; 8(9): 2300-2309, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38478390

ABSTRACT

ABSTRACT: BTK inhibitors (BTKis) are established standards of care in multiple B-cell malignancies including chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom macroglobulinemia. The first-generation BTKi ibrutinib demonstrated superiority over standard chemoimmunotherapy regimens in multiple randomized trials but is limited by cardiovascular side effects such as atrial fibrillation and hypertension. Second-generation BTKis have improved selectivity and demonstrate reduced rates of cardiovascular complications in 3 head-to-head ibrutinib studies. The emergence of BTK C481S mutation has led to the development of noncovalent, "reversible" BTKis, such as pirtobrutinib, which are agnostic to the C481S mutation. However, these inhibitors are associated with resistant mutations outside the C481 hot spot. These variant non-C481 mutations are of great clinical interest because some are shared among pirtobrutinib, zanubrutinib, and acalabrutinib, with potential implications for cross resistance and treatment sequencing. Finally, BTK protein degraders with in vitro activity against C481 and non-C481 mutations are currently in clinical development. Here, we review the evolution of therapeutic BTK-targeting and discuss future directions for clinical research.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Mutation , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Piperidines/therapeutic use , Adenine/analogs & derivatives , Adenine/therapeutic use
19.
Cell Rep Med ; 5(4): 101484, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38554704

ABSTRACT

The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance. We find that DNMT3A expression is upregulated upon ibrutinib treatment in ibrutinib-resistant MCL cells. Genetic and pharmacological analyses reveal that DNMT3A mediates ibrutinib resistance independent of its DNA-methylation function. Mechanistically, DNMT3A induces the expression of MYC target genes through interaction with the transcription factors MEF2B and MYC, thus mediating metabolic reprogramming to oxidative phosphorylation (OXPHOS). Targeting DNMT3A with low-dose decitabine inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting DNMT3A-mediated metabolic reprogramming to OXPHOS with decitabine provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory MCL.


Subject(s)
Adenine/analogs & derivatives , Lymphoma, Mantle-Cell , Piperidines , Protein-Tyrosine Kinases , Humans , Animals , Mice , Adult , Agammaglobulinaemia Tyrosine Kinase/metabolism , Drug Resistance, Neoplasm/genetics , DNA Methyltransferase 3A , Oxidative Phosphorylation , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Decitabine/metabolism , Decitabine/therapeutic use
20.
Nat Commun ; 15(1): 1995, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443404

ABSTRACT

Cardiac macrophage contributes to the development of cardiac fibrosis, but factors that regulate cardiac macrophages transition and activation during this process remains elusive. Here we show, by single-cell transcriptomics, lineage tracing and parabiosis, that cardiac macrophages from circulating monocytes preferentially commit to macrophage-to-myofibroblast transition (MMT) under angiotensin II (Ang II)-induced hypertension, with accompanying increased expression of the RNA N6-methyladenosine demethylases, ALKBH5. Meanwhile, macrophage-specific knockout of ALKBH5 inhibits Ang II-induced MMT, and subsequently ameliorates cardiac fibrosis and dysfunction. Mechanistically, RNA immunoprecipitation sequencing identifies interlukin-11 (IL-11) mRNA as a target for ALKBH5-mediated m6A demethylation, leading to increased IL-11 mRNA stability and protein levels. By contrast, overexpression of IL11 in circulating macrophages reverses the phenotype in ALKBH5-deficient mice and macrophage. Lastly, targeted delivery of ALKBH5 or IL-11 receptor α (IL11RA1) siRNA to monocytes/macrophages attenuates MMT and cardiac fibrosis under hypertensive stress. Our results thus suggest that the ALKBH5/IL-11/IL11RA1/MMT axis alters cardiac macrophage and contributes to hypertensive cardiac fibrosis and dysfunction in mice, and thereby identify potential targets for cardiac fibrosis therapy in patients.


Subject(s)
Adenine , Hypertension , Interleukin-11 , Animals , Humans , Mice , Adenine/analogs & derivatives , AlkB Homolog 5, RNA Demethylase , Angiotensin II , Cardiotonic Agents , Macrophages , Myofibroblasts , RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...