Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Front Cell Infect Microbiol ; 13: 1117230, 2023.
Article in English | MEDLINE | ID: mdl-37124037

ABSTRACT

Introduction: Human adenovirus type 7 (HAdv-7) infection is the main cause of upper respiratory tract infection, bronchitis and pneumonia in children. At present, there are no anti- adenovirus drugs or preventive vaccines in the market. Therefore, it is necessary to develop a safe and effective anti-adenovirus type 7 vaccine. Methods: In this study, In this study, we used the baculovirus-insect cell expression system to design a recombinant subunit vaccine expressing adenovirus type 7 hexon protein (rBV-hexon) to induce high-level humoral and cellular immune responses. To evaluate the effectiveness of the vaccine, we first detected the expression of molecular markers on the surface of antigen presenting cells and the secretion of proinflammatory cytokines in vitro. We then measured the levels of neutralizing antibodies and T cell activation in vivo. Results: The results showed that the rBV-hexon recombinant subunit vaccine could promote DC maturation and improve its antigen uptake capability, including the TLR4/NF-κB pathway which upregulated the expression of MHCI, CD80, CD86 and cytokines. The vaccine also triggered a strong neutralizing antibody and cellular immune response, and activated T lymphocytes. Discussion: Therefore, the recombinant subunit vaccine rBV-hexon promoted promotes humoral and cellular immune responses, thereby has the potential to become a vaccine against HAdv-7.


Subject(s)
Adenovirus Vaccines , Dendritic Cells , Humans , Adenovirus Vaccines/immunology , Adenoviruses, Human , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , NF-kappa B , Toll-Like Receptor 4 , Vaccines, Synthetic , Animals
2.
J Virol ; 96(6): e0185021, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35080426

ABSTRACT

Intramuscular delivery of human adenovirus (HAdV)-based vaccines leads to rapid recruitment of neutrophils, which then release antimicrobial peptides/proteins (AMPs). How these AMPs influence vaccine efficacy over the subsequent 24 h is poorly understood. In this study, we asked if human neutrophil protein 1 (HNP-1), an α-defensin that influences direct and indirect innate immune responses to a range of pathogens, impacts the response of human phagocytes to three HAdV species/types (HAdV-C5, -D26, -B35). We show that HNP-1 binds to the capsids and redirects HAdV-C5, -D26, and -B35 to Toll-like receptor 4 (TLR4), which leads to internalization, an NLRP3-mediated inflammasome response, and interleukin 1 beta (IL-1ß) release. Surprisingly, IL-1ß release was not associated with notable disruption of plasma membrane integrity. These data further our understanding of HAdV vaccine immunogenicity and may provide pathways to extend the efficacy. IMPORTANCE This study examines the interactions between danger-associated molecular patterns and human adenoviruses, and their impact on vaccines. HAdVs and HNP-1 can interact, and these interactions will modify the response of antigen-presenting cells, which will influence vaccine efficacy.


Subject(s)
Adenoviridae Infections , Adenovirus Vaccines , Adenoviruses, Human , Phagocytes , Toll-Like Receptor 4 , alpha-Defensins , Adenoviridae Infections/immunology , Adenovirus Vaccines/immunology , Adenoviruses, Human/immunology , Humans , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phagocytes/cytology , Phagocytes/metabolism , Toll-Like Receptor 4/metabolism , alpha-Defensins/immunology
3.
J Infect Dis ; 225(1): 34-41, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34758086

ABSTRACT

BACKGROUND: Vaccines that are shelf stable and easy to administer are crucial to improve vaccine access and reduce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission around the world. METHODS: In this study, we demonstrate that an oral, adenovirus-based vaccine candidate protects against SARS-CoV-2 in a Syrian hamster challenge model. RESULTS: Hamsters administered 2 doses of VXA-CoV2-1 showed a reduction in weight loss and lung pathology and had completely eliminated infectious virus 5 days postchallenge. Oral immunization induced antispike immunoglobulin G, and neutralizing antibodies were induced upon oral immunization with the sera, demonstrating neutralizing activity. CONCLUSIONS: Overall, these data demonstrate the ability of oral vaccine candidate VXA-CoV2-1 to provide protection against SARS-CoV-2 disease.


Subject(s)
Adenovirus Vaccines/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Mesocricetus , Adenovirus Vaccines/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
4.
Viruses ; 13(11)2021 11 10.
Article in English | MEDLINE | ID: mdl-34835062

ABSTRACT

Fowl adenoviruses (FAdVs) have long been recognized as critical viral pathogens within the poultry industry, associated with severe economic implications worldwide. This specific group of viruses is responsible for a broad spectrum of diseases in birds, and an increasing occurrence of outbreaks was observed in the last ten years. Since their first discovery forty years ago in South Korea, twelve antigenically distinct serotypes of fowl adenoviruses have been described. This comprehensive review covers the history of fowl adenovirus outbreaks in South Korea and updates the current epidemiological landscape of serotype diversity and replacement as well as challenges in developing effective broadly protective vaccines. In addition, transitions in the prevalence of dominant fowl adenovirus serotypes from 2007 to 2021, alongside the history of intervention strategies, are brought into focus. Finally, future aspects are also discussed.


Subject(s)
Adenoviridae Infections/veterinary , Disease Outbreaks/veterinary , Poultry Diseases/epidemiology , Adenoviridae Infections/epidemiology , Adenoviridae Infections/prevention & control , Adenoviridae Infections/virology , Adenovirus Vaccines/administration & dosage , Adenovirus Vaccines/immunology , Animals , Aviadenovirus/classification , Aviadenovirus/immunology , Aviadenovirus/isolation & purification , Disease Outbreaks/history , History, 21st Century , Phylogeny , Poultry Diseases/prevention & control , Poultry Diseases/virology , Republic of Korea , Serogroup
5.
PLoS One ; 16(9): e0256980, 2021.
Article in English | MEDLINE | ID: mdl-34495988

ABSTRACT

BACKGROUND: A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1 (PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63), and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-erythrocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-related adhesive protein (TRAP)] to potentially enhance protection. METHODOLOGY: This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to receive three monthly CA or CAT DNA priming immunizations, followed by corresponding ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12 infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was assessed by determining the differences in time to parasitemia as detected by thick blood smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk ratio of each treatment group and subtracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. RESULTS: In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63 boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia (mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasitemia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection. CONCLUSIONS: This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective efficacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen (CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associated with increased frequencies of systemic AEs compared to the CA vaccine and, historically, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they were transient and associated with increased vector dosing.


Subject(s)
Adenovirus Vaccines/immunology , Adenoviruses, Simian/immunology , Antigens, Protozoan/immunology , DNA, Protozoan/immunology , DNA, Recombinant/immunology , Immunization, Secondary/methods , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccines, DNA/immunology , Adenovirus Vaccines/administration & dosage , Adenovirus Vaccines/adverse effects , Adenoviruses, Simian/genetics , Adult , Antigens, Protozoan/genetics , CD8-Positive T-Lymphocytes/immunology , DNA, Protozoan/genetics , Epitopes/genetics , Epitopes/immunology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Healthy Volunteers , Humans , Immunogenicity, Vaccine/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Membrane Proteins/genetics , Protozoan Proteins/genetics , Treatment Outcome , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects , Young Adult
6.
J Virol ; 95(23): e0097421, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34523968

ABSTRACT

The global COVID-19 pandemic has sparked intense interest in the rapid development of vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in humans that are important to capture in model systems. We evaluated the immunogenicity and protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine development. We observed that RhAd52 vaccines elicited robust binding and neutralizing antibody titers, which inversely correlated with viral replication after challenge. These data support the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel vaccine candidates and to study the immunologic mechanisms that underscore protection from SARS-CoV-2 challenge in wild-type mice. IMPORTANCE We have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 (RhAd52) vectors, which exhibit a lower seroprevalence than human and chimpanzee vectors, supporting their development as novel vaccine vectors or as an alternative adenovirus (Ad) vector for boosting. We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) virus to (i) evaluate the protective efficacy of RhAd52 vaccines and (ii) further characterize this mouse-adapted challenge model and probe immune correlates of protection. We demonstrate that RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.


Subject(s)
Adenovirus Vaccines/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2/immunology , Adenoviridae Infections/immunology , Adenoviruses, Simian/immunology , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Female , Humans , Immunogenicity, Vaccine , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , SARS-CoV-2/pathogenicity , Vaccination
7.
Emerg Microbes Infect ; 10(1): 1947-1959, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34520320

ABSTRACT

Human adenovirus types 4 (HAdV4) and 7 (HAdV7) often lead to severe respiratory diseases and occur epidemically in children, adults, immune deficiency patients, and other groups, leading to mild or severe symptoms and even death. However, no licensed adenovirus vaccine has been approved in the market for general use. E3 genes of adenovirus are generally considered nonessential for virulence and replication; however, a few studies have demonstrated that the products of these genes are also functional. In this study, most of the E3 genes were deleted, and two E3-deleted recombinant adenoviruses (ΔE3-rAdVs) were constructed as components of the vaccine. After E3 deletion, the replication efficiencies and cytopathogenicity of ΔE3-rAdVs were reduced, indicating that ΔE3-rAdVs were attenuated after E3 genes deletion. Furthermore, single immunization with live-attenuated bivalent vaccine candidate protects mice against challenge with wild-type human adenovirus types 4 and 7, respectively. Vaccinated mice demonstrated remarkably decreased viral loads in the lungs and less lung pathology compared to the control animals. Taken together, our study confirms the possibility of the two live-attenuated viruses as a vaccine for clinic use and illustrates a novel strategy for the construction of an adenovirus vaccine.


Subject(s)
Adenovirus E3 Proteins/genetics , Adenovirus Infections, Human/prevention & control , Adenovirus Vaccines/immunology , Adenoviruses, Human/immunology , Vaccines, Attenuated/immunology , A549 Cells , Adenovirus Infections, Human/immunology , Adenoviruses, Human/classification , Animals , Cell Line , Female , Gene Deletion , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Viral Load
8.
J Med Virol ; 93(12): 6486-6495, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34264528

ABSTRACT

OBJECTIVE: To systematically evaluate the effectiveness and safety of the SARS-CoV-2 vaccines currently undergoing clinical trials. METHODS: PubMed, EMBASE, and Cochrane Library databases were searched to collect open human COVID-19 vaccines randomized controlled trials, without limiting the search time and language. The research papers collected in the above-mentioned databases were initially screened according to the title and abstract content and merged, and the repeated ones were removed. After reading the full text of the remaining research, the studies that did not meet the inclusion criteria were excluded, and finally, nine studies were obtained. After extracting the statistical data of adverse events in the study, load them into Review Manager for heterogeneity analysis. RESULTS: The incidence of adverse reactions of inactivated virus vaccines, RNA vaccines, and adenovirus vector vaccines was higher than that of placebo. Common adverse reactions included pain, swelling, and fever at the injection site. CONCLUSION: From the perspective of effectiveness, RNA vaccine > adenovirus vector vaccine > inactivated virus vaccine. From the perspective of safety, the incidence of adverse reactions of the three vaccines is higher than that of a placebo, and the incidence of adverse reactions of the adenovirus vector vaccine is higher.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenovirus Vaccines/adverse effects , Adenovirus Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Vaccination , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
9.
Front Immunol ; 12: 697074, 2021.
Article in English | MEDLINE | ID: mdl-34262569

ABSTRACT

The development of a safe and effective vaccine against SARS-CoV-2, the causative agent of pandemic coronavirus disease-2019 (COVID-19), is a global priority. Here, we aim to develop novel SARS-CoV-2 vaccines based on a derivative of less commonly used rare adenovirus serotype AdC68 vector. Three vaccine candidates were constructed expressing either the full-length spike (AdC68-19S) or receptor-binding domain (RBD) with two different signal sequences (AdC68-19RBD and AdC68-19RBDs). Single-dose intramuscular immunization induced robust and sustained binding and neutralizing antibody responses in BALB/c mice up to 40 weeks after immunization, with AdC68-19S being superior to AdC68-19RBD and AdC68-19RBDs. Importantly, immunization with AdC68-19S induced protective immunity against high-dose challenge with live SARS-CoV-2 in a golden Syrian hamster model of SARS-CoV-2 infection. Vaccinated animals demonstrated dramatic decreases in viral RNA copies and infectious virus in the lungs, as well as reduced lung pathology compared to the control animals. Similar protective effects were also found in rhesus macaques. Taken together, these results confirm that AdC68-19S can induce protective immune responses in experimental animals, meriting further development toward a human vaccine against SARS-CoV-2.


Subject(s)
Adenovirus Vaccines/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Schedule , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccination/methods , Adenovirus Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , Disease Models, Animal , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Pan troglodytes , RNA, Viral/blood , Spike Glycoprotein, Coronavirus/immunology , Transfection , Treatment Outcome
10.
Front Immunol ; 12: 612910, 2021.
Article in English | MEDLINE | ID: mdl-34248928

ABSTRACT

Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium spp. including P. falciparum, which causes the most lethal form of malaria. Therefore, developing an effective vaccine capable of inducing the strong humoral and cellular immune responses necessary to block the pre-erythrocytic stage has potential to overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic microanatomy. We recently showed that when combined with a human adenovirus type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent booster malaria vaccine vector capable of inducing strong and long-lasting protective immune responses in a rodent malaria model. Here, we evaluated the protective efficacy of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector because it can deliver a transgene potently and rapidly to the liver, the organ malaria sporozoites initially infect and multiply in following sporozoite injection by the bite of an infected mosquito. We first generated an AAV8-vectored vaccine expressing P. falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization regimen provided a better protection rate (100% sterile protection) than that of the i.m. AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune responses in BALB/c mice. Therefore, this regimen holds great promise as a next-generation platform for the development of an effective malaria vaccine.


Subject(s)
Dependovirus/immunology , Immunization, Secondary/methods , Liver/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Adenovirus Vaccines/immunology , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Dependovirus/genetics , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunologic Memory , Liver/cytology , Liver/drug effects , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Mice , Mice, Inbred BALB C , Protozoan Proteins/immunology , Vaccines, DNA/immunology
11.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33895322

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Subject(s)
Adenoviridae/immunology , Adenovirus Vaccines/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Gorilla gorilla/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Cell Line, Tumor , Female , Genetic Vectors/immunology , Gorilla gorilla/virology , HEK293 Cells , HeLa Cells , Humans , Macaca , Male , Mice , Mice, Inbred BALB C , Middle Aged , Pandemics/prevention & control , Young Adult
12.
Emerg Microbes Infect ; 10(1): 629-637, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33691606

ABSTRACT

COVID-19 vaccines emerging from different platforms differ in efficacy, duration of protection, and side effects. To maximize the benefits of vaccination, we explored the utility of employing a heterologous prime-boost strategy in which different combinations of the four types of leading COVID-19 vaccine candidates that are undergoing clinical trials in China were tested in a mouse model. Our results showed that sequential immunization with adenovirus vectored vaccine followed by inactivated/recombinant subunit/mRNA vaccine administration specifically increased levels of neutralizing antibodies and promoted the modulation of antibody responses to predominantly neutralizing antibodies. Moreover, a heterologous prime-boost regimen with an adenovirus vector vaccine also improved Th1-biased T cell responses. Our results provide new ideas for the development and application of COVID-19 vaccines to control the SARS-CoV-2 pandemic.


Subject(s)
Adenovirus Vaccines/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Immunization, Secondary/methods , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology , Adenovirus Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Interferon-gamma/blood , Lymphocyte Count , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vaccination/adverse effects , Vaccines, Subunit/administration & dosage , Vaccines, Synthetic/administration & dosage , mRNA Vaccines
13.
Front Immunol ; 12: 782335, 2021.
Article in English | MEDLINE | ID: mdl-35095856

ABSTRACT

Recent reports of rare ChAdOx1-S vaccine-related venous thrombosis led to the suspension of its usage in several countries. Vaccine-induced thrombotic thrombocytopenia (VITT) is characterized by thrombocytopenia and thrombosis in association with anti-platelet factor 4 (PF4) antibodies. Herein, we propose five potential anionic substances of the ChAdOx1-S vaccine that can combine with PF4 and trigger VITT, including (1) the proteins on the surface of adenovirus, e.g., negative charged glycoprotein, (2) the adjuvant components of the vaccine, e.g., Tween 80, (3) the DNA of adenovirus, (4) the S protein antigen expressed by the vaccine, and (5) the negatively charged impurity proteins expressed by the vaccine, e.g., adenovirus skeleton proteins. After analysis of each case, we consider the most possible trigger to be the negatively charged impurity proteins expressed by the vaccine. Then, we display the possible extravascular route and intravascular route of the formation of PF4 autoantibodies triggered by the negatively charged impurity proteins, which is accordant with the clinical situation. Accordingly, the susceptible individuals of VITT after ChAdOx1-S vaccination may be people who express negatively charged impurity proteins and reach a certain high titer.


Subject(s)
ChAdOx1 nCoV-19/adverse effects , ChAdOx1 nCoV-19/immunology , Platelet Factor 4/immunology , Spike Glycoprotein, Coronavirus/immunology , Thrombocytopenia/chemically induced , Thrombosis/chemically induced , Vaccination/adverse effects , Adenovirus Vaccines/adverse effects , Adenovirus Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/immunology , COVID-19/immunology , Humans , SARS-CoV-2/immunology
14.
Viruses ; 12(9)2020 08 26.
Article in English | MEDLINE | ID: mdl-32858877

ABSTRACT

Hemorrhagic enteritis virus (HEV) is an immunosuppressive adenovirus that causes an acute clinical disease characterized by hemorrhagic gastroenteritis in 4-week-old turkeys and older. Recurrent incidence of secondary infections (e.g., systemic bacterial infections, cellulitis, and elevated mortality), may be associated with the presence of field-type HEV in Canadian turkey farms. We speculate that field-type HEV and vaccine/vaccine-like strains can be differentiated through analysis of the viral genomes, hexon genes, and the specific virulence factors (e.g., ORF1, E3, and fib knob domain). Nine out of sixteen spleens obtained from cases suspected of immunosuppression by HEV were analyzed. The limited data obtained showed that: (1) field-type HEV circulates in many non-vaccinated western Canadian flocks; (2) field-type HEV circulates in vaccinated flocks with increased recurrent bacterial infections; and (3) the existence of novel point mutations in hexon, ORF1, E3, and specially fib knob domains. This is the first publication showing the circulation of wild-type HEV in HEV-vaccinated flocks in Western Canada, and the usefulness of a novel procedure that allows whole genome sequencing of HEV directly from spleens, without passaging in cell culture or passaging in vivo. Further studies focusing more samples are required to confirm our observations and investigate possible vaccination failure.


Subject(s)
Adenoviridae Infections/veterinary , Genome, Viral , Poultry Diseases/virology , Siadenovirus/genetics , Turkeys/virology , Adenoviridae Infections/epidemiology , Adenoviridae Infections/virology , Adenovirus E3 Proteins/chemistry , Adenovirus E3 Proteins/genetics , Adenovirus Vaccines/immunology , Animals , Canada/epidemiology , Capsid Proteins/chemistry , Capsid Proteins/genetics , Genes, Viral , Glycosylation , Mutation , Open Reading Frames , Siadenovirus/immunology , Siadenovirus/isolation & purification , Siadenovirus/pathogenicity , Spleen/virology , Viral Proteins/genetics , Virulence Factors/genetics , Whole Genome Sequencing
15.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650622

ABSTRACT

Cancer is a major challenge in our societies, according to the World Health Organization (WHO) about 1/6 deaths were cancer related in 2018 and it is considered the second leading cause of death globally. Immunotherapies have changed the paradigm of oncologic treatment for several cancers where the field had fallen short in providing competent therapies. Despite the improvement, broadly acting and highly effective therapies capable of eliminating or preventing human cancers with insufficient mutated antigens are still missing. Adenoviral vector-based vaccines are a successful tool in the treatment of various diseases including cancer; however, their success has been limited. In this review we discuss the potential of adenovirus as therapeutic tools and the current developments to use them against cancer. More specifically, we examine how to use them to target endogenous retroviruses (ERVs). ERVs, comprising 8% of the human genome, have been detected in several cancers, while they remain silent in healthy tissues. Their low immunogenicity together with their immunosuppressive capacity aid cancer to escape immunosurveillance. In that regard, virus-like-vaccine (VLV) technology, combining adenoviral vectors and virus-like-particles (VLPs), can be ideal to target ERVs and elicit B-cell responses, as well as CD8+ and CD4+ T-cells responses.


Subject(s)
Adenoviridae/immunology , Endogenous Retroviruses/immunology , Neoplasms/immunology , Neoplasms/virology , Adenovirus Vaccines/immunology , Animals , Genetic Vectors/immunology , Humans , Immunity/immunology , Immunotherapy/methods , Viral Vaccines/immunology
16.
Front Immunol ; 11: 701, 2020.
Article in English | MEDLINE | ID: mdl-32411135

ABSTRACT

Follicular helper T (Tfh) cells regulate high-affinity antibody production. Some findings have indicated that Tfh cells could be differentiated into memory cells. Here we have investigated the effects of IFN-α, as an adjuvant, on the generation of memory Tfh cell and memory B cell responses. The data showed that adenoviral vectors expressing: (i) foot-and-mouth disease virus (FMDV) VP1 proteins and porcine IFN-α, or (ii) porcine IFN-α alone, potently enhanced the generation of memory Tfh cells, especially the CCR7 lo memory Tfh subset. Upon rechallenge with FMD recombinant adenoviral vaccines, IFN-α enhances Tfh cells activity, rapidly upregulating their signature Bcl-6, CXCR5, and IL-21 markers. The results suggest that IFN-α enhances the levels of the transcription factor Bcl-6 within Tfh cells, potentially by regulating STAT1. Additionally, IFN-α substantially increased the number of IgG1+ and CD86+ memory B cells, which are responsible for inducing the rapid effector functions of memory Tfh cells after vaccine reactivation, establishing the close relationship between memory B cell and memory Tfh cell subsets. In brief, IFN-α enhances the potency of FMD recombinant adenoviral vaccines to induce memory Tfh and memory B cell responses, thus elevating serum antibody titers. IFN-α administration therefore represents an attractive strategy for enhancing responses to vaccination.


Subject(s)
Adenovirus Vaccines/administration & dosage , Adjuvants, Immunologic/pharmacology , B-Lymphocytes/immunology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Immunologic Memory/drug effects , Interferon-alpha/pharmacology , T Follicular Helper Cells/immunology , Vaccination/methods , Adenoviridae/genetics , Adenovirus Vaccines/immunology , Animals , Capsid Proteins/immunology , Female , Foot-and-Mouth Disease/virology , Genetic Vectors/administration & dosage , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
17.
Sci Rep ; 10(1): 5716, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32235848

ABSTRACT

Adenoviral vectors are being developed as vaccines against infectious agents and tumour-associated antigens, because of their ability to induce cellular immunity. However, the protection afforded in animal models has not easily translated into primates and clinical trials, underlying the need for improving adenoviral vaccines-induced immunogenicity. A Toll-like receptor signalling molecule, TRAM, was assessed for its ability to modify the immune responses induced by an adenovirus-based vaccine. Different adenovirus vectors either expressing TRAM alone or co-expressing TRAM along with a model antigen were constructed. The modification of T-cell and antibody responses induced by TRAM was assessed in vivo in mice and in primates. Co-expression of TRAM and an antigen from adenoviruses increased the transgene-specific CD8+ T cell responses in mice. Similar effects were seen when a TRAM expressing virus was co-administered with the antigen-expressing adenovirus. However, in primate studies, co-administration of a TRAM expressing adenovirus with a vaccine expressing the ME-TRAP malaria antigen had no significant effect on the immune responses. While these results support the idea that modification of innate immune signalling by genetic vectors modifies immunogenicity, they also emphasise the difficulty in generalising results from rodents into primates, where the regulatory pathway may be different to that in mice.


Subject(s)
Adenoviridae , Adenovirus Vaccines/immunology , Immunity, Cellular , Receptors, Interleukin/immunology , Animals , Female , Genetic Vectors , Macaca mulatta , Male , Mice
18.
J Infect Dis ; 221(4): 566-577, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31563943

ABSTRACT

BACKGROUND: A number of serious human adenovirus (HAdV) outbreaks have been recently reported: HAdV-B7 (Israel, Singapore, and USA), HAdV-B7d (USA and China), HAdV-D8, -D54, and -C2 (Japan), HAdV-B14p1 (USA, Europe, and China), and HAdV-B55 (China, Singapore, and France). METHODS: To understand the epidemiology of HAdV infections in Singapore, we studied 533 HAdV-positive clinical samples collected from 396 pediatric and 137 adult patients in Singapore from 2012 to 2018. Genome sequencing and phylogenetic analyses were performed to identify HAdV genotypes, clonal clusters, and recombinant or novel HAdVs. RESULTS: The most prevalent genotypes identified were HAdV-B3 (35.6%), HAdV-B7 (15.4%), and HAdV-E4 (15.2%). We detected 4 new HAdV-C strains and detected incursions with HAdV-B7 (odds ratio [OR], 14.6; 95% confidence interval [CI], 4.1-52.0) and HAdV-E4 (OR, 13.6; 95% CI, 3.9-46.7) among pediatric patients over time. In addition, immunocompromised patients (adjusted OR [aOR], 11.4; 95% CI, 3.8-34.8) and patients infected with HAdV-C2 (aOR, 8.5; 95% CI, 1.5-48.0), HAdV-B7 (aOR, 3.7; 95% CI, 1.2-10.9), or HAdV-E4 (aOR, 3.2; 95% CI, 1.1-8.9) were at increased risk for severe disease. CONCLUSIONS: Singapore would benefit from more frequent studies of clinical HAdV genotypes to identify patients at risk for severe disease and help guide the use of new antiviral therapies, such as brincidofovir, and potential administration of HAdV 4 and 7 vaccine.


Subject(s)
Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/genetics , Diagnostic Tests, Routine/methods , Disease Outbreaks/prevention & control , Genotype , Respiratory Tract Infections/epidemiology , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/prevention & control , Adenovirus Vaccines/immunology , Adenovirus Vaccines/therapeutic use , Adenoviruses, Human/immunology , Adolescent , Adult , Antiviral Agents/therapeutic use , Child , Child, Preschool , DNA, Viral/genetics , Female , Humans , Infant , Male , Middle Aged , Phylogeny , Prospective Studies , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Retrospective Studies , Risk Factors , Severity of Illness Index , Singapore/epidemiology , Whole Genome Sequencing
19.
J Infect Dis ; 221(5): 697-700, 2020 02 18.
Article in English | MEDLINE | ID: mdl-30783668

ABSTRACT

A respiratory outbreak associated with human adenovirus type 7 (HAdV-7) occurred among unvaccinated officer candidates attending initial military training. Respiratory infections associated with HAdV-7 can be severe, resulting in significant morbidity. Genomic sequencing revealed HAdV-7d, a genome type recently remerging in the United States as a significant respiratory pathogen, following reports from Southeast Asia. Twenty-nine outbreak cases were identified; this likely represents an underestimate. Although the HAdV type 4 and 7 vaccine is currently given to US military enlisted recruit trainees, it is not routinely given to officer candidates. Administration of the HAdV type 4 and 7 vaccine may benefit this cohort.


Subject(s)
Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/genetics , Disease Outbreaks , Military Personnel , Respiratory Tract Infections/epidemiology , Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/prevention & control , Adenovirus Infections, Human/virology , Adenovirus Vaccines/immunology , Adult , Base Sequence/genetics , Female , Humans , Male , Phylogeny , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Schools , Vaccination , Virginia/epidemiology , Whole Genome Sequencing , Young Adult
20.
J Infect Dis ; 221(2): 201-213, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31647546

ABSTRACT

BACKGROUND: For the purpose of studying functional human dendritic cells (DCs) in a humanized mouse model that mimics the human immune system (HIS), a model referred to as HIS mice was established. METHODS: Human immune system mice were made by engrafting NOD/SCID/IL2Rgammanull (NSG) mice with human hematopoietic stem cells (HSCs) following the transduction of genes encoding human cytokines and human leukocyte antigen (HLA)-A2.1 by adeno-associated virus serotype 9 (AAV9) vectors. RESULTS: Our results indicate that human DC subsets, such as CD141+CD11c+ and CD1c+CD11c+ myeloid DCs, distribute throughout several organs in HIS mice including blood, bone marrow, spleen, and draining lymph nodes. The CD141+CD11c+ and CD1c+CD11c+ human DCs isolated from HIS mice immunized with adenoviruses expressing malaria/human immunodeficiency virus (HIV) epitopes were able to induce the proliferation of malaria/HIV epitopes-specific human CD8+ T cells in vitro. Upregulation of CD1c was also observed in human CD141+ DCs 1 day after immunization with the adenovirus-based vaccines. CONCLUSIONS: Establishment of such a humanized mouse model that mounts functional human DCs enables preclinical assessment of the immunogenicity of human vaccines in vivo.


Subject(s)
Adenovirus Vaccines/immunology , Antigens, Surface/immunology , Dendritic Cells/immunology , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Thrombomodulin
SELECTION OF CITATIONS
SEARCH DETAIL
...