Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.564
Filter
1.
J Virol ; 98(5): e0020724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38639487

ABSTRACT

To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.


Subject(s)
Adenoviruses, Human , Genes, Reporter , Virus Replication , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Viral Load , HEK293 Cells , Adenovirus Infections, Human/virology , Cell Line
2.
J Infect Dev Ctries ; 18(3): 450-457, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38635622

ABSTRACT

INTRODUCTION: Human mastadenovirus (HAdV) types 8, 37, 64 have been considered the major contributors in Epidemic keratoconjunctivitis (EKC) epidemics, but recent surveillance data have shown the involvement of emerging recombinants, including HAdV-53, HAdV-54, and HAdV-56. In our initial work, positive samples for adenovirus revealed that our strains were closer to HAdV-54 than HAdV-8. Hence, the current study aimed to use whole genome technology to identify the HAdV strain correctly. METHODOLOGY: Oxford Nanopore technique was used, wherein a Targeted sequencing approach using long-range PCR amplification was performed. Primers were designed using HAdV-54 (AB448770.2) and HAdV-8 (AB897885.1) as reference sequences. Amplicons were sequenced on the GridION sequencer. Sequences were annotated using Gatu software, and similarities with standard reference sequence was calculated using Bioedit software. The phylogenetic tree was built after alignment in MEGA v7.0 using Neighbour joining method for each of the genes: Penton, Hexon, and Fiber. The effect of novel amino acid changes was evaluated using the PROVEAN tool. The Recombination Detection Program (RDP) package Beta 4.1 was used to identify recombinant sequences. RESULTS: Of the five samples sequenced, OL450401, OL540403, and OL540406 showed nucleotide similarity to HAdV-54 in the penton region. Additionally, OL450401 showed a statistically significant recombination event with HAdV-54 as minor and HAdV-8 as major parents. This was further supported by phylogenetic analysis as well. CONCLUSIONS: In the present study, we have found evidence of a shift from HAdV-8 towards HAdV-54, thus stressing the need for surveillance of HAdVs and to stay updated on the rise of new recombinants.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Keratoconjunctivitis , Mastadenovirus , Humans , Phylogeny , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Sequence Analysis, DNA , Genome, Viral , Adenoviruses, Human/genetics , Keratoconjunctivitis/epidemiology , Mastadenovirus/genetics , India/epidemiology
3.
J Med Virol ; 96(4): e29618, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639293

ABSTRACT

Human adenovirus (HAdV) is a significant viral pathogen causing severe acute respiratory infections (SARIs) in children. To improve the understanding of type distribution and viral genetic characterization of HAdV in severe cases, this study enrolled 3404 pediatric SARI cases from eight provinces of China spanning 2017-2021, resulting in the acquisition of 112 HAdV strains. HAdV-type identification, based on three target genes (penton base, hexon, and fiber), confirmed the diversity of HAdV types in SARI cases. Twelve types were identified, including species B (HAdV-3, 7, 55), species C (HAdV-1, 2, 6, 89, 108, P89H5F5, Px1/Ps3H1F1, Px1/Ps3H5F5), and E (HAdV-4). Among these, HAdV-3 exhibited the highest detection rate (44.6%), followed by HAdV-7 (19.6%), HAdV-1 (12.5%), and HAdV-108 (9.8%). All HAdV-3, 7, 55, 4 in this study belonged to dominant lineages circulating worldwide, and the sequences of the three genes demonstrated significant conservation and stability. Concerning HAdV-C, excluding the novel type Px1/Ps3H1F1 found in this study, the other seven types were detected both in China and abroad, with HAdV-1 and HAdV-108 considered the two main types of HAdV-C prevalent in China. Two recombinant strains, including P89H5F5 and Px1/Ps3H1F1, could cause SARI as a single pathogen, warranting close monitoring and investigation for potential public health implications. In conclusion, 5 years of SARI surveillance in China provided crucial insights into HAdV-associated respiratory infections among hospitalized pediatric patients.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Child , Humans , Adenoviruses, Human/genetics , Sequence Analysis, DNA/methods , Phylogeny , Adenoviridae/genetics , China/epidemiology , Respiratory Tract Infections/epidemiology
4.
J Med Virol ; 96(4): e29615, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628102

ABSTRACT

Human adenovirus (HAdV) is one of the causative viruses of acute gastroenteritis (AGE) in children worldwide. Species F is known to be enteric adenovirus (genotypes 40 and 41) detected in stool samples. In Japan, we conducted an epidemiological study and molecular characterization of HAdV before and after the COVID-19 pandemic from 2017 to 2023. Among 821 patients, HAdV was detected in 118 AGE cases (14.4%). During a period of 6 years, the HAdV detection rates for each year were relatively low at 3.7% and 0%, in 2017-2018, and 2020-2021, respectively. However, the detection rate increased to remarkably high rates, ranging from 13.3% to 27.3% in the other 4-year periods. Of these HAdV-positive strains, 83.1% were F41 genotypes and 16.9% were other genotypes (A31, B3, C1, C2/C6, and C5). Phylogenetic analyses of the nucleotide and deduced amino acid sequences of the full-length hexon gene demonstrated that HAdV-F41 strains were comprised of three clades, and each clade was distributed across the study period from 2017 to 2023. Analysis of deduced amino acid sequences of the hexon gene of the representative HAdV-F41 strains from each clade revealed numerous amino acid substitutions across hypervariable regions (HVRs) from HVR-1 to HVR-7, two insertions in HVR-1 and HVR-7, and two deletions in HVR-1 and HVR-2 of the hexon gene compared to those of the prototype strain, particularly, those of clade 3 HAdV-F41 strains. The findings suggested that the HAdV-F41 of each clade was stable, conserved, and co-circulated for over two decades in Japan.


Subject(s)
Adenoviridae Infections , Adenovirus Infections, Human , Adenoviruses, Human , Gastroenteritis , Child , Humans , Adenoviridae/genetics , Japan/epidemiology , Phylogeny , Pandemics , Sequence Analysis, DNA , Adenoviruses, Human/genetics , Adenoviridae Infections/epidemiology , Gastroenteritis/epidemiology , Adenovirus Infections, Human/epidemiology
5.
J Virol ; 98(4): e0004324, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38497664

ABSTRACT

Human adenoviruses (HAdVs) are causative agents of morbidity and mortality throughout the world. These double-stranded DNA viruses are phylogenetically classified into seven different species (A-G). HAdV-G52, originally isolated in 2008 from a patient presenting with gastroenteritis, is the sole human-derived member of species G. Phylogenetic analysis previously suggested that HAdV-G52 may have a simian origin, indicating a potential zoonotic spillover into humans. However, evidence of HAdV-G52 in either human or simian populations has not been reported since. Here, we describe the isolation and in vitro characterization of rhesus (rh)AdV-69, a novel simian AdV with clear evidence of recombination with HAdV-G52, from the stool of a rhesus macaque. Specifically, the rhAdV-69 hexon capsid protein is 100% identical to that of HAdV-G52, whereas the remainder of the genome is most similar to rhAdV-55, sharing 95.36% nucleic acid identity. A second recombination event with an unknown adenovirus (AdV) is evident at the short fiber gene. From the same sample, we also isolated a second, highly related recombinant AdV (rhAdV-68) that harbors a distinct hexon gene but nearly identical backbone compared to rhAdV-69. In vitro, rhAdV-68 and rhAdV-69 demonstrate comparable growth kinetics and tropisms in human cell lines, nonhuman cell lines, and human enteroids. Furthermore, we show that coinfection of highly related AdVs is not unique to this sample since we also isolated coinfecting rhAdVs from two additional rhesus macaque stool samples. Our data collectively contribute to elucidating the origins of HAdV-G52 and provide insights into the frequency of coinfections and subsequent recombination in AdV evolution.IMPORTANCEUnderstanding the host origins of adenoviruses (AdVs) is critical for public health as transmission of viruses from animals to humans can lead to emergent viruses. Recombination between animal and human AdVs can also produce emergent viruses. HAdV-G52 is the only human-derived member of the HAdV G species. It has been suggested that HAdV-G52 has a simian origin. Here, we isolated from a rhesus macaque, a novel rhAdV, rhAdV-69, that encodes a hexon protein that is 100% identical to that of HAdV-G52. This observation suggests that HAdV-G52 may indeed have a simian origin. We also isolated a highly related rhAdV, differing only in the hexon gene, from the same rhesus macaque stool sample as rhAdV-69, illustrating the potential for co-infection of closely related AdVs and recombination at the hexon gene. Furthermore, our study highlights the critical role of whole-genome sequencing in understanding AdV evolution and monitoring the emergence of pathogenic AdVs.


Subject(s)
Adenoviruses, Human , Adenoviruses, Simian , Capsid Proteins , Animals , Humans , Adenoviridae Infections , Adenovirus Infections, Human , Adenoviruses, Human/genetics , Adenoviruses, Simian/genetics , Macaca mulatta , Phylogeny , Capsid Proteins/genetics
6.
Viruses ; 16(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38543752

ABSTRACT

The human adenovirus (HAdV) is a common pathogen in children that can cause acute respiratory virus infection (ARVI). However, the molecular epidemiological and clinical information relating to HAdV among hospitalized children with ARVI is rarely reported in Russia. A 4-year longitudinal (2019-2022) study among hospitalized children (0-17 years old) with ARVI in Novosibirsk, Russia, was conducted to evaluate the epidemiological and molecular characteristics of HAdV. Statistically significant differences in the detection rates of epidemiological and virological data of all positive viral detections of HAdV were analyzed using a two-tailed Chi-square test. The incidence of HAdV and other respiratory viruses such as human influenza A and B viruses, respiratory syncytial virus, coronavirus, parainfluenza virus, metapneumovirus, rhinovirus, bocavirus, and SARS-CoV-2 was investigated among 3190 hospitalized children using real-time polymerase chain reaction. At least one of these respiratory viruses was detected in 74.4% of hospitalized cases, among which HAdV accounted for 4%. A total of 1.3% co-infections with HAdV were also registered. We obtained full-genome sequences of 12 HAdVs, which were isolated in cell cultures. Genetic analysis revealed the circulation of adenovirus of genotypes C1, C2, C5, C89, and 108 among hospitalized children in the period from 2019-2022.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Child , Humans , Infant , Infant, Newborn , Child, Preschool , Adolescent , Adenoviruses, Human/genetics , Child, Hospitalized , Hospitalization , Respiratory Tract Infections/epidemiology , Russia/epidemiology , Genetic Variation , Adenovirus Infections, Human/epidemiology
7.
Invest Ophthalmol Vis Sci ; 65(2): 12, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38319669

ABSTRACT

Purpose: To sequence, identify, and perform phylogenetic and recombination analysis on three clinical adenovirus samples taken from the vitreous humor at the Bascom Palmer Eye Institute. Methods: The PacBio Sequel II was used to sequence the genomes of the three clinical adenovirus isolates. To identify the isolates, a full genome-based multiple sequence alignment (MSA) of 722 mastadenoviruses was generated using multiple alignment using fast Fourier transform (MAFFT). MAFFT was also used to generate genome-based human adenovirus B (HAdV-B) MSAs, as well as HAdV-B fiber, hexon, and penton protein-based MSAs. To examine recombination within HAdV-B, RF-Net 2 and Bootscan software programs were used. Results: In the course of classifying three new atypical ocular adenovirus samples, taken from the vitreous humor, we found that all three isolates were HAdV-B species. The three Bascom Palmer HAdV-B genomes were then combined with over 300 HAdV-B genome sequences, including nine ocular HAdV-B genome sequences. Attempts to categorize the penton, hexon, and fiber serotypes using phylogeny of the three Bascom Palmer samples were inconclusive due to incongruence between serotype and phylogeny in the dataset. Recombination analysis using a subset of HAdV-B strains to generate a hybridization network detected recombination between nonhuman primate and human-derived strains, recombination between one HAdV-B strain and the HAdV-E outgroup, and limited recombination between the B1 and B2 clades. Conclusions: The discordance between serotype and phylogeny detected in this study suggests that the current classification system does not accurately describe the natural history and phylogenetic relationships among adenoviruses.


Subject(s)
Adenoviridae , Adenoviruses, Human , Humans , Animals , Vitreous Body , Phylogeny , Serogroup , Adenoviruses, Human/genetics , Hexamethonium , Recombination, Genetic
8.
J Virol ; 98(3): e0157623, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38323814

ABSTRACT

Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon's hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE: Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study's cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon's hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5's mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.


Subject(s)
Adenoviruses, Human , Capsid Proteins , Lactoferrin , Receptors, Virus , Virus Internalization , Humans , Adenovirus Infections, Human/metabolism , Adenovirus Infections, Human/virology , Adenoviruses, Human/chemistry , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Adenoviruses, Human/ultrastructure , Binding Sites/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Lactoferrin/chemistry , Lactoferrin/genetics , Lactoferrin/metabolism , Lactoferrin/ultrastructure , Models, Biological , Mutation , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Receptors, Virus/ultrastructure , Solubility , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology
9.
Hum Gene Ther ; 35(5-6): 163-176, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38386500

ABSTRACT

Delivering vectorized information into cells with the help of viruses has been of high interest to fundamental and applied science, and bears significant therapeutic promise. Human adenoviruses (HAdVs) have been at the forefront of gene delivery for many years, and the subject of intensive development resulting in several generations of agents, including replication-competent, -defective or retargeted vectors, and recently also helper-dependent (HD), so-called gutless vectors lacking any viral protein coding information. While it is possible to produce HD-AdVs in significant amounts, physical properties of these virus-like particles and their efficiency of transduction have not been addressed. Here, we used single-cell and single virus particle assays to probe the effect of genome length on HAdV-C5 vector transduction. Our results demonstrate that first-generation C5 vectors lacking the E1/E3 regions of the viral genome as well as HD-AdV-C5 particles with a wild type (wt) ∼36 kbp or an undersized double-strand DNA genome are similar to human adenovirus C5 (HAdV-C5) wt regarding attachment to human lung epithelial cells, endocytic uptake, endosome penetration and dependency on the E3 RING ubiquitin ligase Mind Bomb 1 for DNA uncoating at the nuclear pore complex. Atomic force microscopy measurements of single virus particles indicated that small changes in the genome length from 94% to 103% of HAdV-C5 have no major impact on physical and mechanical features of AdV vectors. In contrast, an HD-AdV-C5 with ∼30 kbp genome was slightly stiffer and less heat-resistant than the other particles, despite comparable entry and transduction efficiencies in tissue culture cell lines, including murine alveolar macrophage-like Max-Planck-Institute (MPI)-2 cells. Together, our in vitro studies reinforce the use of HD-AdV vectors for effective single round gene delivery. The results illustrate how physical properties and cell entry behavior of single virus particles can provide functional information for anticipated therapeutic vector applications.


Subject(s)
Adenoviridae , Adenoviruses, Human , Animals , Humans , Mice , Adenoviridae/genetics , Adenoviruses, Human/genetics , Cell Line , Genetic Vectors , DNA
10.
Curr Med Sci ; 44(1): 121-133, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38393525

ABSTRACT

OBJECTIVE: Human adenovirus (HAdV) infection is common and can develop to serious conditions with high mortality, yet the mechanism of HAdV infection remains unclear. In the present study, the serum metabolite profiles of HAdV-7-infected patients with pneumonia or upper respiratory tract infection (URTI) were explored. METHODS: In total, 35 patients were enrolled in the study following an outbreak of HAdV-7 in the army, of whom 14 had pneumonia and 21 had URTI. Blood samples were collected at the acute stage and at the recovery stage and were analyzed by untargeted metabolomics. RESULTS: Over 90% of the differential metabolites identified between the pneumonia patients and URTI patients were lipids and lipid-like molecules, including glycerophospholipids, fatty acyls, and sphingolipids. The metabolic pathways that were significantly enriched were primarily the lipid metabolism pathways, including sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. The sphingolipid metabolism was identified as a significantly differential pathway between the pneumonia patients and URTI patients and between the acute and recovery stages for the pneumonia patients, but not between the acute and recovery stages for the URTI patients. Ceramide and lactosylceramide, involved in sphingolipid metabolism, were significantly higher in the pneumonia patients than in the URTI patients with good discrimination abilities [area under curve (AUC) 0.742 and 0.716, respectively; combination AUC 0.801]. CONCLUSION: Our results suggested that HAdV modulated lipid metabolism for both the patients with URTI and pneumonia, especially the sphingolipid metabolism involving ceramide and lactosylceramide, which might thus be a potential intervention target in the treatment of HAdV infection.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Antigens, CD , Pneumonia , Respiratory Tract Infections , Humans , Adenoviruses, Human/genetics , Lactosylceramides , Respiratory Tract Infections/epidemiology , Pneumonia/complications , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/metabolism
11.
Microbiol Spectr ; 12(4): e0181623, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38385650

ABSTRACT

Human adenovirus (HAdV) infects the respiratory system, thus posing a threat to health. However, immunodiagnostic reagents for human adenovirus are limited. This study aimed to develop efficient diagnostic reagents based on monoclonal antibodies for diagnosing various human adenovirus infections. Evolutionary and homology analyses of various human adenoviral antigen genes revealed highly conserved antigenic fragments. The prokaryotic expression system was applied to recombinant penton, hexon, and IVa2 conserved fragments of adenovirus, which were injected into BALB/c mice to prepare human adenovirus-specific monoclonal antibodies. Enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and Western blotting were used to determine the immune specificity of the monoclonal antibodies. Indirect ELISA showed that monoclonal antibodies 1F10, 8D3, 4A1, and 9B2 were specifically bound to HAdV-3 and HAdV-55 and revealed high sensitivity and low detection limits for various human adenoviruses. Western blotting showed that 1F10 and 8D3 specifically recognized various human adenovirus types, including HAdV-1, HAdV-2, HAdV-3, HAdV-4, HAdV-5, HAdV-7, HAdV-21, and HAdV-55, and 4A1 specifically recognized HAdV-1, HAdV-2, HAdV-3, HAdV-5, HAdV-7, HAdV-21, and HAdV-55. IFAs showed that 1F10, 8D3, and 4A1 exhibited highly selective localization to A549 cells infected with HAdV-3 and HAdV-55. Finally, two antibody pairs that could detect hexon antigens HAdV-3 and HAdV-55 at low concentrations were developed. The monoclonal antibodies developed in this study show potential for detecting human adenoviruses. IMPORTANCE: In this study, we selected the three most conserved antigenic fragments of human adenovirus to prepare a murine monoclonal antibody for the first time, and human adenovirus antigenic fragments with heretofore unheard of degrees of conservatism were isolated. The three monoclonal antibodies with the ability to recognize human respiratory adenovirus over a broad spectrum were screened by hybridoma and monoclonal antibody preparation. Human adenovirus infections are serious; however, therapeutic drugs and diagnostic reagents are scarce. Thus, to reduce the serious consequences of human viral infections and adenovirus pneumonitis, early diagnosis of infection is required. The present study provides three monoclonal antibodies capable of recognizing a wide range of human adenoviruses, thereby offering guidance for subsequent research and development.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Humans , Animals , Mice , Antibodies, Monoclonal , Antibodies, Viral , Adenoviruses, Human/genetics , Serogroup , Capsid Proteins/genetics
12.
J Clin Virol ; 171: 105640, 2024 04.
Article in English | MEDLINE | ID: mdl-38219683

ABSTRACT

BACKGROUND: Human Adenoviruses are a common cause of disease and can cause significant morbidity and mortality in immunocompromised patients. Nosocomial transmission events can occur with whole genome sequencing playing a crucial role. This study evaluates the performance of a custom designed SureSelectXT target enrichment assay based on 14 adenovirus genomes for sequencing direct from clinical samples. METHODS: Modifications were made to the SureSelectXT low input protocol to enhance performance for viral targets. Consensus sequences were generated using an in-house designed three stage bioinformatics pipeline. We assessed, percentage of on target reads, average depth of coverage and percentage genome coverage to determine assay performance across a range of sample matrices. RESULTS: Whole genome sequences were successfully generated for 91.6 % of samples assessed. Adenovirus DNA concentration was a good indicator of enrichment success. Highly specific enrichment was observed with only 6 % of samples showing < 50 % on target reads. Respiratory and faecal samples performed well where bloods showed higher levels of non-specific enrichment likely confounded by low adenovirus DNA concentrations. Protocol performance did not appear impacted by Adenovirus type or species. CONCLUSION: Overall performance of this modified SureSelectXT protocol appears in line with previously published works although there are some confounding factors requiring further investigation. The use of a small RNA bait set has the potential to reduce associated costs which can be prohibitive.


Subject(s)
Adenoviruses, Human , Humans , Adenoviruses, Human/genetics , Whole Genome Sequencing/methods , RNA , Computational Biology , Adenoviridae , DNA , High-Throughput Nucleotide Sequencing/methods
13.
Virus Genes ; 60(1): 18-24, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38175387

ABSTRACT

Human adenovirus subgroup B (HAdV B) is one of the major pathogens of human respiratory virus infections, which has considerable transmission and morbidity in a variety of populations. Therefore, rapid and specific detection of HAdV B in clinical samples is essential for diagnosis. This study aimed to develop a product for rapid nucleic acid detection of HAdV B using recombinase polymerase amplification assay (RPA) and validate the performance of this method by using clinical samples. Results showed that this method achieved a lower limit of detection (LOD) of 10 copies/µL and had no cross-reactivity with other adenovirus subgroups or respiratory pathogens. In addition to high sensitivity, it can be completed within 30 min at 40 °C. There is no need to perform nucleic acid extraction on clinical samples. Taking qPCR as the gold standard, the RPA assay possessed a high concordance (Cohen's kappa, 0.896; 95% CI 0.808-0.984; P < 0.001), with a sensitivity of 87.80% and a specificity of 100.00%. The RPA assay developed in this study provided a simple and highly specific method, making it an important tool for rapid adenovirus nucleic acid detection and facilitating large-scale population screening in resource-limited settings.


Subject(s)
Adenoviruses, Human , Nucleic Acids , Humans , Recombinases/genetics , Adenoviruses, Human/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
14.
J Korean Med Sci ; 39(4): e38, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38288539

ABSTRACT

BACKGROUND: Human adenovirus (HAdV) is a common cause of acute respiratory disease (ARD) and has raised significant concerns within the Korean military. Here, we conducted a comprehensive epidemiological analysis of HAdV-associated ARD by evaluating its prevalence, clinical outcomes, and prognosis. METHODS: We reviewed data from multiple sources, including the New Defense Medical Information System, Defense Medical Statistical Information System, Ministry of National Defense, Army Headquarters, Navy Headquarters, Air Force Headquarters, and Armed Forces Medical Command. We analyzed data of patients who underwent polymerase chain reaction (PCR) testing for respiratory viruses between January 2013 and July 2022 in all 14 Korean military hospitals. The analysis included the PCR test results, demographic characteristics, health care utilization, and prognosis including types of treatments received, incidence of pneumonia, and mortality. RESULTS: Among the 23,830 individuals who underwent PCR testing at Korean military hospitals, 44.78% (10,670 cases) tested positive for respiratory viruses. Across all military types and ranks, HAdV was the most prevalent virus, with a total of 8,580 patients diagnosed, among HAdV, influenza virus, human metapneumovirus, human parainfluenza virus, and human respiratory syncytial virus. HAdV-infected patients exhibited higher rates of healthcare use compared to non-HAdV-infected patients, including a greater number of emergency visits (1.04 vs. 1.02) and outpatient visits (1.31 vs. 1.27), longer hospitalizations (8.14 days vs. 6.84 days), and extended stays in the intensive care unit (5.21 days vs. 3.38 days). Furthermore, HAdV-infected patients had a higher proportion of pneumonia cases (65.79% vs. 48.33%) and greater likelihood of receiving advanced treatments such as high flow nasal cannula or continuous renal replacement therapy. CONCLUSION: Our findings indicate that HAdV posed a significant public health concern within the Korean military prior to the coronavirus disease 2019 (COVID-19) pandemic. Given the potential for a resurgence of outbreaks in the post-COVID-19 era, proactive measures, such as education, environmental improvements, and the development of HAdV vaccines, are crucial for effectively preventing future outbreaks.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Military Personnel , Pneumonia , Respiratory Tract Infections , Humans , Adenoviruses, Human/genetics , Respiratory Tract Infections/diagnosis , Prevalence , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/diagnosis , Republic of Korea/epidemiology
15.
Emerg Microbes Infect ; 13(1): 2307513, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38240267

ABSTRACT

Re-emerging human adenovirus type 55 (HAdV55) has become a significant threat to public health due to its widespread circulation and the association with severe pneumonia, but an effective anti-HAdV55 agent remains unavailable. Herein, we report the generation of macaque-derived, human-like monoclonal antibodies (mAbs) protecting against HAdV55 infection with high potency. Using fluorophore-labelled HAdV55 virions as probes, we isolated specific memory B cells from rhesus macaques (Macaca mulatta) that were immunized twice with an experimental vaccine based on E1-, E3-deleted, replication-incompetent HAdV55. We cloned a total of 19 neutralizing mAbs, nine of which showed half-maximal inhibitory concentrations below 1.0 ng/ml. These mAbs recognized the hyper-variable-region (HVR) 1, 2, or 7 of viral hexon protein, or the fibre knob. In transgenic mice expressing human desmoglein-2, the major cellular receptor for HAdV55, a single intraperitoneal injection with hexon-targeting mAbs efficiently prevented HAdV55 infection, and mAb 29C12 showed protection at a dose as low as 0.004 mg/kg. Fibre-targeting mAb 28E8, however, showed protection only at a dose up to 12.5 mg/kg. In tree shrews that are permissive for HAdV55 infection and disease, mAb 29C12 effectively prevented HAdV55-caused pneumonia. Further analysis revealed that fibre-targeting mAbs blocked the attachment of HAdV55 to host cells, whereas hexon-targeting mAbs, regardless of their targeting HVRs, mainly functioned at post-attachment stage via inhibiting viral endosomal escape. Our results indicate that hexon-targeting mAbs have great anti-HAdV55 activities and warrant pre-clinical and clinical evaluation.


Subject(s)
Adenoviruses, Human , Pneumonia , Mice , Animals , Humans , Antibodies, Neutralizing , Mice, Transgenic , Antibodies, Viral , Adenoviruses, Human/genetics , Tupaia , Macaca mulatta , Antibodies, Monoclonal , Tupaiidae , Viral Proteins
16.
J Gene Med ; 26(1): e3576, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37580111

ABSTRACT

BACKGROUND: Adenoviral vectors are among the most frequently used vectors for gene therapy and cancer treatment. Most vectors are derived from human adenovirus (Ad) serotype 5 despite limited applicability caused by pre-existing immunity and unfavorable liver tropism, whereas the other more than 100 known human serotypes remain largely unused. Here, we screened a library of human Ad types and identified Ad4 as a promising candidate vector. METHODS: Reporter-gene-expressing viruses representative of the natural human Ad diversity were used to transduce an array of muscle cell lines and two- or three-dimensional tumor cultures. The time-course of transgene expression was monitored by fluorescence or luminescence measurements. To generate replication-deficient Ad4 vector genomes, successive homologous recombination was applied. RESULTS: Ad4, 17 and 50 transduced human cardiomyocytes more efficiently than Ad5, whereas Ad37 was found to be superior in rhabdomyocytes. Despite its moderate transduction efficiency, Ad4 showed efficient and long-lasting gene expression in papillomavirus (HPV) positive tumor organoids. Therefore, we aimed to harness the potential of Ad4 for improved muscle transduction or oncolytic virotherapy of HPV-positive tumors. We deleted the E1 and E3 transcription units to produce first generation Ad vectors for gene therapy. The E1- and E1/E3-deleted vectors were replication-competent in HEK293 cells stably expressing E1 but not in the other cell lines tested. Furthermore, we show that the Ad5 E1 transcription unit can complement the replication of E1-deleted Ad4 vectors. CONCLUSIONS: Our Ad4-based gene therapy vector platform contributes to the development of improved Ad vectors based on non-canonical serotypes for a broad range of applications.


Subject(s)
Adenoviruses, Human , Neoplasms , Papillomavirus Infections , Humans , Serogroup , HEK293 Cells , Adenoviridae/genetics , Adenoviruses, Human/genetics , Genetic Vectors/genetics , Genetic Therapy , Neoplasms/genetics , Neoplasms/therapy
17.
J Clin Microbiol ; 62(1): e0123723, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38112530

ABSTRACT

IMPORTANCE: The circulation of human adenoviruses (HAdV) increased in 2023. In this manuscript, we show that HAdV-B3 was predominant in 2023 in a cohort characterized by the Johns Hopkins Hospital System. We also show that HAdV-B3 was associated with an increase in viral loads in respiratory samples and provide a correlation with the clinical presentations and outcomes.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Humans , Infant , Adenoviruses, Human/genetics , Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/epidemiology , Viral Load , Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Genotype , Hospitals , Academic Medical Centers , Phylogeny
18.
J Med Virol ; 95(12): e29284, 2023 12.
Article in English | MEDLINE | ID: mdl-38087446

ABSTRACT

To investigate the molecular epidemiological characteristics and genetic variations of human adenovirus (HAdV) in acute respiratory tract infections in Beijing. Whole-genome sequencing and phylogenetic analyses were performed for 83 strains of HAdV with different types in Beijing from 2014 to 2019. The clinical characteristics of HAdV infection were analyzed statistically. HAdV-B was divided into four genotypes, including B3 (n = 11), B7 (n = 13), B14 (n = 4), and B55 (n = 2). HAdV-C was divided into three genotypes, including C1 (n = 14), C2 (n = 13), and C5 (n = 10). In HAdV-C, nine recombinant adenovirus strains were identified in type 1, and seven recombinant strains were found in type 2. In type 1, we found three newly emerged intraspecific recombinant strains (A47, A48, and A52) collected in 2017, 2018, and 2019, respectively. In addition, the previously reported recombinant strains of HAdV-C1 showed more severe disease than other strains of HAdV-C, causing severe community-acquired pneumonia in both the elderly and children. Continuous population-wide molecular epidemiological surveillance of HAdV is essential for the prevention and control of respiratory infectious diseases.


Subject(s)
Adenoviridae Infections , Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Child , Humans , Aged , Beijing/epidemiology , Adenoviridae , Phylogeny , China/epidemiology , Adenoviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/genetics , Recombination, Genetic
19.
PLoS One ; 18(12): e0295323, 2023.
Article in English | MEDLINE | ID: mdl-38127912

ABSTRACT

OBJECTIVES: To compare the clinical curative effects, survival and complications of recombinant human adenovirus-p53 (rAd-p53) combined with transcatheter arterial chemoembolization (TACE) versus TACE for the treatment of liver cancer. METHODS: We searched all the eligible studies of rAd-p53 plus TACE versus control group had only TACE in the treatment of liver cancer, which were retrieved from CNKI, Wanfang database, CBM, VIP, PubMed, EMBase, The Chrance of Library, Web of Science from its inception to august 2022. RESULTS: A total of 17 studies were included, which involved 1045 patients. The results of the meta analysis indicated that the the rAd-p53combined with TACE markedly improved the patients' complete remission(OR = 2.19, 95% CI:1.13-4.22, P = 0.02), partial remission (OR = 2.22, 95% CI:1.67-2.94, P<0.00001), objective tumor response rate (OR = 2.58, 95% CI:1.95-3.41, P<0.00001) and disease control rate(OR = 2.39, 95% CI:1.65-3.47, P<0.00001) compared with TACE alone. And our results showed that rAd-p53combined with TACE had better survival benefit [6-month OS (OR = 3.41, 95% CI: 1.62-7.14, p = 0.001); 1-year OS (OR = 1.95, 95% CI: 1.28-2.96, p = 0.002)] and better quality of life(MD = 5.84, 95% CI:2.09-9.60, P = 0.002). In addition, the immunity of the patients was enhanced by the combination therapy, as demonstrated by the increase in the ratio of CD4+ to CD4+/CD8+. In adverse effects, except for fever in the TACE combined with rAd-p53 group, which was higher than that in the TACE group(OR = 2.62, 95% CI:2.02-3.49, P<0.00001), all other adverse effects were lower in the TACE combined with rAd-p53 group than in the TACE group. CONCLUSION: RAd-p53 combined with TACE for liver cancer showed significant advantages in terms of clinical efficacy, survival rate, and safety compared to the TACE alone, and effectively improved patient quality of life and immune function. SYSTEMATIC REVIEW REGISTRATION: https://inplasy.com/inplasy-2022-9-0127/.


Subject(s)
Adenoviruses, Human , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Adenoviruses, Human/genetics , Tumor Suppressor Protein p53/genetics , Quality of Life , Chemoembolization, Therapeutic/methods , Combined Modality Therapy , Treatment Outcome
20.
Viruses ; 15(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38140597

ABSTRACT

The adenovirus C5 E1B-55K protein is crucial for viral replication and is expressed early during infection. It can interact with E4orf6 to form a complex that functions as a ubiquitin E3 ligase. This complex targets specific cellular proteins and marks them for ubiquitination and, predominantly, subsequent proteasomal degradation. E1B-55K interacts with various proteins, with p53 being the most extensively studied, although identifying binding sites has been challenging. To explain the diverse range of proteins associated with E1B-55K, we hypothesized that other binding partners might recognize the simple p53 binding motif (xWxxxPx). In silico analyses showed that many known E1B-55K binding proteins possess this amino acid sequence; therefore, we investigated whether other xWxxxPx-containing proteins also bind to E1B-55K. Our findings revealed that many cellular proteins, including ATR, CHK1, USP9, and USP34, co-immunoprecipitate with E1B-55K. During adenovirus infection, several well-characterized E1B-55K binding proteins and newly identified interactors, including CSB, CHK1, and USP9, are degraded in a cullin-dependent manner. Notably, certain binding proteins, such as ATR and USP34, remain undegraded during infection. Structural predictions indicate no conservation of structure around the proposed binding motif, suggesting that the interaction relies on the correct arrangement of tryptophan and proline residues.


Subject(s)
Adenoviridae Infections , Adenovirus E4 Proteins , Adenoviruses, Human , Humans , Adenoviridae/metabolism , Adenovirus E1B Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Adenoviridae Infections/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Adenovirus E4 Proteins/genetics , Adenovirus E4 Proteins/metabolism , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...