Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44.506
Filter
1.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725030

ABSTRACT

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Subject(s)
Glioblastoma , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Mice , Disease Progression , Cell Line, Tumor , Cell Proliferation , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Male , Female , Gene Expression Regulation, Neoplastic , Cell Movement , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Mice, Nude , Apoptosis
2.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38709169

ABSTRACT

Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.


Subject(s)
Chromatin Assembly and Disassembly , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Repressor Proteins , Animals , Humans , Mice , Adenosine Triphosphatases , Bromodomain Containing Proteins/genetics , Bromodomain Containing Proteins/metabolism , Centromere/metabolism , Centromere/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Histones/genetics , Methylation , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
3.
Commun Biol ; 7(1): 533, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710747

ABSTRACT

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Membrane Proteins , Protein Serine-Threonine Kinases , Signal Transduction , Tumor Suppressor Proteins , Wings, Animal , Animals , Wings, Animal/growth & development , Wings, Animal/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Apoptosis , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Gene Expression Regulation, Developmental , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Drosophila/genetics , Drosophila/growth & development , Drosophila/metabolism
4.
Sci Adv ; 10(18): eadl6082, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701207

ABSTRACT

The AAA+-ATPase valosin-containing protein (VCP; also called p97 or Cdc48), a major protein unfolding machinery with a variety of essential functions, localizes to different subcellular compartments where it has different functions. However, the processes regulating the distribution of VCP between the cytosol and nucleus are not understood. Here, we identified p37 (also called UBXN2B) as a major factor regulating VCP nucleocytoplasmic shuttling. p37-dependent VCP localization was crucial for local cytosolic VCP functions, such as autophagy, and nuclear functions in DNA damage repair. Mutations in VCP causing multisystem proteinopathy enhanced its association with p37, leading to decreased nuclear localization of VCP, which enhanced susceptibility to DNA damage accumulation. Both VCP localization and DNA damage susceptibility in cells with such mutations were normalized by lowering p37 levels. Thus, we uncovered a mechanism by which VCP nucleocytoplasmic distribution is fine-tuned, providing a means for VCP to respond appropriately to local needs.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Nucleus , Cytosol , Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Humans , Cytosol/metabolism , Cell Nucleus/metabolism , Mutation , Active Transport, Cell Nucleus , DNA Damage , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Transport , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA Repair , Autophagy , Protein Binding , HEK293 Cells
5.
BMC Biol ; 22(1): 105, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702628

ABSTRACT

BACKGROUND: Histone H3K4 tri-methylation (H3K4me3) catalyzed by Set1/COMPASS, is a prominent epigenetic mark found in promoter-proximal regions of actively transcribed genes. H3K4me3 relies on prior monoubiquitination at the histone H2B (H2Bub) by Rad6 and Bre1. Swd2/Cps35, a Set1/COMPASS component, has been proposed as a key player in facilitating H2Bub-dependent H3K4me3. However, a more comprehensive investigation regarding the relationship among Rad6, Swd2, and Set1 is required to further understand the mechanisms and functions of the H3K4 methylation. RESULTS: We investigated the genome-wide occupancy patterns of Rad6, Swd2, and Set1 under various genetic conditions, aiming to clarify the roles of Set1 and Rad6 for occupancy of Swd2. Swd2 peaks appear on both the 5' region and 3' region of genes, which are overlapped with its tightly bound two complexes, Set1 and cleavage and polyadenylation factor (CPF), respectively. In the absence of Rad6/H2Bub, Set1 predominantly localized to the 5' region of genes, while Swd2 lost all the chromatin binding. However, in the absence of Set1, Swd2 occupancy near the 5' region was impaired and rather increased in the 3' region. CONCLUSIONS: This study highlights that the catalytic activity of Rad6 is essential for all the ways of Swd2's binding to the transcribed genes and Set1 redistributes the Swd2 to the 5' region for accomplishments of H3K4me3 in the genome-wide level.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Methylation , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics
6.
Biol Res ; 57(1): 22, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704609

ABSTRACT

BACKGROUND: Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. RESULTS: Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. CONCLUSIONS: Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/genetics , Chromatin Assembly and Disassembly/physiology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histones/metabolism
7.
Adv Tech Stand Neurosurg ; 49: 1-18, 2024.
Article in English | MEDLINE | ID: mdl-38700677

ABSTRACT

Although the pathogenetic pathway of moyamoya disease (MMD) remains unknown, studies have indicated that variations in the RING finger protein RNF 213 is the strongest susceptible gene of MMD. In addition to the polymorphism of this gene, many circulating angiogenetic factors such as growth factors, vascular progenitor cells, inflammatory and immune mediators, angiogenesis related cytokines, as well as circulating proteins promoting intimal hyperplasia, excessive collateral formation, smooth muscle migration and atypical migration may also play critical roles in producing this disease. Identification of these circulating molecules biomarkers may be used for the early detection of this disease. In this chapter, how the hypothesized pathophysiology of these factors affect MMD and the interactive modulation between them are summarized.


Subject(s)
Biomarkers , Moyamoya Disease , Ubiquitin-Protein Ligases , Moyamoya Disease/genetics , Moyamoya Disease/diagnosis , Humans , Biomarkers/metabolism , Biomarkers/blood , Ubiquitin-Protein Ligases/genetics , Adenosine Triphosphatases/genetics
8.
J Mol Biol ; 436(10): 168575, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38641238

ABSTRACT

DNA mismatch repair endonuclease MutL is a member of GHKL ATPase superfamily. Mutations of MutL homologs are causative of a hereditary cancer, Lynch syndrome. We characterized MutL homologs from human and a hyperthermophile, Aquifex aeolicus, (aqMutL) to reveal the catalytic mechanism for the ATPase activity. Although involvement of a basic residue had not been conceived in the catalytic mechanism, analysis of the pH dependence of the aqMutL ATPase activity revealed that the reaction is catalyzed by a residue with an alkaline pKa. Analyses of mutant aqMutLs showed that Lys79 is the catalytic residue, and the corresponding residues were confirmed to be critical for activities of human MutL homologs, on the basis of which a catalytic mechanism for MutL ATPase is proposed. These and other results described here would contribute to evaluating the pathogenicity of Lynch syndrome-associated missense mutations. Furthermore, it was confirmed that the catalytic lysine residue is conserved among DNA gyrases and microrchidia ATPases, other members of GHKL ATPases, indicating that the catalytic mechanism proposed here is applicable to these members of the superfamily.


Subject(s)
Adenosine Triphosphatases , Lysine , Lysine/metabolism , Lysine/genetics , Humans , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , MutL Proteins/genetics , MutL Proteins/metabolism , MutL Proteins/chemistry , Catalytic Domain , Amino Acid Sequence , Conserved Sequence , Hydrogen-Ion Concentration , Catalysis , Transcription Factors
9.
mBio ; 15(5): e0285023, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564676

ABSTRACT

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Subject(s)
Adenosine Triphosphatases , DNA-Binding Proteins , Mitosis , Multiprotein Complexes , Plasmodium falciparum , Protozoan Proteins , Multiprotein Complexes/metabolism , Multiprotein Complexes/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Plasmodium falciparum/growth & development , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Erythrocytes/parasitology , Gene Knockout Techniques , Humans
10.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652748

ABSTRACT

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Subject(s)
Escherichia coli , Plasmids , Plasmids/metabolism , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Chromosome Segregation , DNA Primase/metabolism , DNA Primase/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
11.
EMBO Rep ; 25(5): 2239-2257, 2024 May.
Article in English | MEDLINE | ID: mdl-38632376

ABSTRACT

The PIWI-interacting RNA (piRNA) pathway plays a crucial role in silencing transposons in the germline. piRNA-guided target cleavage by PIWI proteins triggers the biogenesis of new piRNAs from the cleaved RNA fragments. This process, known as the ping-pong cycle, is mediated by the two PIWI proteins, Siwi and BmAgo3, in silkworms. However, the detailed molecular mechanism of the ping-pong cycle remains largely unclear. Here, we show that Spindle-E (Spn-E), a putative ATP-dependent RNA helicase, is essential for BmAgo3-dependent production of Siwi-bound piRNAs in the ping-pong cycle and that this function of Spn-E requires its ATPase activity. Moreover, Spn-E acts to suppress homotypic Siwi-Siwi ping-pong, but this function of Spn-E is independent of its ATPase activity. These results highlight the dual role of Spn-E in facilitating proper heterotypic ping-pong in silkworms.


Subject(s)
Bombyx , RNA, Small Interfering , Bombyx/genetics , Bombyx/metabolism , Animals , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Piwi-Interacting RNA
12.
Oncol Rep ; 51(6)2024 06.
Article in English | MEDLINE | ID: mdl-38639175

ABSTRACT

At present, the incidence of tumours is increasing on a yearly basis, and tumourigenesis is usually associated with chromosomal instability and cell cycle dysregulation. Moreover, abnormalities in the chromosomal structure often lead to DNA damage, further exacerbating gene mutations and chromosomal rearrangements. However, the non­SMC condensin I complex subunit G (NCAPG) of the structural maintenance of chromosomes family is known to exert a key role in tumour development. It has been shown that high expression of NCAPG is closely associated with tumour development and progression. Overexpression of NCAPG variously affects chromosome condensation and segregation during cell mitosis, influences cell cycle regulation, promotes tumour cell proliferation and invasion, and inhibits apoptosis. In addition, NCAPG has been associated with tumour cell stemness, tumour resistance and recurrence. The aim of the present review was to explore the underlying mechanisms of NCAPG during tumour development, with a view towards providing novel targets and strategies for tumour therapy, and through the elucidation of the mechanisms involved, to lay the foundation for future developments in health.


Subject(s)
Cell Cycle Proteins , Multiprotein Complexes , Neoplasms , Humans , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adenosine Triphosphatases/metabolism , Mitosis , Neoplasms/genetics
13.
Technol Cancer Res Treat ; 23: 15330338241241935, 2024.
Article in English | MEDLINE | ID: mdl-38564315

ABSTRACT

Hepatocellular carcinoma (HCC), partly because of its complexity and high heterogeneity, has a poor prognosis and an extremely high mortality rate. In this study, mRNA sequencing expression profiles and relevant clinical data of HCC patients were gathered from different public databases. Kaplan-Meier survival curves as well as ROC curves validated that OLA1|CLEC3B was an independent predictor with better predictive capability of HCC prognosis compared to OLA1 and CLEC3B separately. Further, the cell transfection experiment verified that knockdown of OLA1 inhibited cell proliferation, facilitated apoptosis, and improved sensitivity of HCC cells to gemcitabine. In this study, the prognostic model of HCC composed of OLA1/CLEC3B genes was constructed and verified, and the prediction ability was favorable. A higher level of OLA1 along with a lower level of CEC3B is a sign of poor prognosis in HCC. We revealed a novel gene pair OLA1|CLEC3B overexpressed in HCC patients, which may serve as a promising independent predictor of HCC survival and an approach for innovative diagnostic and therapeutic strategies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Prognosis , Liver Neoplasms/genetics , Apoptosis/genetics , Cell Proliferation/genetics , Adenosine Triphosphatases , GTP-Binding Proteins
14.
Acta Neurochir (Wien) ; 166(1): 181, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630203

ABSTRACT

PURPOSE: It is difficult to precisely predict indirect bypass development in the context of combined bypass procedures in moyamoya disease (MMD). We aimed to investigate the predictive value of magnetic resonance angiography (MRA) signal intensity in the peripheral portion of the major cerebral arteries for indirect bypass development in adult patients with MMD. METHODS: We studied 93 hemispheres from 62 adult patients who underwent combined direct and indirect revascularization between 2005 and 2019 and genetic analysis for RNF213 p.R4810K. The signal intensity of the peripheral portion of the major intracranial arteries during preoperative MRA was graded as a hemispheric MRA score (0-3 in the middle cerebral artery and 0-2 in the anterior cerebral and posterior cerebral arteries, with a high score representing low visibility) according to each vessel's visibility. Postoperative bypass development was qualitatively evaluated using MRA, and we evaluated the correlation between preoperative factors, including the hemispheric MRA score and bypass development, using univariate and multivariate analyses. RESULTS: A good indirect bypass was observed in 70% of the hemispheres. Hemispheric MRA scores were significantly higher in hemispheres with good indirect bypass development than in those with poor indirect bypass development (median: 3 vs. 1; p < 0.0001). Multiple logistic regression analysis revealed hemispheric MRA score as an independent predictor of good indirect bypass development (odds ratio, 2.1; 95% confidence interval, 1.3-3.6; p < 0.01). The low hemispheric MRA score (< 2) and wild-type RNF213 predicted poor indirect bypass development with a specificity of 0.92. CONCLUSION: Hemispheric MRA score was a predictive factor for indirect bypass development in adult patients who underwent a combined bypass procedure for MMD. Predicting poor indirect bypass development may lead to future tailored bypass surgeries for MMD.


Subject(s)
Moyamoya Disease , Adult , Humans , Moyamoya Disease/diagnostic imaging , Moyamoya Disease/surgery , Magnetic Resonance Angiography , Vascular Surgical Procedures , Middle Cerebral Artery , Transcription Factors , Adenosine Triphosphatases/genetics , Ubiquitin-Protein Ligases/genetics
15.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612937

ABSTRACT

Kaempferol (KAE) is a natural flavonoid with powerful reactive oxygen species (ROS) scavenging properties and beneficial effects on ex vivo sperm functionality. In this paper, we studied the ability of KAE to prevent or ameliorate structural, functional or oxidative damage to frozen-thawed bovine spermatozoa. The analysis focused on conventional sperm quality characteristics prior to or following thermoresistance tests, namely the oxidative profile of semen alongside sperm capacitation patterns, and the levels of key proteins involved in capacitation signaling. Semen samples obtained from 30 stud bulls were frozen in the presence of 12.5, 25 or 50 µM KAE and compared to native ejaculates (negative control-CtrlN) as well as semen samples cryopreserved in the absence of KAE (positive control-CtrlC). A significant post-thermoresistance test maintenance of the sperm motility (p < 0.001), membrane (p < 0.001) and acrosome integrity (p < 0.001), mitochondrial activity (p < 0.001) and DNA integrity (p < 0.001) was observed following supplementation with all KAE doses in comparison to CtrlC. Experimental groups supplemented with all KAE doses presented a significantly lower proportion of prematurely capacitated spermatozoa (p < 0.001) when compared with CtrlC. A significant decrease in the levels of the superoxide radical was recorded following administration of 12.5 (p < 0.05) and 25 µM KAE (p < 0.01). At the same time, supplementation with 25 µM KAE in the cryopreservation medium led to a significant stabilization of the activity of Mg2+-ATPase (p < 0.05) and Na+/K+-ATPase (p < 0.0001) in comparison to CtrlC. Western blot analysis revealed that supplementation with 25 µM KAE in the cryopreservation medium prevented the loss of the protein kinase A (PKA) and protein kinase C (PKC), which are intricately involved in the process of sperm activation. In conclusion, we may speculate that KAE is particularly efficient in the protection of sperm metabolism during the cryopreservation process through its ability to promote energy synthesis while quenching excessive ROS and to protect enzymes involved in the process of sperm capacitation and hyperactivation. These properties may provide supplementary protection to spermatozoa undergoing the freeze-thaw process.


Subject(s)
Blood Group Antigens , Semen , Cattle , Male , Animals , Kaempferols/pharmacology , Reactive Oxygen Species , Sperm Motility , Spermatozoa , Tryptophan Oxygenase , Adenosine Triphosphatases , Antibodies
16.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557192

ABSTRACT

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Subject(s)
Adenosine Triphosphatases , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Rats , Mice , Animals , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Cell Line , Chromatin , Mammals/genetics , Androgen Receptor Antagonists , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
17.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38570188

ABSTRACT

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Subject(s)
Prion Proteins , Prions , Prion Proteins/metabolism , Valosin Containing Protein/metabolism , Adenosine Triphosphatases/metabolism , Proteostasis , Ubiquitin/metabolism , Prions/metabolism
18.
Asian Pac J Cancer Prev ; 25(4): 1411-1417, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38680002

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the fourth most prevalent type of cancer in Egypt and the sixth globally. Most patients with HCC are typically diagnosed during the advanced stages of the disease due to the absence of biomarkers for early detection. Consequently, these patients miss the optimal timeframe for receiving therapy. OBJECTIVE: we aimed to assess the circular RNA SMARCA5 level and SMARCA5 mRNA gene expression as a potential biomarker for early detection of HCC. METHODS: The present study utilized a case-control design comprising 159 participants. Participants were selected from both inpatient and outpatient hepatology and gastroenterology clinics at the National Liver Institute Hospital, Menoufia University. They were evenly distributed among three groups: Group I: 53 control subjects, Group II: 53 HCV cirrhotic patients, and Group III: 53 HCC patients. Tumor staging was done using BCLC staging system. Each patient underwent a thorough clinical examination, radiological examination, complete history taking, and serum Alpha-fetoprotein (AFP) assessment and detection of circular RNASMARCA5 and SMARCA5mRNA gene sutilizing quantitative real-time polymerase chain reaction. RESULTS: Statistically substantial differences were observed in the examined groups in terms of AFP, SMARCA5, and CircSMARCA5 (P-value = 0.001, 0.001 & 0.001). CircSMARCA5 and SMARCA5mRNA were markedly down regulated in the HCC group compared to HCV cirrhotic patients and controls. ROC analysis for early HCC diagnosis demonstrated that the CircSMARCA5 area under the curve (AUC) at cut-off point 4.55 yielded a specificity of 83.8% and sensitivity of 91.7%. The AUC for AFP at a cut-off point of 515ng/ml yielded a specificity of 89.2% and a sensitivity of 91.3%. CONCLUSION: CircSMARCA5 has the potential to be a more sensitive predictor of HCC disease compared to AFP.


Subject(s)
Adenosine Triphosphatases , Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Circular , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Male , Case-Control Studies , Female , Middle Aged , RNA, Circular/genetics , Prognosis , Chromosomal Proteins, Non-Histone/genetics , Follow-Up Studies , Egypt , RNA, Messenger/genetics , ROC Curve , alpha-Fetoproteins/metabolism , alpha-Fetoproteins/analysis
19.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Article in English | MEDLINE | ID: mdl-38597493

ABSTRACT

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Subject(s)
Paraquat , Renin-Angiotensin System , Rats , Animals , Male , Reactive Oxygen Species/metabolism , Paraquat/metabolism , Paraquat/pharmacology , Angiotensin II/metabolism , Angiotensin II/pharmacology , Creatinine/metabolism , Creatinine/urine , Interleukin-6 , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Kidney , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Sodium/metabolism , Sodium/pharmacology , NADPH Oxidases/metabolism , NADPH Oxidases/pharmacology
20.
Protein Sci ; 33(5): e4981, 2024 May.
Article in English | MEDLINE | ID: mdl-38591662

ABSTRACT

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Subject(s)
Myxococcus xanthus , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Bacterial Proteins/chemistry , Translesion DNA Synthesis , Escherichia coli/genetics , Escherichia coli/metabolism , DNA/genetics , DNA Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...