Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 866
Filter
1.
PLoS One ; 19(8): e0296568, 2024.
Article in English | MEDLINE | ID: mdl-39093896

ABSTRACT

Acute gastroenteritis (AGE) is a common pediatric infection that remains a significant cause of childhood morbidity and mortality worldwide, especially in low-income regions. Thus, the objective of this study was to detect human adenovirus (HAdV) and non-polio enterovirus (NPEV) in fecal samples from the Gastroenteritis Surveillance Network, and to identify circulating strains by nucleotide sequencing. A total of 801 fecal samples were tested using qPCR/RT-qPCR, and 657 (82.0%) were inoculated into HEp-2C and RD cell lines. The HAdV and NPEV positivity rates obtained using qPCR/RT-qPCR were 31.7% (254/801) and 10.5% (84/801), respectively, with 5.4% (43/801) co-detection. Cytopathic effect was observed in 9.6% (63/657) of patients, 2.7% (18/657) associated with HAdV, and 6.2% (41/657) associated with NPEV after testing by ICC-PCR. A comparison of the two methodologies demonstrated an agreement of 93.5% for EVNP and 64.4% for HAdV. These two viruses were detected throughout the study period, with HAdV positivity rates ranging from 41% in Amapá to 18% in Pará. The NEPV varied from 18% in Pará/Rondônia to 3% in Acre. The most affected age group was over 60 months for both HAdV and NPEV. Samples previously positive for rotavirus and norovirus, which did not show a major difference in the presence or absence of diarrhea, fever, and vomiting, were excluded from the clinical analyses of these two viruses. These viruses circulated over five years, with a few months of absence, mainly during the months corresponding to the waves of SARS-CoV-2 infection in Brazil. Five HAdV species were identified (A, B, C, D, and F), with a greater predominance of HAdV-F41 (56.5%) followed by HAdV-C (15.2%). Three NPEV species (A, B, and C) were detected, with serotypes E14 (19.3%) and CVA-24 (16.1%) being the most prevalent. The present study revealed a high diversity of NPEV and HAdV types circulating in children with AGE symptoms in the northern region of Brazil.


Subject(s)
Adenoviruses, Human , Enterovirus , Feces , Gastroenteritis , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Brazil/epidemiology , Feces/virology , Child, Preschool , Infant , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Adenoviruses, Human/classification , Male , Enterovirus/genetics , Enterovirus/isolation & purification , Female , Child , Enterovirus Infections/epidemiology , Enterovirus Infections/virology , Enterovirus Infections/diagnosis , Acute Disease , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Phylogeny
2.
Front Immunol ; 15: 1432226, 2024.
Article in English | MEDLINE | ID: mdl-39139562

ABSTRACT

Introduction: The early transcription unit 3 (E3) of human adenoviruses (HAdVs) encodes several immunoevasins, including the E3/49K protein, which is unique for species D of HAdVs. It is expressed as surface transmembrane protein and shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface receptor CD45, thereby modulating activation of T and NK cells. Methods: Considering that E3/49K represents the most polymorphic viral protein among species D HAdVs, we demonstrate here that all tested E3/49K orthologs bind to the immunologically important regulator CD45. Thus, this feature is conserved regardless of the pathological associations of the respective HAdV types. Results: It appeared that modulation of CD45 is a unique property restricted to HAdVs of species D. Moreover, E3/49K treatment inhibited B cell receptor (BCR) signaling and impaired BCR signal phenotypes. The latter were highly comparable to B cells having defects in the expression of CD45, suggesting E3/49K as a potential tool to investigate CD45 specific functions. Conclusion: We identified B cells as new direct target of E3/49K-mediated immune modulation, representing a novel viral immunosubversive mechanism.


Subject(s)
Adenovirus E3 Proteins , Adenoviruses, Human , B-Lymphocytes , Leukocyte Common Antigens , Receptors, Antigen, B-Cell , Signal Transduction , Humans , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunology , Leukocyte Common Antigens/metabolism , Leukocyte Common Antigens/immunology , Adenoviruses, Human/immunology , Adenovirus E3 Proteins/immunology , Adenovirus E3 Proteins/metabolism , Adenovirus E3 Proteins/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/virology , Adenovirus Infections, Human/metabolism , HEK293 Cells
3.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000322

ABSTRACT

Human adenoviruses (HAdVs) are common pathogens that are associated with a variety of diseases, including respiratory tract infections (RTIs). Without reliable, fast, and cost-effective detection methods for HAdVs, patients may be misdiagnosed and inappropriately treated. To address this problem, we have developed a multiplex loop-mediated isothermal amplification (LAMP) assay for the detection of the species Human adenovirus B (HAdV-B), Human adenovirus C (HAdV-C) and Human adenovirus E (HAdV-E) that cause RTIs. This multiplexing approach is based on the melting curve analysis of the amplicons with a specific melting temperature for each HAdV species. Without the need for typing of HAdVs, the LAMP results can be visually detected using colorimetric analysis. The assay reliably detects at least 375 copies of HAdV-B and -C and 750 copies of HAdV-E DNA per reaction in less than 35 min at 60 °C. The designed primers have no in silico cross-reactivity with other human respiratory pathogens. Validation on 331 nasal swab samples taken from patients with RTIs showed a 90-94% agreement rate with our in-house multiplex quantitative polymerase chain reaction (qPCR) method. Concordance between the quantitative and visual LAMP was 99%. The novel multiplexed LAMP could be an alternative to PCR for diagnostic purposes, saving personnel and equipment time, or could be used for point-of-care testing.


Subject(s)
Adenoviruses, Human , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Respiratory Tract Infections , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Nucleic Acid Amplification Techniques/methods , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Molecular Diagnostic Techniques/methods , Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/virology , Sensitivity and Specificity , DNA, Viral/genetics , DNA, Viral/analysis , Multiplex Polymerase Chain Reaction/methods
4.
J Med Virol ; 96(7): e29780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965887

ABSTRACT

Human adenovirus (HAdV) infections present diverse clinical manifestations upon infecting individuals, with respiratory infections predominating in children. We surveyed pediatric hospitalizations due to respiratory HAdV infections across 18 hospitals in Hokkaido Prefecture, Japan, from July 2019 to March 2024, recording 473 admissions. While hospitalizations remained below five cases per week from July 2019 to September 2023, a notable surge occurred in late October 2023, with weekly admissions peaking at 15-20 cases from November to December. There were dramatic shifts in the age distribution of hospitalized patients: during 2019-2021, 1-year-old infants and children aged 3-6 years represented 51.4%-54.8% and 4.1%-13.3%, respectively; however, in 2023-2024, while 1-year-old infants represented 19.0%-20.1%, the proportion of children aged 3-6 years increased to 46.2%-50.0%. Understanding the emergence of significant outbreaks of respiratory HAdV infections and the substantial changes in the age distribution of hospitalized cases necessitates further investigation into the circulating types of HAdV in Hokkaido Prefecture and changes in children's neutralizing antibody titers against HAdV.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Disease Outbreaks , Hospitalization , Respiratory Tract Infections , Humans , Japan/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child , Adenoviruses, Human/isolation & purification , Adenoviruses, Human/classification , Male , Female , Hospitalization/statistics & numerical data , Infant
5.
J Virol ; 98(7): e0035624, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38837380

ABSTRACT

The controlled release of mitochondrial content into the cytosol has emerged as one of the key steps in mitochondrial signaling. In particular, the release of mitochondrial DNA (mtDNA) into the cytosol has been shown to activate interferon beta (IFN-ß) gene expression to execute the innate immune response. In this report, we show that human adenovirus type 5 (HAdV-C5) infection induces the release of mtDNA into the cytosol. The release of mtDNA is mediated by the viral minor capsid protein VI (pVI), which localizes to mitochondria. The presence of the mitochondrial membrane proteins Bak and Bax are needed for the mtDNA release, whereas the viral E1B-19K protein blocked pVI-mediated mtDNA release. Surprisingly, the pVI-mediated mtDNA release did not increase but inhibited the IFN-ß gene expression. Notably, the pVI expression caused mitochondrial leakage of the HSP60 protein. The latter prevented specific phosphorylation of the interferon regulatory factor 3 (IRF3) needed for IFN-ß gene expression. Overall, we assign a new mitochondria and IFN-ß signaling-modulating function to the HAdV-C5 minor capsid protein VI. IMPORTANCE: Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, including conjunctivitis and the common cold. HAdVs need to interfere with multiple cellular signaling pathways during the infection to gain control over the host cell. In this study, we identified human adenovirus type 5 (HAdV-C5) minor capsid protein VI as a factor modulating mitochondrial membrane integrity and mitochondrial signaling. We show that pVI-altered mitochondrial signaling impedes the cell's innate immune response, which may benefit HAdV growth. Overall, our study provides new detailed insights into the HAdV-mitochondria interactions and signaling. This knowledge is helpful when developing new anti-viral treatments against pathogenic HAdV infections and improving HAdV-based therapeutics.


Subject(s)
Adenoviruses, Human , Capsid Proteins , DNA, Mitochondrial , Interferon-beta , Mitochondria , Signal Transduction , Humans , Adenoviruses, Human/physiology , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Capsid Proteins/metabolism , Capsid Proteins/genetics , Mitochondria/metabolism , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Interferon-beta/metabolism , Interferon-beta/genetics , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Adenovirus Infections, Human/virology , Adenovirus Infections, Human/metabolism , Mitochondrial Membranes/metabolism , HEK293 Cells , Phosphorylation , Cytosol/metabolism , Cytosol/virology
6.
PLoS Pathog ; 20(6): e1012317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900833

ABSTRACT

Mammalian α-defensins are a family of abundant effector peptides of the mucosal innate immune system. Although primarily considered to be antimicrobial, α-defensins can increase rather than block infection by certain prominent bacterial and viral pathogens in cell culture and in vivo. We have shown previously that exposure of mouse and human adenoviruses (HAdVs) to α-defensins is able to overcome competitive inhibitors that block cell binding, leading us to hypothesize a defensin-mediated binding mechanism that is independent of known viral receptors. To test this hypothesis, we used genetic approaches to demonstrate that none of several primary receptors nor integrin co-receptors are needed for human α-defensin-mediated binding of HAdV to cells; however, infection remains integrin dependent. Thus, our studies have revealed a novel pathway for HAdV binding to cells that bypasses viral primary receptors. We speculate that this pathway functions in parallel with receptor-mediated entry and contributes to α-defensin-enhanced infection of susceptible cells. Remarkably, we also found that in the presence of α-defensins, HAdV tropism is expanded to non-susceptible cells, even when viruses are exposed to a mixture of both susceptible and non-susceptible cells. Therefore, we propose that in the presence of sufficient concentrations of α-defensins, such as in the lung or gut, integrin expression rather than primary receptor expression will dictate HAdV tropism in vivo. In summary, α-defensins may contribute to tissue tropism not only through the neutralization of susceptible viruses but also by allowing certain defensin-resistant viruses to bind to cells independently of previously described mechanisms.


Subject(s)
Adenoviruses, Human , Viral Tropism , alpha-Defensins , alpha-Defensins/metabolism , Humans , Adenoviruses, Human/physiology , Adenoviruses, Human/metabolism , Animals , Mice , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Receptors, Virus/metabolism , Virus Internalization
7.
mBio ; 15(8): e0103824, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38940561

ABSTRACT

Human adenoviruses (HAdVs) are small DNA viruses that generally cause mild disease. Certain strains, particularly those belonging to species B HAdVs, can cause severe pneumonia and have a relatively high mortality rate. Little is known about the molecular aspects of how these highly pathogenic species affect the infected cell and how they suppress innate immunity. The present study provides molecular insights into how species B adenoviruses suppress the interferon signaling pathway. Our study shows that these viruses, unlike HAdV-C2, are resistant to type I interferon. This resistance likely arises due to the highly efficient suppression of interferon-stimulated gene expression. Unlike in HAdV-C2, HAdV-B7 and B14 sequester STAT2 and RNA polymerase II from interferon-stimulated gene promoters in infected cells. This results in suppressed interferon- stimulated gene activation. In addition, we show that RuvBL1 and RuvBL2, cofactors important for RNA polymerase II recruitment to promoters and interferon-stimulated gene activation, are redirected to the cytoplasm forming high molecular weight complexes that, likely, are unable to associate with chromatin. Proteomic analysis also identified key differences in the way these viruses affect the host cell, providing insights into species B-associated high pathogenicity. Curiously, we observed that at the level of protein expression changes to the infected cell, HAdV-C2 and B7 were more similar than those of the same species, B7 and B14. Collectively, our study represents the first such study of innate immune suppression by the highly pathogenic HAdV-B7 and B14, laying an important foundation for future investigations.IMPORTANCEHuman adenoviruses form a large family of double-stranded DNA viruses known for a variety of usually mild diseases. Certain strains of human adenovirus cause severe pneumonia leading to much higher mortality and morbidity than most other strains. The reasons for this enhanced pathogenicity are unknown. Our study provides a molecular investigation of how these highly pathogenic strains might inactivate the interferon signaling pathway, highlighting the lack of sensitivity of these viruses to type I interferon in general while providing a global picture of how viral changes in cellular proteins drive worse disease outcomes.


Subject(s)
Adenoviruses, Human , Interferon Type I , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/pathogenicity , Adenoviruses, Human/physiology , Adenoviruses, Human/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Interferon Type I/genetics , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Immunity, Innate , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Signal Transduction , Adenovirus Infections, Human/virology , Adenovirus Infections, Human/immunology , Virulence , Host-Pathogen Interactions/immunology , Animals , Promoter Regions, Genetic , Immune Evasion , A549 Cells
8.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932121

ABSTRACT

Recombination events in human adenovirus (HAdV) have led to some new highly pathogenic or infectious types. It is vital to monitor recombinant HAdVs, especially in children with acute respiratory tract infections (ARIs). In the retrospective study, HAdV positive specimens were collected from pediatric patients with ARIs during 2015 to 2021, then typed by sequence analysis of the penton base, hexon and fiber gene sequence. For those with inconsistent typing results, a modified method with species-specific primer sets of a fiber gene sequence was developed to distinguish co-infections of different types from recombinant HAdV infections. Then, plaque assays combined with meta-genomic next-generation sequencing (mNGS) were used to reveal the HAdV genomic characteristics. There were 466 cases positive for HAdV DNA (2.89%, 466/16,097) and 350 (75.11%, 350/466) successfully typed with the most prevalent types HAdV-B3 (56.57%, 198/350) and HAdV-B7 (32.00%, 112/350), followed by HAdV-C1 (6.00%, 21/350). Among 35 cases (7.51%, 35/466) with inconsistent typing results, nine cases were confirmed as co-infections by different types of HAdVs, and 26 cases as recombinant HAdVs in six genetic patterns primarily clustered to species C (25 cases) in pattern 1-5, or species D (1 case) in pattern 6. The novel recombinant HAdV of species D was identified with multiple recombinant events among HAdV-D53, HAdV-D64, and HAdV-D8, and officially named as HAdV-D115. High-frequency recombination of HAdVs in six genetic recombination patterns were identified among children with ARIs in Beijing. Specifically, there is a novel Adenovirus D human/CHN/S8130/2023/115[P22H8F8] designed as HAdV D115.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Phylogeny , Recombination, Genetic , Respiratory Tract Infections , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/classification , Adenoviruses, Human/isolation & purification , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Adenovirus Infections, Human/virology , Adenovirus Infections, Human/epidemiology , Child, Preschool , Retrospective Studies , Male , Child , Infant , Female , Beijing/epidemiology , Genotype , High-Throughput Nucleotide Sequencing , Coinfection/virology , Coinfection/epidemiology , DNA, Viral/genetics , Genome, Viral/genetics , Adolescent , China/epidemiology
9.
Viruses ; 16(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38932214

ABSTRACT

Human adenovirus-36 (HAdV-36) infection has been linked to obesity, low lipid levels, and improvements in blood glucose levels and insulin sensitivity in animal models and humans, although epidemiological studies remain controversial. Therefore, this study investigated the relationship between HAdV-36 seropositivity and glycemic control in youths. This observational study examined 460 youths (246 with normal weight and 214 obese subjects). All participants underwent assessments for anthropometry, blood pressure, circulating fasting levels of glucose, lipids, insulin, and anti-HAdV-36 antibodies; additionally, the homeostatic model assessment of insulin resistance (HOMA-IR) was calculated. In all, 57.17% of the subjects were HAdV-36 seropositive. Moreover, HAdV-36 seroprevalence was higher in obese subjects compared to their normal weight counterparts (59% vs. 55%). BMI (33.1 vs. 32.3 kg/m2, p = 0.03), and waist circumference (107 vs. 104 cm, p = 0.02), insulin levels (21 vs. 16.3 µU/mL, p = 0.003), and HOMA-IR (4.6 vs. 3.9, p = 0.02) were higher in HAdV-36-positive subjects with obesity compared to seronegative subjects. In the obese group, HAdV-36 seropositivity was associated with a reducing effect in blood glucose levels in a model adjusted for total cholesterol, triglyceride levels, age and sex (ß = -10.44, p = 0.014). Furthermore, a statistically significant positive relationship was observed between HAdV-36 seropositivity and insulin levels in the obesity group. These findings suggest that natural HAdV-36 infection improves glycemic control but does not ameliorate hyperinsulinemia in obese subjects.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Blood Glucose , Insulin Resistance , Insulin , Obesity , Humans , Male , Female , Blood Glucose/analysis , Insulin/blood , Adolescent , Obesity/blood , Adenovirus Infections, Human/blood , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Child , Seroepidemiologic Studies , Young Adult , Body Mass Index , Antibodies, Viral/blood
10.
Viruses ; 16(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38932286

ABSTRACT

Background: Previous infection with Adenovirus-36 (HAdv-D36) has been associated with adipogenesis and glycemic regulation in cell culture and animal models. In humans, HAdv-D36 antibodies correlate with increased obesity risk yet paradoxically enhance glycemic control across various demographics. This study assesses the association of HAdv-D36 seropositivity with obesity, lipid, and glycemic profiles among school-aged children. Methods: We evaluated 208 children aged 9-13, categorized by BMI z-scores into normal weight (-1 to +1), overweight (+1 to +2), and obese (>+3). Assessments included anthropometry, Tanner stage for pubertal development, and biochemical tests (relating to lipids, glucose, and insulin), alongside HAdv-D36 seropositivity checked via ELISA. Insulin resistance was gauged using Chilean pediatric criteria. Results: The cohort displayed a high prevalence of overweight/obesity. HAdv-D36 seropositivity was 5.4%, showing no correlation with nutritional status. Additionally, no link between HAdv-D36 seropositivity and lipid levels was observed. Notably, insulin levels and HOMA-RI were significantly lower in HAdv-D36 positive children (p < 0.001). No cases of insulin resistance were reported in the HAdv-D36 (+) group in our population. Conclusions: HAdv-D36 seropositivity appears to decrease insulin secretion and resistance, aligning with earlier findings. However, no association with obesity development was found in the child population of southern Chile.


Subject(s)
Adenoviruses, Human , Insulin Resistance , Humans , Chile/epidemiology , Child , Male , Female , Adolescent , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Adenovirus Infections, Human/blood , Antibodies, Viral/blood , Obesity/epidemiology , Obesity/virology , Pediatric Obesity/epidemiology , Pediatric Obesity/virology , Seroepidemiologic Studies , Insulin/blood , Prevalence , Risk Factors
11.
Antimicrob Agents Chemother ; 68(7): e0048924, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38775484

ABSTRACT

Human adenoviruses can cause serious, disseminated infections in immunocompromised patients. For pediatric allogeneic stem cell transplant patients, the case fatality rate can reach 80%. Still, there is no available antiviral drug that is specifically approved by the Food and Drug Administration for the treatment of adenovirus infections. To fill this pressing medical need, we have developed NPP-669, a prodrug of cidofovir with broad activity against double-stranded DNA viruses, including adenoviruses. Here, we report on the in vivo anti-adenoviral efficacy of NPP-669. Using the immunosuppressed Syrian hamster as the model, we show that NPP-669 is highly efficacious when dosed orally at 1 mg/kg and 3 mg/kg. In a delayed administration experiment, NPP-669 was more effective than brincidofovir, a similar compound that reached Phase III clinical trials. Furthermore, parenteral administration of NPP-669 increased its efficacy approximately 10-fold compared to oral dosing without apparent toxicity, suggesting that this route may be preferable in a hospital setting. Based on these findings, we believe that NPP-669 is a promising new compound that needs to be further investigated.


Subject(s)
Antiviral Agents , Cidofovir , Cytosine , Mesocricetus , Organophosphonates , Prodrugs , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use , Humans , Cidofovir/pharmacology , Cidofovir/therapeutic use , Organophosphonates/pharmacology , Organophosphonates/therapeutic use , Cytosine/analogs & derivatives , Cytosine/pharmacology , Cytosine/therapeutic use , Adenoviruses, Human/drug effects , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/virology , Disease Models, Animal , Cricetinae , Administration, Oral
12.
Virol J ; 21(1): 110, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745209

ABSTRACT

BACKGROUND: Severe pneumonia is one of the most important causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Adenovirus (ADV) is a significant cause of severe viral pneumonia after allo-HSCT, and we aimed to identify the clinical manifestations, prognostic factors, and outcomes of ADV pneumonia after allo-HSCT. METHODS: Twenty-nine patients who underwent allo-HSCT at the Peking University Institute of Hematology and who experienced ADV pneumonia after allo-HSCT were enrolled in this study. The Kaplan-Meier method was used to estimate the probability of overall survival (OS). Potential prognostic factors for 100-day OS after ADV pneumonia were evaluated through univariate and multivariate Cox regression analyses. RESULTS: The incidence rate of ADV pneumonia after allo-HSCT was approximately 0.71%. The median time from allo-HSCT to the occurrence of ADV pneumonia was 99 days (range 17-609 days). The most common clinical manifestations were fever (86.2%), cough (34.5%) and dyspnea (31.0%). The 100-day probabilities of ADV-related mortality and OS were 40.4% (95% CI 21.1%-59.7%) and 40.5% (95% CI 25.2%-64.9%), respectively. Patients with low-level ADV DNAemia had lower ADV-related mortality and better OS than did those with high-level (≥ 106 copies/ml in plasma) ADV DNAemia. According to the multivariate analysis, high-level ADV DNAemia was the only risk factor for intensive care unit admission, invasive mechanical ventilation, ADV-related mortality, and OS after ADV pneumonia. CONCLUSIONS: We first reported the prognostic factors and confirmed the poor outcomes of patients with ADV pneumonia after allo-HSCT. Patients with high-level ADV DNAemia should receive immediate and intensive therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Pneumonia, Viral , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Adult , Middle Aged , Prognosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Young Adult , Adolescent , Transplantation, Homologous/adverse effects , Adenoviridae Infections/mortality , Risk Factors , Retrospective Studies , Adenoviridae , Treatment Outcome , Incidence , Adenovirus Infections, Human/mortality , Adenovirus Infections, Human/virology
13.
BMC Infect Dis ; 24(1): 478, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724898

ABSTRACT

PURPOSE: Human adenoviruses (HAdVs) have always been suggested as one of the main causes of gastroenteritis in children. However, no comprehensive report on the global epidemiology of these viruses in pediatric gastroenteritis is available. METHODS: A systematic search was conducted to obtain published papers from 2003 to 2023 in three main databases PubMed, Scopus, and Web of Science. RESULTS: The estimated global pooled prevalence of HAdV infection in children with gastroenteritis was 10% (95% CI: 9-11%), with a growing trend after 2010. The highest prevalence was observed in Africa (20%, 95% CI: 14-26%). The prevalence was higher in inpatients (11%; 95% CI: 8-13%) and patients aged 5 years old and younger (9%; 95% CI: 7-10%). However, no significant difference was observed between male and female patients (P = 0.63). The most prevalent species was found to be the species F (57%; 95% CI: 41-72%). The most common HAdVs observed in children with gastroenteritis were types 40/41, 38, and 2. Analysis of case-control studies showed an association between HAdV and gastroenteritis in children (OR: 2.28, 95% CI; 1.51-3.44). CONCLUSION: This study provided valuable insights into the importance of HAdVs in children with gastroenteritis, especially in hospitalized and younger children. The results can be used in future preventive measurements and the development of effective vaccines.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Gastroenteritis , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Adenoviruses, Human/isolation & purification , Adenoviruses, Human/classification , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Child, Preschool , Child , Infant , Prevalence , Female , Male
15.
BMC Infect Dis ; 24(1): 538, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811902

ABSTRACT

Human adenoviruses (HAdVs) are a diverse group of viruses associated with respiratory infections in humans worldwide. However, there is a lack of research on the genetic diversity and epidemiology of HAdVs in Pakistan. This study characterized HAdVs in pediatric patients with respiratory tract infections in Karachi, Pakistan, between 2022 and 2023. We analyzed 762 nasopharyngeal samples of children ≤ 5 years. DNA extraction, followed by PCR targeting E2B and hexon genes, was carried out. Data analysis was performed on SPSS 25.0, and phylogenetic analysis of hexon gene was performed on MEGA 11. HAdV was detected in 7.34% (56/762) of patients round the year, but at a significantly higher rate during the winter season. Age was insignificantly associated with HAdV incidence (p = 0.662), but more than 62.5% (35/56) of positive cases were younger than 10 months. The circulating HAdVs were identified as six different types from species B (78.57%) and C (21.42%), with the majority of isolates found to be like B3. HAdV was found to be co-infected with bocavirus (5.4%) and measles (7.14%). These findings revealed a high frequency and genetic diversity of respiratory HAdVs in Karachi, Pakistan. We conclude that periodic and continuous surveillance of adenoviruses and other respiratory pathogens is necessary to improve the prognosis and management of respiratory diseases, thereby reducing the child mortality rate in Pakistan.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Phylogeny , Respiratory Tract Infections , Humans , Pakistan/epidemiology , Adenoviruses, Human/genetics , Adenoviruses, Human/classification , Adenoviruses, Human/isolation & purification , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Child, Preschool , Infant , Male , Female , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Nasopharynx/virology , Genetic Variation , Infant, Newborn , Coinfection/virology , Coinfection/epidemiology , DNA, Viral/genetics , Seasons , Genotype
16.
J Microbiol ; 62(5): 409-418, 2024 May.
Article in English | MEDLINE | ID: mdl-38689047

ABSTRACT

Adenovirus (Ad) is a ubiquitous pathogen capable of infecting a wide range of animals and humans. Human Adenovirus (HAdV) can cause severe infection, particularly in individuals with compromised immune systems. To date, over 110 types of HAdV have been classified into seven species from A to G, with the majority belonging to the human adenovirus species D (HAdV-D). In the HAdV-D, the most significant factor for the creation of new adenovirus types is homologous recombination between viral genes involved in determining the virus tropism or evading immune system of host cells. The E4 gene, consisting of seven Open Reading Frames (ORFs), plays a role in both the regulation of host cell metabolism and the replication of viral genes. Despite long-term studies, the function of each ORF remains unclear. Based on our updated information, ORF2, ORF3, and ORF4 have been identified as regions with relatively high mutations compared to other ORFs in the E4 gene, through the use of in silico comparative analysis. Additionally, we managed to visualize high mutation sections, previously undetectable at the DNA level, through a powerful amino acid sequence analysis tool known as proteotyping. Our research has revealed the involvement of the E4 gene in the evolution of human adenovirus, and has established accurate sequence information of the E4 gene, laying the groundwork for further research.


Subject(s)
Adenoviruses, Human , Evolution, Molecular , Open Reading Frames , Adenoviruses, Human/genetics , Adenoviruses, Human/classification , Humans , Adenovirus E4 Proteins/genetics , Computer Simulation , Mutation , Adenovirus Infections, Human/virology , Phylogeny , Amino Acid Sequence , DNA, Viral/genetics
17.
Front Immunol ; 15: 1294898, 2024.
Article in English | MEDLINE | ID: mdl-38660301

ABSTRACT

Human adenovirus type 7 (HAdV-7) is a significant viral pathogen that causes respiratory infections in children. Currently, there are no specific antiviral drugs or vaccines for children targeting HAdV-7, and the mechanisms of its pathogenesis remain unclear. The NLRP3 inflammasome-driven inflammatory cascade plays a crucial role in the host's antiviral immunity. Our previous study demonstrated that HAdV-7 infection activates the NLRP3 inflammasome. Building upon this finding, our current study has identified the L4 100 kDa protein encoded by HAdV-7 as the primary viral component responsible for NLRP3 inflammasome activation. By utilizing techniques such as co-immunoprecipitation, we have confirmed that the 100 kDa protein interacts with the NLRP3 protein and facilitates the assembly of the NLRP3 inflammasome by binding specifically to the NACHT and LRR domains of NLRP3. These insights offer a deeper understanding of HAdV-7 pathogenesis and contribute to the development of novel antiviral therapies.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Viral Nonstructural Proteins , Humans , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/immunology , Adenoviruses, Human/physiology , HEK293 Cells , Inflammasomes/metabolism , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Protein Binding , Viral Proteins/metabolism , Viral Proteins/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
18.
J Virol ; 98(5): e0020724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38639487

ABSTRACT

To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.


Subject(s)
Adenoviruses, Human , Genes, Reporter , Humans , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , Cell Line , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Viral Load , Virus Replication
19.
Biomed Pharmacother ; 174: 116558, 2024 May.
Article in English | MEDLINE | ID: mdl-38603887

ABSTRACT

Human adenovirus (HAdV) infection is a major cause of respiratory disease, yet no antiviral drugs have been approved for its treatment. Herein, we evaluated the antiviral and anti-inflammatory effects of cyclin-dependent protein kinase (CDK) inhibitor indirubin-3'-monoxime (IM) against HAdV infection in cells and a transgenic mouse model. After evaluating its cytotoxicity, cytopathic effect reduction, antiviral replication kinetics, and viral yield reduction assays were performed to assess the anti-HAdV activity of IM. Quantitative real-time polymerase chain reaction (qPCR), quantitative reverse transcription PCR (qRT-PCR), and western blotting were used to assess the effects of IM on HAdV DNA replication, transcription, and protein expression, respectively. IM significantly inhibited HAdV DNA replication as well as E1A and Hexon transcription, in addition to significantly suppressing the phosphorylation of the RNA polymerase II C-terminal domain (CTD). IM mitigated body weight loss, reduced viral burden, and lung injury, decreasing cytokine and chemokine secretion to a greater extent than cidofovir. Altogether, IM inhibits HAdV replication by downregulating CTD phosphorylation to suppress viral infection and corresponding innate immune reactions as a promising therapeutic agent.


Subject(s)
Adenoviruses, Human , Anti-Inflammatory Agents , Antiviral Agents , Indoles , Oximes , Virus Replication , Indoles/pharmacology , Animals , Oximes/pharmacology , Humans , Antiviral Agents/pharmacology , Adenoviruses, Human/drug effects , Virus Replication/drug effects , Anti-Inflammatory Agents/pharmacology , Mice , Mice, Transgenic , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/virology , A549 Cells , Cytokines/metabolism , Phosphorylation/drug effects
20.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673764

ABSTRACT

The exacerbation of pneumonia in children with human adenovirus type 3 (HAdV-3E) is secondary to a Staphylococcus aureus (S. aureus) infection. The influence of host-pathogen interactions on disease progression remains unclear. It is important to note that S. aureus infections following an HAdV-3E infection are frequently observed in clinical settings, yet the underlying susceptibility mechanisms are not fully understood. This study utilized an A549 cell model to investigate secondary infection with S. aureus following an HAdV-3E infection. The findings suggest that HAdV-3E exacerbates the S. aureus infection by intensifying lung epithelial cell damage. The results highlight the role of HAdV-3E in enhancing the interferon signaling pathway through RIG-I (DDX58), resulting in the increased expression of interferon-stimulating factors like MX1, RSAD2, and USP18. The increase in interferon-stimulating factors inhibits the NF-κB and MAPK/P38 pro-inflammatory signaling pathways. These findings reveal new mechanisms of action for HAdV-3E and S. aureus in secondary infections, enhancing our comprehension of pathogenesis.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , DEAD Box Protein 58 , Signal Transduction , Staphylococcal Infections , Staphylococcus aureus , Humans , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/virology , Adenoviruses, Human/physiology , Adenoviruses, Human/immunology , Coinfection/microbiology , DEAD Box Protein 58/metabolism , Host-Pathogen Interactions/immunology , Inflammation/metabolism , NF-kappa B/metabolism , Receptors, Immunologic/metabolism , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity , Ubiquitin Thiolesterase
SELECTION OF CITATIONS
SEARCH DETAIL